xref: /openbmc/linux/net/core/net_namespace.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 #include <linux/uidgid.h>
21 
22 #include <net/sock.h>
23 #include <net/netlink.h>
24 #include <net/net_namespace.h>
25 #include <net/netns/generic.h>
26 
27 /*
28  *	Our network namespace constructor/destructor lists
29  */
30 
31 static LIST_HEAD(pernet_list);
32 static struct list_head *first_device = &pernet_list;
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 /* Protects net_namespace_list. Nests iside rtnl_lock() */
38 DECLARE_RWSEM(net_rwsem);
39 EXPORT_SYMBOL_GPL(net_rwsem);
40 
41 struct net init_net = {
42 	.count		= REFCOUNT_INIT(1),
43 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
44 };
45 EXPORT_SYMBOL(init_net);
46 
47 static bool init_net_initialized;
48 /*
49  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
50  * init_net_initialized and first_device pointer.
51  * This is internal net namespace object. Please, don't use it
52  * outside.
53  */
54 DECLARE_RWSEM(pernet_ops_rwsem);
55 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
56 
57 #define MIN_PERNET_OPS_ID	\
58 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
59 
60 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
61 
62 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
63 
64 static struct net_generic *net_alloc_generic(void)
65 {
66 	struct net_generic *ng;
67 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
68 
69 	ng = kzalloc(generic_size, GFP_KERNEL);
70 	if (ng)
71 		ng->s.len = max_gen_ptrs;
72 
73 	return ng;
74 }
75 
76 static int net_assign_generic(struct net *net, unsigned int id, void *data)
77 {
78 	struct net_generic *ng, *old_ng;
79 
80 	BUG_ON(id < MIN_PERNET_OPS_ID);
81 
82 	old_ng = rcu_dereference_protected(net->gen,
83 					   lockdep_is_held(&pernet_ops_rwsem));
84 	if (old_ng->s.len > id) {
85 		old_ng->ptr[id] = data;
86 		return 0;
87 	}
88 
89 	ng = net_alloc_generic();
90 	if (ng == NULL)
91 		return -ENOMEM;
92 
93 	/*
94 	 * Some synchronisation notes:
95 	 *
96 	 * The net_generic explores the net->gen array inside rcu
97 	 * read section. Besides once set the net->gen->ptr[x]
98 	 * pointer never changes (see rules in netns/generic.h).
99 	 *
100 	 * That said, we simply duplicate this array and schedule
101 	 * the old copy for kfree after a grace period.
102 	 */
103 
104 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
105 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
106 	ng->ptr[id] = data;
107 
108 	rcu_assign_pointer(net->gen, ng);
109 	kfree_rcu(old_ng, s.rcu);
110 	return 0;
111 }
112 
113 static int ops_init(const struct pernet_operations *ops, struct net *net)
114 {
115 	int err = -ENOMEM;
116 	void *data = NULL;
117 
118 	if (ops->id && ops->size) {
119 		data = kzalloc(ops->size, GFP_KERNEL);
120 		if (!data)
121 			goto out;
122 
123 		err = net_assign_generic(net, *ops->id, data);
124 		if (err)
125 			goto cleanup;
126 	}
127 	err = 0;
128 	if (ops->init)
129 		err = ops->init(net);
130 	if (!err)
131 		return 0;
132 
133 cleanup:
134 	kfree(data);
135 
136 out:
137 	return err;
138 }
139 
140 static void ops_free(const struct pernet_operations *ops, struct net *net)
141 {
142 	if (ops->id && ops->size) {
143 		kfree(net_generic(net, *ops->id));
144 	}
145 }
146 
147 static void ops_exit_list(const struct pernet_operations *ops,
148 			  struct list_head *net_exit_list)
149 {
150 	struct net *net;
151 	if (ops->exit) {
152 		list_for_each_entry(net, net_exit_list, exit_list)
153 			ops->exit(net);
154 	}
155 	if (ops->exit_batch)
156 		ops->exit_batch(net_exit_list);
157 }
158 
159 static void ops_free_list(const struct pernet_operations *ops,
160 			  struct list_head *net_exit_list)
161 {
162 	struct net *net;
163 	if (ops->size && ops->id) {
164 		list_for_each_entry(net, net_exit_list, exit_list)
165 			ops_free(ops, net);
166 	}
167 }
168 
169 /* should be called with nsid_lock held */
170 static int alloc_netid(struct net *net, struct net *peer, int reqid)
171 {
172 	int min = 0, max = 0;
173 
174 	if (reqid >= 0) {
175 		min = reqid;
176 		max = reqid + 1;
177 	}
178 
179 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
180 }
181 
182 /* This function is used by idr_for_each(). If net is equal to peer, the
183  * function returns the id so that idr_for_each() stops. Because we cannot
184  * returns the id 0 (idr_for_each() will not stop), we return the magic value
185  * NET_ID_ZERO (-1) for it.
186  */
187 #define NET_ID_ZERO -1
188 static int net_eq_idr(int id, void *net, void *peer)
189 {
190 	if (net_eq(net, peer))
191 		return id ? : NET_ID_ZERO;
192 	return 0;
193 }
194 
195 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
196  * is set to true, thus the caller knows that the new id must be notified via
197  * rtnl.
198  */
199 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
200 {
201 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
202 	bool alloc_it = *alloc;
203 
204 	*alloc = false;
205 
206 	/* Magic value for id 0. */
207 	if (id == NET_ID_ZERO)
208 		return 0;
209 	if (id > 0)
210 		return id;
211 
212 	if (alloc_it) {
213 		id = alloc_netid(net, peer, -1);
214 		*alloc = true;
215 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
216 	}
217 
218 	return NETNSA_NSID_NOT_ASSIGNED;
219 }
220 
221 /* should be called with nsid_lock held */
222 static int __peernet2id(struct net *net, struct net *peer)
223 {
224 	bool no = false;
225 
226 	return __peernet2id_alloc(net, peer, &no);
227 }
228 
229 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
230 /* This function returns the id of a peer netns. If no id is assigned, one will
231  * be allocated and returned.
232  */
233 int peernet2id_alloc(struct net *net, struct net *peer)
234 {
235 	bool alloc = false, alive = false;
236 	int id;
237 
238 	if (refcount_read(&net->count) == 0)
239 		return NETNSA_NSID_NOT_ASSIGNED;
240 	spin_lock_bh(&net->nsid_lock);
241 	/*
242 	 * When peer is obtained from RCU lists, we may race with
243 	 * its cleanup. Check whether it's alive, and this guarantees
244 	 * we never hash a peer back to net->netns_ids, after it has
245 	 * just been idr_remove()'d from there in cleanup_net().
246 	 */
247 	if (maybe_get_net(peer))
248 		alive = alloc = true;
249 	id = __peernet2id_alloc(net, peer, &alloc);
250 	spin_unlock_bh(&net->nsid_lock);
251 	if (alloc && id >= 0)
252 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
253 	if (alive)
254 		put_net(peer);
255 	return id;
256 }
257 EXPORT_SYMBOL_GPL(peernet2id_alloc);
258 
259 /* This function returns, if assigned, the id of a peer netns. */
260 int peernet2id(struct net *net, struct net *peer)
261 {
262 	int id;
263 
264 	spin_lock_bh(&net->nsid_lock);
265 	id = __peernet2id(net, peer);
266 	spin_unlock_bh(&net->nsid_lock);
267 	return id;
268 }
269 EXPORT_SYMBOL(peernet2id);
270 
271 /* This function returns true is the peer netns has an id assigned into the
272  * current netns.
273  */
274 bool peernet_has_id(struct net *net, struct net *peer)
275 {
276 	return peernet2id(net, peer) >= 0;
277 }
278 
279 struct net *get_net_ns_by_id(struct net *net, int id)
280 {
281 	struct net *peer;
282 
283 	if (id < 0)
284 		return NULL;
285 
286 	rcu_read_lock();
287 	peer = idr_find(&net->netns_ids, id);
288 	if (peer)
289 		peer = maybe_get_net(peer);
290 	rcu_read_unlock();
291 
292 	return peer;
293 }
294 
295 /*
296  * setup_net runs the initializers for the network namespace object.
297  */
298 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
299 {
300 	/* Must be called with pernet_ops_rwsem held */
301 	const struct pernet_operations *ops, *saved_ops;
302 	int error = 0;
303 	LIST_HEAD(net_exit_list);
304 
305 	refcount_set(&net->count, 1);
306 	refcount_set(&net->passive, 1);
307 	get_random_bytes(&net->hash_mix, sizeof(u32));
308 	net->dev_base_seq = 1;
309 	net->user_ns = user_ns;
310 	idr_init(&net->netns_ids);
311 	spin_lock_init(&net->nsid_lock);
312 	mutex_init(&net->ipv4.ra_mutex);
313 
314 	list_for_each_entry(ops, &pernet_list, list) {
315 		error = ops_init(ops, net);
316 		if (error < 0)
317 			goto out_undo;
318 	}
319 	down_write(&net_rwsem);
320 	list_add_tail_rcu(&net->list, &net_namespace_list);
321 	up_write(&net_rwsem);
322 out:
323 	return error;
324 
325 out_undo:
326 	/* Walk through the list backwards calling the exit functions
327 	 * for the pernet modules whose init functions did not fail.
328 	 */
329 	list_add(&net->exit_list, &net_exit_list);
330 	saved_ops = ops;
331 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
332 		ops_exit_list(ops, &net_exit_list);
333 
334 	ops = saved_ops;
335 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
336 		ops_free_list(ops, &net_exit_list);
337 
338 	rcu_barrier();
339 	goto out;
340 }
341 
342 static int __net_init net_defaults_init_net(struct net *net)
343 {
344 	net->core.sysctl_somaxconn = SOMAXCONN;
345 	return 0;
346 }
347 
348 static struct pernet_operations net_defaults_ops = {
349 	.init = net_defaults_init_net,
350 };
351 
352 static __init int net_defaults_init(void)
353 {
354 	if (register_pernet_subsys(&net_defaults_ops))
355 		panic("Cannot initialize net default settings");
356 
357 	return 0;
358 }
359 
360 core_initcall(net_defaults_init);
361 
362 #ifdef CONFIG_NET_NS
363 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
364 {
365 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
366 }
367 
368 static void dec_net_namespaces(struct ucounts *ucounts)
369 {
370 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
371 }
372 
373 static struct kmem_cache *net_cachep __ro_after_init;
374 static struct workqueue_struct *netns_wq;
375 
376 static struct net *net_alloc(void)
377 {
378 	struct net *net = NULL;
379 	struct net_generic *ng;
380 
381 	ng = net_alloc_generic();
382 	if (!ng)
383 		goto out;
384 
385 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
386 	if (!net)
387 		goto out_free;
388 
389 	rcu_assign_pointer(net->gen, ng);
390 out:
391 	return net;
392 
393 out_free:
394 	kfree(ng);
395 	goto out;
396 }
397 
398 static void net_free(struct net *net)
399 {
400 	kfree(rcu_access_pointer(net->gen));
401 	kmem_cache_free(net_cachep, net);
402 }
403 
404 void net_drop_ns(void *p)
405 {
406 	struct net *ns = p;
407 	if (ns && refcount_dec_and_test(&ns->passive))
408 		net_free(ns);
409 }
410 
411 struct net *copy_net_ns(unsigned long flags,
412 			struct user_namespace *user_ns, struct net *old_net)
413 {
414 	struct ucounts *ucounts;
415 	struct net *net;
416 	int rv;
417 
418 	if (!(flags & CLONE_NEWNET))
419 		return get_net(old_net);
420 
421 	ucounts = inc_net_namespaces(user_ns);
422 	if (!ucounts)
423 		return ERR_PTR(-ENOSPC);
424 
425 	net = net_alloc();
426 	if (!net) {
427 		rv = -ENOMEM;
428 		goto dec_ucounts;
429 	}
430 	refcount_set(&net->passive, 1);
431 	net->ucounts = ucounts;
432 	get_user_ns(user_ns);
433 
434 	rv = down_read_killable(&pernet_ops_rwsem);
435 	if (rv < 0)
436 		goto put_userns;
437 
438 	rv = setup_net(net, user_ns);
439 
440 	up_read(&pernet_ops_rwsem);
441 
442 	if (rv < 0) {
443 put_userns:
444 		put_user_ns(user_ns);
445 		net_drop_ns(net);
446 dec_ucounts:
447 		dec_net_namespaces(ucounts);
448 		return ERR_PTR(rv);
449 	}
450 	return net;
451 }
452 
453 /**
454  * net_ns_get_ownership - get sysfs ownership data for @net
455  * @net: network namespace in question (can be NULL)
456  * @uid: kernel user ID for sysfs objects
457  * @gid: kernel group ID for sysfs objects
458  *
459  * Returns the uid/gid pair of root in the user namespace associated with the
460  * given network namespace.
461  */
462 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
463 {
464 	if (net) {
465 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
466 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
467 
468 		if (uid_valid(ns_root_uid))
469 			*uid = ns_root_uid;
470 
471 		if (gid_valid(ns_root_gid))
472 			*gid = ns_root_gid;
473 	} else {
474 		*uid = GLOBAL_ROOT_UID;
475 		*gid = GLOBAL_ROOT_GID;
476 	}
477 }
478 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
479 
480 static void unhash_nsid(struct net *net, struct net *last)
481 {
482 	struct net *tmp;
483 	/* This function is only called from cleanup_net() work,
484 	 * and this work is the only process, that may delete
485 	 * a net from net_namespace_list. So, when the below
486 	 * is executing, the list may only grow. Thus, we do not
487 	 * use for_each_net_rcu() or net_rwsem.
488 	 */
489 	for_each_net(tmp) {
490 		int id;
491 
492 		spin_lock_bh(&tmp->nsid_lock);
493 		id = __peernet2id(tmp, net);
494 		if (id >= 0)
495 			idr_remove(&tmp->netns_ids, id);
496 		spin_unlock_bh(&tmp->nsid_lock);
497 		if (id >= 0)
498 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
499 		if (tmp == last)
500 			break;
501 	}
502 	spin_lock_bh(&net->nsid_lock);
503 	idr_destroy(&net->netns_ids);
504 	spin_unlock_bh(&net->nsid_lock);
505 }
506 
507 static LLIST_HEAD(cleanup_list);
508 
509 static void cleanup_net(struct work_struct *work)
510 {
511 	const struct pernet_operations *ops;
512 	struct net *net, *tmp, *last;
513 	struct llist_node *net_kill_list;
514 	LIST_HEAD(net_exit_list);
515 
516 	/* Atomically snapshot the list of namespaces to cleanup */
517 	net_kill_list = llist_del_all(&cleanup_list);
518 
519 	down_read(&pernet_ops_rwsem);
520 
521 	/* Don't let anyone else find us. */
522 	down_write(&net_rwsem);
523 	llist_for_each_entry(net, net_kill_list, cleanup_list)
524 		list_del_rcu(&net->list);
525 	/* Cache last net. After we unlock rtnl, no one new net
526 	 * added to net_namespace_list can assign nsid pointer
527 	 * to a net from net_kill_list (see peernet2id_alloc()).
528 	 * So, we skip them in unhash_nsid().
529 	 *
530 	 * Note, that unhash_nsid() does not delete nsid links
531 	 * between net_kill_list's nets, as they've already
532 	 * deleted from net_namespace_list. But, this would be
533 	 * useless anyway, as netns_ids are destroyed there.
534 	 */
535 	last = list_last_entry(&net_namespace_list, struct net, list);
536 	up_write(&net_rwsem);
537 
538 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
539 		unhash_nsid(net, last);
540 		list_add_tail(&net->exit_list, &net_exit_list);
541 	}
542 
543 	/*
544 	 * Another CPU might be rcu-iterating the list, wait for it.
545 	 * This needs to be before calling the exit() notifiers, so
546 	 * the rcu_barrier() below isn't sufficient alone.
547 	 */
548 	synchronize_rcu();
549 
550 	/* Run all of the network namespace exit methods */
551 	list_for_each_entry_reverse(ops, &pernet_list, list)
552 		ops_exit_list(ops, &net_exit_list);
553 
554 	/* Free the net generic variables */
555 	list_for_each_entry_reverse(ops, &pernet_list, list)
556 		ops_free_list(ops, &net_exit_list);
557 
558 	up_read(&pernet_ops_rwsem);
559 
560 	/* Ensure there are no outstanding rcu callbacks using this
561 	 * network namespace.
562 	 */
563 	rcu_barrier();
564 
565 	/* Finally it is safe to free my network namespace structure */
566 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
567 		list_del_init(&net->exit_list);
568 		dec_net_namespaces(net->ucounts);
569 		put_user_ns(net->user_ns);
570 		net_drop_ns(net);
571 	}
572 }
573 
574 /**
575  * net_ns_barrier - wait until concurrent net_cleanup_work is done
576  *
577  * cleanup_net runs from work queue and will first remove namespaces
578  * from the global list, then run net exit functions.
579  *
580  * Call this in module exit path to make sure that all netns
581  * ->exit ops have been invoked before the function is removed.
582  */
583 void net_ns_barrier(void)
584 {
585 	down_write(&pernet_ops_rwsem);
586 	up_write(&pernet_ops_rwsem);
587 }
588 EXPORT_SYMBOL(net_ns_barrier);
589 
590 static DECLARE_WORK(net_cleanup_work, cleanup_net);
591 
592 void __put_net(struct net *net)
593 {
594 	/* Cleanup the network namespace in process context */
595 	if (llist_add(&net->cleanup_list, &cleanup_list))
596 		queue_work(netns_wq, &net_cleanup_work);
597 }
598 EXPORT_SYMBOL_GPL(__put_net);
599 
600 struct net *get_net_ns_by_fd(int fd)
601 {
602 	struct file *file;
603 	struct ns_common *ns;
604 	struct net *net;
605 
606 	file = proc_ns_fget(fd);
607 	if (IS_ERR(file))
608 		return ERR_CAST(file);
609 
610 	ns = get_proc_ns(file_inode(file));
611 	if (ns->ops == &netns_operations)
612 		net = get_net(container_of(ns, struct net, ns));
613 	else
614 		net = ERR_PTR(-EINVAL);
615 
616 	fput(file);
617 	return net;
618 }
619 
620 #else
621 struct net *get_net_ns_by_fd(int fd)
622 {
623 	return ERR_PTR(-EINVAL);
624 }
625 #endif
626 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
627 
628 struct net *get_net_ns_by_pid(pid_t pid)
629 {
630 	struct task_struct *tsk;
631 	struct net *net;
632 
633 	/* Lookup the network namespace */
634 	net = ERR_PTR(-ESRCH);
635 	rcu_read_lock();
636 	tsk = find_task_by_vpid(pid);
637 	if (tsk) {
638 		struct nsproxy *nsproxy;
639 		task_lock(tsk);
640 		nsproxy = tsk->nsproxy;
641 		if (nsproxy)
642 			net = get_net(nsproxy->net_ns);
643 		task_unlock(tsk);
644 	}
645 	rcu_read_unlock();
646 	return net;
647 }
648 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
649 
650 static __net_init int net_ns_net_init(struct net *net)
651 {
652 #ifdef CONFIG_NET_NS
653 	net->ns.ops = &netns_operations;
654 #endif
655 	return ns_alloc_inum(&net->ns);
656 }
657 
658 static __net_exit void net_ns_net_exit(struct net *net)
659 {
660 	ns_free_inum(&net->ns);
661 }
662 
663 static struct pernet_operations __net_initdata net_ns_ops = {
664 	.init = net_ns_net_init,
665 	.exit = net_ns_net_exit,
666 };
667 
668 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
669 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
670 	[NETNSA_NSID]		= { .type = NLA_S32 },
671 	[NETNSA_PID]		= { .type = NLA_U32 },
672 	[NETNSA_FD]		= { .type = NLA_U32 },
673 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
674 };
675 
676 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
677 			  struct netlink_ext_ack *extack)
678 {
679 	struct net *net = sock_net(skb->sk);
680 	struct nlattr *tb[NETNSA_MAX + 1];
681 	struct nlattr *nla;
682 	struct net *peer;
683 	int nsid, err;
684 
685 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
686 			  rtnl_net_policy, extack);
687 	if (err < 0)
688 		return err;
689 	if (!tb[NETNSA_NSID]) {
690 		NL_SET_ERR_MSG(extack, "nsid is missing");
691 		return -EINVAL;
692 	}
693 	nsid = nla_get_s32(tb[NETNSA_NSID]);
694 
695 	if (tb[NETNSA_PID]) {
696 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
697 		nla = tb[NETNSA_PID];
698 	} else if (tb[NETNSA_FD]) {
699 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
700 		nla = tb[NETNSA_FD];
701 	} else {
702 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
703 		return -EINVAL;
704 	}
705 	if (IS_ERR(peer)) {
706 		NL_SET_BAD_ATTR(extack, nla);
707 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
708 		return PTR_ERR(peer);
709 	}
710 
711 	spin_lock_bh(&net->nsid_lock);
712 	if (__peernet2id(net, peer) >= 0) {
713 		spin_unlock_bh(&net->nsid_lock);
714 		err = -EEXIST;
715 		NL_SET_BAD_ATTR(extack, nla);
716 		NL_SET_ERR_MSG(extack,
717 			       "Peer netns already has a nsid assigned");
718 		goto out;
719 	}
720 
721 	err = alloc_netid(net, peer, nsid);
722 	spin_unlock_bh(&net->nsid_lock);
723 	if (err >= 0) {
724 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
725 		err = 0;
726 	} else if (err == -ENOSPC && nsid >= 0) {
727 		err = -EEXIST;
728 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
729 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
730 	}
731 out:
732 	put_net(peer);
733 	return err;
734 }
735 
736 static int rtnl_net_get_size(void)
737 {
738 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
739 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
740 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
741 	       ;
742 }
743 
744 struct net_fill_args {
745 	u32 portid;
746 	u32 seq;
747 	int flags;
748 	int cmd;
749 	int nsid;
750 	bool add_ref;
751 	int ref_nsid;
752 };
753 
754 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
755 {
756 	struct nlmsghdr *nlh;
757 	struct rtgenmsg *rth;
758 
759 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
760 			args->flags);
761 	if (!nlh)
762 		return -EMSGSIZE;
763 
764 	rth = nlmsg_data(nlh);
765 	rth->rtgen_family = AF_UNSPEC;
766 
767 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
768 		goto nla_put_failure;
769 
770 	if (args->add_ref &&
771 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
772 		goto nla_put_failure;
773 
774 	nlmsg_end(skb, nlh);
775 	return 0;
776 
777 nla_put_failure:
778 	nlmsg_cancel(skb, nlh);
779 	return -EMSGSIZE;
780 }
781 
782 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
783 				    const struct nlmsghdr *nlh,
784 				    struct nlattr **tb,
785 				    struct netlink_ext_ack *extack)
786 {
787 	int i, err;
788 
789 	if (!netlink_strict_get_check(skb))
790 		return nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
791 				   rtnl_net_policy, extack);
792 
793 	err = nlmsg_parse_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
794 				 rtnl_net_policy, extack);
795 	if (err)
796 		return err;
797 
798 	for (i = 0; i <= NETNSA_MAX; i++) {
799 		if (!tb[i])
800 			continue;
801 
802 		switch (i) {
803 		case NETNSA_PID:
804 		case NETNSA_FD:
805 		case NETNSA_NSID:
806 		case NETNSA_TARGET_NSID:
807 			break;
808 		default:
809 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
810 			return -EINVAL;
811 		}
812 	}
813 
814 	return 0;
815 }
816 
817 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
818 			  struct netlink_ext_ack *extack)
819 {
820 	struct net *net = sock_net(skb->sk);
821 	struct nlattr *tb[NETNSA_MAX + 1];
822 	struct net_fill_args fillargs = {
823 		.portid = NETLINK_CB(skb).portid,
824 		.seq = nlh->nlmsg_seq,
825 		.cmd = RTM_NEWNSID,
826 	};
827 	struct net *peer, *target = net;
828 	struct nlattr *nla;
829 	struct sk_buff *msg;
830 	int err;
831 
832 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
833 	if (err < 0)
834 		return err;
835 	if (tb[NETNSA_PID]) {
836 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
837 		nla = tb[NETNSA_PID];
838 	} else if (tb[NETNSA_FD]) {
839 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
840 		nla = tb[NETNSA_FD];
841 	} else if (tb[NETNSA_NSID]) {
842 		peer = get_net_ns_by_id(net, nla_get_u32(tb[NETNSA_NSID]));
843 		if (!peer)
844 			peer = ERR_PTR(-ENOENT);
845 		nla = tb[NETNSA_NSID];
846 	} else {
847 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
848 		return -EINVAL;
849 	}
850 
851 	if (IS_ERR(peer)) {
852 		NL_SET_BAD_ATTR(extack, nla);
853 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
854 		return PTR_ERR(peer);
855 	}
856 
857 	if (tb[NETNSA_TARGET_NSID]) {
858 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
859 
860 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
861 		if (IS_ERR(target)) {
862 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
863 			NL_SET_ERR_MSG(extack,
864 				       "Target netns reference is invalid");
865 			err = PTR_ERR(target);
866 			goto out;
867 		}
868 		fillargs.add_ref = true;
869 		fillargs.ref_nsid = peernet2id(net, peer);
870 	}
871 
872 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
873 	if (!msg) {
874 		err = -ENOMEM;
875 		goto out;
876 	}
877 
878 	fillargs.nsid = peernet2id(target, peer);
879 	err = rtnl_net_fill(msg, &fillargs);
880 	if (err < 0)
881 		goto err_out;
882 
883 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
884 	goto out;
885 
886 err_out:
887 	nlmsg_free(msg);
888 out:
889 	if (fillargs.add_ref)
890 		put_net(target);
891 	put_net(peer);
892 	return err;
893 }
894 
895 struct rtnl_net_dump_cb {
896 	struct net *tgt_net;
897 	struct net *ref_net;
898 	struct sk_buff *skb;
899 	struct net_fill_args fillargs;
900 	int idx;
901 	int s_idx;
902 };
903 
904 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
905 {
906 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
907 	int ret;
908 
909 	if (net_cb->idx < net_cb->s_idx)
910 		goto cont;
911 
912 	net_cb->fillargs.nsid = id;
913 	if (net_cb->fillargs.add_ref)
914 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
915 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
916 	if (ret < 0)
917 		return ret;
918 
919 cont:
920 	net_cb->idx++;
921 	return 0;
922 }
923 
924 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
925 				   struct rtnl_net_dump_cb *net_cb,
926 				   struct netlink_callback *cb)
927 {
928 	struct netlink_ext_ack *extack = cb->extack;
929 	struct nlattr *tb[NETNSA_MAX + 1];
930 	int err, i;
931 
932 	err = nlmsg_parse_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
933 				 rtnl_net_policy, extack);
934 	if (err < 0)
935 		return err;
936 
937 	for (i = 0; i <= NETNSA_MAX; i++) {
938 		if (!tb[i])
939 			continue;
940 
941 		if (i == NETNSA_TARGET_NSID) {
942 			struct net *net;
943 
944 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
945 			if (IS_ERR(net)) {
946 				NL_SET_BAD_ATTR(extack, tb[i]);
947 				NL_SET_ERR_MSG(extack,
948 					       "Invalid target network namespace id");
949 				return PTR_ERR(net);
950 			}
951 			net_cb->fillargs.add_ref = true;
952 			net_cb->ref_net = net_cb->tgt_net;
953 			net_cb->tgt_net = net;
954 		} else {
955 			NL_SET_BAD_ATTR(extack, tb[i]);
956 			NL_SET_ERR_MSG(extack,
957 				       "Unsupported attribute in dump request");
958 			return -EINVAL;
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
966 {
967 	struct rtnl_net_dump_cb net_cb = {
968 		.tgt_net = sock_net(skb->sk),
969 		.skb = skb,
970 		.fillargs = {
971 			.portid = NETLINK_CB(cb->skb).portid,
972 			.seq = cb->nlh->nlmsg_seq,
973 			.flags = NLM_F_MULTI,
974 			.cmd = RTM_NEWNSID,
975 		},
976 		.idx = 0,
977 		.s_idx = cb->args[0],
978 	};
979 	int err = 0;
980 
981 	if (cb->strict_check) {
982 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
983 		if (err < 0)
984 			goto end;
985 	}
986 
987 	spin_lock_bh(&net_cb.tgt_net->nsid_lock);
988 	if (net_cb.fillargs.add_ref &&
989 	    !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
990 	    !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
991 		spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
992 		err = -EAGAIN;
993 		goto end;
994 	}
995 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
996 	if (net_cb.fillargs.add_ref &&
997 	    !net_eq(net_cb.ref_net, net_cb.tgt_net))
998 		spin_unlock_bh(&net_cb.ref_net->nsid_lock);
999 	spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1000 
1001 	cb->args[0] = net_cb.idx;
1002 end:
1003 	if (net_cb.fillargs.add_ref)
1004 		put_net(net_cb.tgt_net);
1005 	return err < 0 ? err : skb->len;
1006 }
1007 
1008 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
1009 {
1010 	struct net_fill_args fillargs = {
1011 		.cmd = cmd,
1012 		.nsid = id,
1013 	};
1014 	struct sk_buff *msg;
1015 	int err = -ENOMEM;
1016 
1017 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1018 	if (!msg)
1019 		goto out;
1020 
1021 	err = rtnl_net_fill(msg, &fillargs);
1022 	if (err < 0)
1023 		goto err_out;
1024 
1025 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
1026 	return;
1027 
1028 err_out:
1029 	nlmsg_free(msg);
1030 out:
1031 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1032 }
1033 
1034 static int __init net_ns_init(void)
1035 {
1036 	struct net_generic *ng;
1037 
1038 #ifdef CONFIG_NET_NS
1039 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1040 					SMP_CACHE_BYTES,
1041 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1042 
1043 	/* Create workqueue for cleanup */
1044 	netns_wq = create_singlethread_workqueue("netns");
1045 	if (!netns_wq)
1046 		panic("Could not create netns workq");
1047 #endif
1048 
1049 	ng = net_alloc_generic();
1050 	if (!ng)
1051 		panic("Could not allocate generic netns");
1052 
1053 	rcu_assign_pointer(init_net.gen, ng);
1054 
1055 	down_write(&pernet_ops_rwsem);
1056 	if (setup_net(&init_net, &init_user_ns))
1057 		panic("Could not setup the initial network namespace");
1058 
1059 	init_net_initialized = true;
1060 	up_write(&pernet_ops_rwsem);
1061 
1062 	if (register_pernet_subsys(&net_ns_ops))
1063 		panic("Could not register network namespace subsystems");
1064 
1065 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1066 		      RTNL_FLAG_DOIT_UNLOCKED);
1067 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1068 		      RTNL_FLAG_DOIT_UNLOCKED);
1069 
1070 	return 0;
1071 }
1072 
1073 pure_initcall(net_ns_init);
1074 
1075 #ifdef CONFIG_NET_NS
1076 static int __register_pernet_operations(struct list_head *list,
1077 					struct pernet_operations *ops)
1078 {
1079 	struct net *net;
1080 	int error;
1081 	LIST_HEAD(net_exit_list);
1082 
1083 	list_add_tail(&ops->list, list);
1084 	if (ops->init || (ops->id && ops->size)) {
1085 		/* We held write locked pernet_ops_rwsem, and parallel
1086 		 * setup_net() and cleanup_net() are not possible.
1087 		 */
1088 		for_each_net(net) {
1089 			error = ops_init(ops, net);
1090 			if (error)
1091 				goto out_undo;
1092 			list_add_tail(&net->exit_list, &net_exit_list);
1093 		}
1094 	}
1095 	return 0;
1096 
1097 out_undo:
1098 	/* If I have an error cleanup all namespaces I initialized */
1099 	list_del(&ops->list);
1100 	ops_exit_list(ops, &net_exit_list);
1101 	ops_free_list(ops, &net_exit_list);
1102 	return error;
1103 }
1104 
1105 static void __unregister_pernet_operations(struct pernet_operations *ops)
1106 {
1107 	struct net *net;
1108 	LIST_HEAD(net_exit_list);
1109 
1110 	list_del(&ops->list);
1111 	/* See comment in __register_pernet_operations() */
1112 	for_each_net(net)
1113 		list_add_tail(&net->exit_list, &net_exit_list);
1114 	ops_exit_list(ops, &net_exit_list);
1115 	ops_free_list(ops, &net_exit_list);
1116 }
1117 
1118 #else
1119 
1120 static int __register_pernet_operations(struct list_head *list,
1121 					struct pernet_operations *ops)
1122 {
1123 	if (!init_net_initialized) {
1124 		list_add_tail(&ops->list, list);
1125 		return 0;
1126 	}
1127 
1128 	return ops_init(ops, &init_net);
1129 }
1130 
1131 static void __unregister_pernet_operations(struct pernet_operations *ops)
1132 {
1133 	if (!init_net_initialized) {
1134 		list_del(&ops->list);
1135 	} else {
1136 		LIST_HEAD(net_exit_list);
1137 		list_add(&init_net.exit_list, &net_exit_list);
1138 		ops_exit_list(ops, &net_exit_list);
1139 		ops_free_list(ops, &net_exit_list);
1140 	}
1141 }
1142 
1143 #endif /* CONFIG_NET_NS */
1144 
1145 static DEFINE_IDA(net_generic_ids);
1146 
1147 static int register_pernet_operations(struct list_head *list,
1148 				      struct pernet_operations *ops)
1149 {
1150 	int error;
1151 
1152 	if (ops->id) {
1153 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1154 				GFP_KERNEL);
1155 		if (error < 0)
1156 			return error;
1157 		*ops->id = error;
1158 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1159 	}
1160 	error = __register_pernet_operations(list, ops);
1161 	if (error) {
1162 		rcu_barrier();
1163 		if (ops->id)
1164 			ida_free(&net_generic_ids, *ops->id);
1165 	}
1166 
1167 	return error;
1168 }
1169 
1170 static void unregister_pernet_operations(struct pernet_operations *ops)
1171 {
1172 	__unregister_pernet_operations(ops);
1173 	rcu_barrier();
1174 	if (ops->id)
1175 		ida_free(&net_generic_ids, *ops->id);
1176 }
1177 
1178 /**
1179  *      register_pernet_subsys - register a network namespace subsystem
1180  *	@ops:  pernet operations structure for the subsystem
1181  *
1182  *	Register a subsystem which has init and exit functions
1183  *	that are called when network namespaces are created and
1184  *	destroyed respectively.
1185  *
1186  *	When registered all network namespace init functions are
1187  *	called for every existing network namespace.  Allowing kernel
1188  *	modules to have a race free view of the set of network namespaces.
1189  *
1190  *	When a new network namespace is created all of the init
1191  *	methods are called in the order in which they were registered.
1192  *
1193  *	When a network namespace is destroyed all of the exit methods
1194  *	are called in the reverse of the order with which they were
1195  *	registered.
1196  */
1197 int register_pernet_subsys(struct pernet_operations *ops)
1198 {
1199 	int error;
1200 	down_write(&pernet_ops_rwsem);
1201 	error =  register_pernet_operations(first_device, ops);
1202 	up_write(&pernet_ops_rwsem);
1203 	return error;
1204 }
1205 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1206 
1207 /**
1208  *      unregister_pernet_subsys - unregister a network namespace subsystem
1209  *	@ops: pernet operations structure to manipulate
1210  *
1211  *	Remove the pernet operations structure from the list to be
1212  *	used when network namespaces are created or destroyed.  In
1213  *	addition run the exit method for all existing network
1214  *	namespaces.
1215  */
1216 void unregister_pernet_subsys(struct pernet_operations *ops)
1217 {
1218 	down_write(&pernet_ops_rwsem);
1219 	unregister_pernet_operations(ops);
1220 	up_write(&pernet_ops_rwsem);
1221 }
1222 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1223 
1224 /**
1225  *      register_pernet_device - register a network namespace device
1226  *	@ops:  pernet operations structure for the subsystem
1227  *
1228  *	Register a device which has init and exit functions
1229  *	that are called when network namespaces are created and
1230  *	destroyed respectively.
1231  *
1232  *	When registered all network namespace init functions are
1233  *	called for every existing network namespace.  Allowing kernel
1234  *	modules to have a race free view of the set of network namespaces.
1235  *
1236  *	When a new network namespace is created all of the init
1237  *	methods are called in the order in which they were registered.
1238  *
1239  *	When a network namespace is destroyed all of the exit methods
1240  *	are called in the reverse of the order with which they were
1241  *	registered.
1242  */
1243 int register_pernet_device(struct pernet_operations *ops)
1244 {
1245 	int error;
1246 	down_write(&pernet_ops_rwsem);
1247 	error = register_pernet_operations(&pernet_list, ops);
1248 	if (!error && (first_device == &pernet_list))
1249 		first_device = &ops->list;
1250 	up_write(&pernet_ops_rwsem);
1251 	return error;
1252 }
1253 EXPORT_SYMBOL_GPL(register_pernet_device);
1254 
1255 /**
1256  *      unregister_pernet_device - unregister a network namespace netdevice
1257  *	@ops: pernet operations structure to manipulate
1258  *
1259  *	Remove the pernet operations structure from the list to be
1260  *	used when network namespaces are created or destroyed.  In
1261  *	addition run the exit method for all existing network
1262  *	namespaces.
1263  */
1264 void unregister_pernet_device(struct pernet_operations *ops)
1265 {
1266 	down_write(&pernet_ops_rwsem);
1267 	if (&ops->list == first_device)
1268 		first_device = first_device->next;
1269 	unregister_pernet_operations(ops);
1270 	up_write(&pernet_ops_rwsem);
1271 }
1272 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1273 
1274 #ifdef CONFIG_NET_NS
1275 static struct ns_common *netns_get(struct task_struct *task)
1276 {
1277 	struct net *net = NULL;
1278 	struct nsproxy *nsproxy;
1279 
1280 	task_lock(task);
1281 	nsproxy = task->nsproxy;
1282 	if (nsproxy)
1283 		net = get_net(nsproxy->net_ns);
1284 	task_unlock(task);
1285 
1286 	return net ? &net->ns : NULL;
1287 }
1288 
1289 static inline struct net *to_net_ns(struct ns_common *ns)
1290 {
1291 	return container_of(ns, struct net, ns);
1292 }
1293 
1294 static void netns_put(struct ns_common *ns)
1295 {
1296 	put_net(to_net_ns(ns));
1297 }
1298 
1299 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1300 {
1301 	struct net *net = to_net_ns(ns);
1302 
1303 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1304 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1305 		return -EPERM;
1306 
1307 	put_net(nsproxy->net_ns);
1308 	nsproxy->net_ns = get_net(net);
1309 	return 0;
1310 }
1311 
1312 static struct user_namespace *netns_owner(struct ns_common *ns)
1313 {
1314 	return to_net_ns(ns)->user_ns;
1315 }
1316 
1317 const struct proc_ns_operations netns_operations = {
1318 	.name		= "net",
1319 	.type		= CLONE_NEWNET,
1320 	.get		= netns_get,
1321 	.put		= netns_put,
1322 	.install	= netns_install,
1323 	.owner		= netns_owner,
1324 };
1325 #endif
1326