xref: /openbmc/linux/net/core/net_namespace.c (revision bcac25a5)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
41 
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43 
44 static struct net_generic *net_alloc_generic(void)
45 {
46 	struct net_generic *ng;
47 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48 
49 	ng = kzalloc(generic_size, GFP_KERNEL);
50 	if (ng)
51 		ng->len = max_gen_ptrs;
52 
53 	return ng;
54 }
55 
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 	struct net_generic *ng, *old_ng;
59 
60 	BUG_ON(!mutex_is_locked(&net_mutex));
61 	BUG_ON(id == 0);
62 
63 	old_ng = rcu_dereference_protected(net->gen,
64 					   lockdep_is_held(&net_mutex));
65 	ng = old_ng;
66 	if (old_ng->len >= id)
67 		goto assign;
68 
69 	ng = net_alloc_generic();
70 	if (ng == NULL)
71 		return -ENOMEM;
72 
73 	/*
74 	 * Some synchronisation notes:
75 	 *
76 	 * The net_generic explores the net->gen array inside rcu
77 	 * read section. Besides once set the net->gen->ptr[x]
78 	 * pointer never changes (see rules in netns/generic.h).
79 	 *
80 	 * That said, we simply duplicate this array and schedule
81 	 * the old copy for kfree after a grace period.
82 	 */
83 
84 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85 
86 	rcu_assign_pointer(net->gen, ng);
87 	kfree_rcu(old_ng, rcu);
88 assign:
89 	ng->ptr[id - 1] = data;
90 	return 0;
91 }
92 
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 	int err = -ENOMEM;
96 	void *data = NULL;
97 
98 	if (ops->id && ops->size) {
99 		data = kzalloc(ops->size, GFP_KERNEL);
100 		if (!data)
101 			goto out;
102 
103 		err = net_assign_generic(net, *ops->id, data);
104 		if (err)
105 			goto cleanup;
106 	}
107 	err = 0;
108 	if (ops->init)
109 		err = ops->init(net);
110 	if (!err)
111 		return 0;
112 
113 cleanup:
114 	kfree(data);
115 
116 out:
117 	return err;
118 }
119 
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 	if (ops->id && ops->size) {
123 		int id = *ops->id;
124 		kfree(net_generic(net, id));
125 	}
126 }
127 
128 static void ops_exit_list(const struct pernet_operations *ops,
129 			  struct list_head *net_exit_list)
130 {
131 	struct net *net;
132 	if (ops->exit) {
133 		list_for_each_entry(net, net_exit_list, exit_list)
134 			ops->exit(net);
135 	}
136 	if (ops->exit_batch)
137 		ops->exit_batch(net_exit_list);
138 }
139 
140 static void ops_free_list(const struct pernet_operations *ops,
141 			  struct list_head *net_exit_list)
142 {
143 	struct net *net;
144 	if (ops->size && ops->id) {
145 		list_for_each_entry(net, net_exit_list, exit_list)
146 			ops_free(ops, net);
147 	}
148 }
149 
150 /* should be called with nsid_lock held */
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 	int min = 0, max = 0;
154 
155 	if (reqid >= 0) {
156 		min = reqid;
157 		max = reqid + 1;
158 	}
159 
160 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
161 }
162 
163 /* This function is used by idr_for_each(). If net is equal to peer, the
164  * function returns the id so that idr_for_each() stops. Because we cannot
165  * returns the id 0 (idr_for_each() will not stop), we return the magic value
166  * NET_ID_ZERO (-1) for it.
167  */
168 #define NET_ID_ZERO -1
169 static int net_eq_idr(int id, void *net, void *peer)
170 {
171 	if (net_eq(net, peer))
172 		return id ? : NET_ID_ZERO;
173 	return 0;
174 }
175 
176 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
177  * is set to true, thus the caller knows that the new id must be notified via
178  * rtnl.
179  */
180 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
181 {
182 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
183 	bool alloc_it = *alloc;
184 
185 	*alloc = false;
186 
187 	/* Magic value for id 0. */
188 	if (id == NET_ID_ZERO)
189 		return 0;
190 	if (id > 0)
191 		return id;
192 
193 	if (alloc_it) {
194 		id = alloc_netid(net, peer, -1);
195 		*alloc = true;
196 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
197 	}
198 
199 	return NETNSA_NSID_NOT_ASSIGNED;
200 }
201 
202 /* should be called with nsid_lock held */
203 static int __peernet2id(struct net *net, struct net *peer)
204 {
205 	bool no = false;
206 
207 	return __peernet2id_alloc(net, peer, &no);
208 }
209 
210 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
211 /* This function returns the id of a peer netns. If no id is assigned, one will
212  * be allocated and returned.
213  */
214 int peernet2id_alloc(struct net *net, struct net *peer)
215 {
216 	unsigned long flags;
217 	bool alloc;
218 	int id;
219 
220 	spin_lock_irqsave(&net->nsid_lock, flags);
221 	alloc = atomic_read(&peer->count) == 0 ? false : true;
222 	id = __peernet2id_alloc(net, peer, &alloc);
223 	spin_unlock_irqrestore(&net->nsid_lock, flags);
224 	if (alloc && id >= 0)
225 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
226 	return id;
227 }
228 EXPORT_SYMBOL(peernet2id_alloc);
229 
230 /* This function returns, if assigned, the id of a peer netns. */
231 int peernet2id(struct net *net, struct net *peer)
232 {
233 	unsigned long flags;
234 	int id;
235 
236 	spin_lock_irqsave(&net->nsid_lock, flags);
237 	id = __peernet2id(net, peer);
238 	spin_unlock_irqrestore(&net->nsid_lock, flags);
239 	return id;
240 }
241 
242 /* This function returns true is the peer netns has an id assigned into the
243  * current netns.
244  */
245 bool peernet_has_id(struct net *net, struct net *peer)
246 {
247 	return peernet2id(net, peer) >= 0;
248 }
249 
250 struct net *get_net_ns_by_id(struct net *net, int id)
251 {
252 	unsigned long flags;
253 	struct net *peer;
254 
255 	if (id < 0)
256 		return NULL;
257 
258 	rcu_read_lock();
259 	spin_lock_irqsave(&net->nsid_lock, flags);
260 	peer = idr_find(&net->netns_ids, id);
261 	if (peer)
262 		get_net(peer);
263 	spin_unlock_irqrestore(&net->nsid_lock, flags);
264 	rcu_read_unlock();
265 
266 	return peer;
267 }
268 
269 /*
270  * setup_net runs the initializers for the network namespace object.
271  */
272 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
273 {
274 	/* Must be called with net_mutex held */
275 	const struct pernet_operations *ops, *saved_ops;
276 	int error = 0;
277 	LIST_HEAD(net_exit_list);
278 
279 	atomic_set(&net->count, 1);
280 	atomic_set(&net->passive, 1);
281 	net->dev_base_seq = 1;
282 	net->user_ns = user_ns;
283 	idr_init(&net->netns_ids);
284 	spin_lock_init(&net->nsid_lock);
285 
286 	list_for_each_entry(ops, &pernet_list, list) {
287 		error = ops_init(ops, net);
288 		if (error < 0)
289 			goto out_undo;
290 	}
291 out:
292 	return error;
293 
294 out_undo:
295 	/* Walk through the list backwards calling the exit functions
296 	 * for the pernet modules whose init functions did not fail.
297 	 */
298 	list_add(&net->exit_list, &net_exit_list);
299 	saved_ops = ops;
300 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
301 		ops_exit_list(ops, &net_exit_list);
302 
303 	ops = saved_ops;
304 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
305 		ops_free_list(ops, &net_exit_list);
306 
307 	rcu_barrier();
308 	goto out;
309 }
310 
311 
312 #ifdef CONFIG_NET_NS
313 static struct kmem_cache *net_cachep;
314 static struct workqueue_struct *netns_wq;
315 
316 static struct net *net_alloc(void)
317 {
318 	struct net *net = NULL;
319 	struct net_generic *ng;
320 
321 	ng = net_alloc_generic();
322 	if (!ng)
323 		goto out;
324 
325 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
326 	if (!net)
327 		goto out_free;
328 
329 	rcu_assign_pointer(net->gen, ng);
330 out:
331 	return net;
332 
333 out_free:
334 	kfree(ng);
335 	goto out;
336 }
337 
338 static void net_free(struct net *net)
339 {
340 	kfree(rcu_access_pointer(net->gen));
341 	kmem_cache_free(net_cachep, net);
342 }
343 
344 void net_drop_ns(void *p)
345 {
346 	struct net *ns = p;
347 	if (ns && atomic_dec_and_test(&ns->passive))
348 		net_free(ns);
349 }
350 
351 struct net *copy_net_ns(unsigned long flags,
352 			struct user_namespace *user_ns, struct net *old_net)
353 {
354 	struct net *net;
355 	int rv;
356 
357 	if (!(flags & CLONE_NEWNET))
358 		return get_net(old_net);
359 
360 	net = net_alloc();
361 	if (!net)
362 		return ERR_PTR(-ENOMEM);
363 
364 	get_user_ns(user_ns);
365 
366 	mutex_lock(&net_mutex);
367 	rv = setup_net(net, user_ns);
368 	if (rv == 0) {
369 		rtnl_lock();
370 		list_add_tail_rcu(&net->list, &net_namespace_list);
371 		rtnl_unlock();
372 	}
373 	mutex_unlock(&net_mutex);
374 	if (rv < 0) {
375 		put_user_ns(user_ns);
376 		net_drop_ns(net);
377 		return ERR_PTR(rv);
378 	}
379 	return net;
380 }
381 
382 static DEFINE_SPINLOCK(cleanup_list_lock);
383 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
384 
385 static void cleanup_net(struct work_struct *work)
386 {
387 	const struct pernet_operations *ops;
388 	struct net *net, *tmp;
389 	struct list_head net_kill_list;
390 	LIST_HEAD(net_exit_list);
391 
392 	/* Atomically snapshot the list of namespaces to cleanup */
393 	spin_lock_irq(&cleanup_list_lock);
394 	list_replace_init(&cleanup_list, &net_kill_list);
395 	spin_unlock_irq(&cleanup_list_lock);
396 
397 	mutex_lock(&net_mutex);
398 
399 	/* Don't let anyone else find us. */
400 	rtnl_lock();
401 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
402 		list_del_rcu(&net->list);
403 		list_add_tail(&net->exit_list, &net_exit_list);
404 		for_each_net(tmp) {
405 			int id;
406 
407 			spin_lock_irq(&tmp->nsid_lock);
408 			id = __peernet2id(tmp, net);
409 			if (id >= 0)
410 				idr_remove(&tmp->netns_ids, id);
411 			spin_unlock_irq(&tmp->nsid_lock);
412 			if (id >= 0)
413 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
414 		}
415 		spin_lock_irq(&net->nsid_lock);
416 		idr_destroy(&net->netns_ids);
417 		spin_unlock_irq(&net->nsid_lock);
418 
419 	}
420 	rtnl_unlock();
421 
422 	/*
423 	 * Another CPU might be rcu-iterating the list, wait for it.
424 	 * This needs to be before calling the exit() notifiers, so
425 	 * the rcu_barrier() below isn't sufficient alone.
426 	 */
427 	synchronize_rcu();
428 
429 	/* Run all of the network namespace exit methods */
430 	list_for_each_entry_reverse(ops, &pernet_list, list)
431 		ops_exit_list(ops, &net_exit_list);
432 
433 	/* Free the net generic variables */
434 	list_for_each_entry_reverse(ops, &pernet_list, list)
435 		ops_free_list(ops, &net_exit_list);
436 
437 	mutex_unlock(&net_mutex);
438 
439 	/* Ensure there are no outstanding rcu callbacks using this
440 	 * network namespace.
441 	 */
442 	rcu_barrier();
443 
444 	/* Finally it is safe to free my network namespace structure */
445 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
446 		list_del_init(&net->exit_list);
447 		put_user_ns(net->user_ns);
448 		net_drop_ns(net);
449 	}
450 }
451 static DECLARE_WORK(net_cleanup_work, cleanup_net);
452 
453 void __put_net(struct net *net)
454 {
455 	/* Cleanup the network namespace in process context */
456 	unsigned long flags;
457 
458 	spin_lock_irqsave(&cleanup_list_lock, flags);
459 	list_add(&net->cleanup_list, &cleanup_list);
460 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
461 
462 	queue_work(netns_wq, &net_cleanup_work);
463 }
464 EXPORT_SYMBOL_GPL(__put_net);
465 
466 struct net *get_net_ns_by_fd(int fd)
467 {
468 	struct file *file;
469 	struct ns_common *ns;
470 	struct net *net;
471 
472 	file = proc_ns_fget(fd);
473 	if (IS_ERR(file))
474 		return ERR_CAST(file);
475 
476 	ns = get_proc_ns(file_inode(file));
477 	if (ns->ops == &netns_operations)
478 		net = get_net(container_of(ns, struct net, ns));
479 	else
480 		net = ERR_PTR(-EINVAL);
481 
482 	fput(file);
483 	return net;
484 }
485 
486 #else
487 struct net *get_net_ns_by_fd(int fd)
488 {
489 	return ERR_PTR(-EINVAL);
490 }
491 #endif
492 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
493 
494 struct net *get_net_ns_by_pid(pid_t pid)
495 {
496 	struct task_struct *tsk;
497 	struct net *net;
498 
499 	/* Lookup the network namespace */
500 	net = ERR_PTR(-ESRCH);
501 	rcu_read_lock();
502 	tsk = find_task_by_vpid(pid);
503 	if (tsk) {
504 		struct nsproxy *nsproxy;
505 		task_lock(tsk);
506 		nsproxy = tsk->nsproxy;
507 		if (nsproxy)
508 			net = get_net(nsproxy->net_ns);
509 		task_unlock(tsk);
510 	}
511 	rcu_read_unlock();
512 	return net;
513 }
514 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
515 
516 static __net_init int net_ns_net_init(struct net *net)
517 {
518 #ifdef CONFIG_NET_NS
519 	net->ns.ops = &netns_operations;
520 #endif
521 	return ns_alloc_inum(&net->ns);
522 }
523 
524 static __net_exit void net_ns_net_exit(struct net *net)
525 {
526 	ns_free_inum(&net->ns);
527 }
528 
529 static struct pernet_operations __net_initdata net_ns_ops = {
530 	.init = net_ns_net_init,
531 	.exit = net_ns_net_exit,
532 };
533 
534 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
535 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
536 	[NETNSA_NSID]		= { .type = NLA_S32 },
537 	[NETNSA_PID]		= { .type = NLA_U32 },
538 	[NETNSA_FD]		= { .type = NLA_U32 },
539 };
540 
541 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
542 {
543 	struct net *net = sock_net(skb->sk);
544 	struct nlattr *tb[NETNSA_MAX + 1];
545 	unsigned long flags;
546 	struct net *peer;
547 	int nsid, err;
548 
549 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
550 			  rtnl_net_policy);
551 	if (err < 0)
552 		return err;
553 	if (!tb[NETNSA_NSID])
554 		return -EINVAL;
555 	nsid = nla_get_s32(tb[NETNSA_NSID]);
556 
557 	if (tb[NETNSA_PID])
558 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
559 	else if (tb[NETNSA_FD])
560 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
561 	else
562 		return -EINVAL;
563 	if (IS_ERR(peer))
564 		return PTR_ERR(peer);
565 
566 	spin_lock_irqsave(&net->nsid_lock, flags);
567 	if (__peernet2id(net, peer) >= 0) {
568 		spin_unlock_irqrestore(&net->nsid_lock, flags);
569 		err = -EEXIST;
570 		goto out;
571 	}
572 
573 	err = alloc_netid(net, peer, nsid);
574 	spin_unlock_irqrestore(&net->nsid_lock, flags);
575 	if (err >= 0) {
576 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
577 		err = 0;
578 	}
579 out:
580 	put_net(peer);
581 	return err;
582 }
583 
584 static int rtnl_net_get_size(void)
585 {
586 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
587 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
588 	       ;
589 }
590 
591 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
592 			 int cmd, struct net *net, int nsid)
593 {
594 	struct nlmsghdr *nlh;
595 	struct rtgenmsg *rth;
596 
597 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
598 	if (!nlh)
599 		return -EMSGSIZE;
600 
601 	rth = nlmsg_data(nlh);
602 	rth->rtgen_family = AF_UNSPEC;
603 
604 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
605 		goto nla_put_failure;
606 
607 	nlmsg_end(skb, nlh);
608 	return 0;
609 
610 nla_put_failure:
611 	nlmsg_cancel(skb, nlh);
612 	return -EMSGSIZE;
613 }
614 
615 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
616 {
617 	struct net *net = sock_net(skb->sk);
618 	struct nlattr *tb[NETNSA_MAX + 1];
619 	struct sk_buff *msg;
620 	struct net *peer;
621 	int err, id;
622 
623 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
624 			  rtnl_net_policy);
625 	if (err < 0)
626 		return err;
627 	if (tb[NETNSA_PID])
628 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
629 	else if (tb[NETNSA_FD])
630 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
631 	else
632 		return -EINVAL;
633 
634 	if (IS_ERR(peer))
635 		return PTR_ERR(peer);
636 
637 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
638 	if (!msg) {
639 		err = -ENOMEM;
640 		goto out;
641 	}
642 
643 	id = peernet2id(net, peer);
644 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
645 			    RTM_NEWNSID, net, id);
646 	if (err < 0)
647 		goto err_out;
648 
649 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
650 	goto out;
651 
652 err_out:
653 	nlmsg_free(msg);
654 out:
655 	put_net(peer);
656 	return err;
657 }
658 
659 struct rtnl_net_dump_cb {
660 	struct net *net;
661 	struct sk_buff *skb;
662 	struct netlink_callback *cb;
663 	int idx;
664 	int s_idx;
665 };
666 
667 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
668 {
669 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
670 	int ret;
671 
672 	if (net_cb->idx < net_cb->s_idx)
673 		goto cont;
674 
675 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
676 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
677 			    RTM_NEWNSID, net_cb->net, id);
678 	if (ret < 0)
679 		return ret;
680 
681 cont:
682 	net_cb->idx++;
683 	return 0;
684 }
685 
686 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
687 {
688 	struct net *net = sock_net(skb->sk);
689 	struct rtnl_net_dump_cb net_cb = {
690 		.net = net,
691 		.skb = skb,
692 		.cb = cb,
693 		.idx = 0,
694 		.s_idx = cb->args[0],
695 	};
696 	unsigned long flags;
697 
698 	spin_lock_irqsave(&net->nsid_lock, flags);
699 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
700 	spin_unlock_irqrestore(&net->nsid_lock, flags);
701 
702 	cb->args[0] = net_cb.idx;
703 	return skb->len;
704 }
705 
706 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
707 {
708 	struct sk_buff *msg;
709 	int err = -ENOMEM;
710 
711 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
712 	if (!msg)
713 		goto out;
714 
715 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
716 	if (err < 0)
717 		goto err_out;
718 
719 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
720 	return;
721 
722 err_out:
723 	nlmsg_free(msg);
724 out:
725 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
726 }
727 
728 static int __init net_ns_init(void)
729 {
730 	struct net_generic *ng;
731 
732 #ifdef CONFIG_NET_NS
733 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
734 					SMP_CACHE_BYTES,
735 					SLAB_PANIC, NULL);
736 
737 	/* Create workqueue for cleanup */
738 	netns_wq = create_singlethread_workqueue("netns");
739 	if (!netns_wq)
740 		panic("Could not create netns workq");
741 #endif
742 
743 	ng = net_alloc_generic();
744 	if (!ng)
745 		panic("Could not allocate generic netns");
746 
747 	rcu_assign_pointer(init_net.gen, ng);
748 
749 	mutex_lock(&net_mutex);
750 	if (setup_net(&init_net, &init_user_ns))
751 		panic("Could not setup the initial network namespace");
752 
753 	rtnl_lock();
754 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
755 	rtnl_unlock();
756 
757 	mutex_unlock(&net_mutex);
758 
759 	register_pernet_subsys(&net_ns_ops);
760 
761 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
762 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
763 		      NULL);
764 
765 	return 0;
766 }
767 
768 pure_initcall(net_ns_init);
769 
770 #ifdef CONFIG_NET_NS
771 static int __register_pernet_operations(struct list_head *list,
772 					struct pernet_operations *ops)
773 {
774 	struct net *net;
775 	int error;
776 	LIST_HEAD(net_exit_list);
777 
778 	list_add_tail(&ops->list, list);
779 	if (ops->init || (ops->id && ops->size)) {
780 		for_each_net(net) {
781 			error = ops_init(ops, net);
782 			if (error)
783 				goto out_undo;
784 			list_add_tail(&net->exit_list, &net_exit_list);
785 		}
786 	}
787 	return 0;
788 
789 out_undo:
790 	/* If I have an error cleanup all namespaces I initialized */
791 	list_del(&ops->list);
792 	ops_exit_list(ops, &net_exit_list);
793 	ops_free_list(ops, &net_exit_list);
794 	return error;
795 }
796 
797 static void __unregister_pernet_operations(struct pernet_operations *ops)
798 {
799 	struct net *net;
800 	LIST_HEAD(net_exit_list);
801 
802 	list_del(&ops->list);
803 	for_each_net(net)
804 		list_add_tail(&net->exit_list, &net_exit_list);
805 	ops_exit_list(ops, &net_exit_list);
806 	ops_free_list(ops, &net_exit_list);
807 }
808 
809 #else
810 
811 static int __register_pernet_operations(struct list_head *list,
812 					struct pernet_operations *ops)
813 {
814 	return ops_init(ops, &init_net);
815 }
816 
817 static void __unregister_pernet_operations(struct pernet_operations *ops)
818 {
819 	LIST_HEAD(net_exit_list);
820 	list_add(&init_net.exit_list, &net_exit_list);
821 	ops_exit_list(ops, &net_exit_list);
822 	ops_free_list(ops, &net_exit_list);
823 }
824 
825 #endif /* CONFIG_NET_NS */
826 
827 static DEFINE_IDA(net_generic_ids);
828 
829 static int register_pernet_operations(struct list_head *list,
830 				      struct pernet_operations *ops)
831 {
832 	int error;
833 
834 	if (ops->id) {
835 again:
836 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
837 		if (error < 0) {
838 			if (error == -EAGAIN) {
839 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
840 				goto again;
841 			}
842 			return error;
843 		}
844 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
845 	}
846 	error = __register_pernet_operations(list, ops);
847 	if (error) {
848 		rcu_barrier();
849 		if (ops->id)
850 			ida_remove(&net_generic_ids, *ops->id);
851 	}
852 
853 	return error;
854 }
855 
856 static void unregister_pernet_operations(struct pernet_operations *ops)
857 {
858 
859 	__unregister_pernet_operations(ops);
860 	rcu_barrier();
861 	if (ops->id)
862 		ida_remove(&net_generic_ids, *ops->id);
863 }
864 
865 /**
866  *      register_pernet_subsys - register a network namespace subsystem
867  *	@ops:  pernet operations structure for the subsystem
868  *
869  *	Register a subsystem which has init and exit functions
870  *	that are called when network namespaces are created and
871  *	destroyed respectively.
872  *
873  *	When registered all network namespace init functions are
874  *	called for every existing network namespace.  Allowing kernel
875  *	modules to have a race free view of the set of network namespaces.
876  *
877  *	When a new network namespace is created all of the init
878  *	methods are called in the order in which they were registered.
879  *
880  *	When a network namespace is destroyed all of the exit methods
881  *	are called in the reverse of the order with which they were
882  *	registered.
883  */
884 int register_pernet_subsys(struct pernet_operations *ops)
885 {
886 	int error;
887 	mutex_lock(&net_mutex);
888 	error =  register_pernet_operations(first_device, ops);
889 	mutex_unlock(&net_mutex);
890 	return error;
891 }
892 EXPORT_SYMBOL_GPL(register_pernet_subsys);
893 
894 /**
895  *      unregister_pernet_subsys - unregister a network namespace subsystem
896  *	@ops: pernet operations structure to manipulate
897  *
898  *	Remove the pernet operations structure from the list to be
899  *	used when network namespaces are created or destroyed.  In
900  *	addition run the exit method for all existing network
901  *	namespaces.
902  */
903 void unregister_pernet_subsys(struct pernet_operations *ops)
904 {
905 	mutex_lock(&net_mutex);
906 	unregister_pernet_operations(ops);
907 	mutex_unlock(&net_mutex);
908 }
909 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
910 
911 /**
912  *      register_pernet_device - register a network namespace device
913  *	@ops:  pernet operations structure for the subsystem
914  *
915  *	Register a device which has init and exit functions
916  *	that are called when network namespaces are created and
917  *	destroyed respectively.
918  *
919  *	When registered all network namespace init functions are
920  *	called for every existing network namespace.  Allowing kernel
921  *	modules to have a race free view of the set of network namespaces.
922  *
923  *	When a new network namespace is created all of the init
924  *	methods are called in the order in which they were registered.
925  *
926  *	When a network namespace is destroyed all of the exit methods
927  *	are called in the reverse of the order with which they were
928  *	registered.
929  */
930 int register_pernet_device(struct pernet_operations *ops)
931 {
932 	int error;
933 	mutex_lock(&net_mutex);
934 	error = register_pernet_operations(&pernet_list, ops);
935 	if (!error && (first_device == &pernet_list))
936 		first_device = &ops->list;
937 	mutex_unlock(&net_mutex);
938 	return error;
939 }
940 EXPORT_SYMBOL_GPL(register_pernet_device);
941 
942 /**
943  *      unregister_pernet_device - unregister a network namespace netdevice
944  *	@ops: pernet operations structure to manipulate
945  *
946  *	Remove the pernet operations structure from the list to be
947  *	used when network namespaces are created or destroyed.  In
948  *	addition run the exit method for all existing network
949  *	namespaces.
950  */
951 void unregister_pernet_device(struct pernet_operations *ops)
952 {
953 	mutex_lock(&net_mutex);
954 	if (&ops->list == first_device)
955 		first_device = first_device->next;
956 	unregister_pernet_operations(ops);
957 	mutex_unlock(&net_mutex);
958 }
959 EXPORT_SYMBOL_GPL(unregister_pernet_device);
960 
961 #ifdef CONFIG_NET_NS
962 static struct ns_common *netns_get(struct task_struct *task)
963 {
964 	struct net *net = NULL;
965 	struct nsproxy *nsproxy;
966 
967 	task_lock(task);
968 	nsproxy = task->nsproxy;
969 	if (nsproxy)
970 		net = get_net(nsproxy->net_ns);
971 	task_unlock(task);
972 
973 	return net ? &net->ns : NULL;
974 }
975 
976 static inline struct net *to_net_ns(struct ns_common *ns)
977 {
978 	return container_of(ns, struct net, ns);
979 }
980 
981 static void netns_put(struct ns_common *ns)
982 {
983 	put_net(to_net_ns(ns));
984 }
985 
986 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
987 {
988 	struct net *net = to_net_ns(ns);
989 
990 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
991 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
992 		return -EPERM;
993 
994 	put_net(nsproxy->net_ns);
995 	nsproxy->net_ns = get_net(net);
996 	return 0;
997 }
998 
999 static struct user_namespace *netns_owner(struct ns_common *ns)
1000 {
1001 	return to_net_ns(ns)->user_ns;
1002 }
1003 
1004 const struct proc_ns_operations netns_operations = {
1005 	.name		= "net",
1006 	.type		= CLONE_NEWNET,
1007 	.get		= netns_get,
1008 	.put		= netns_put,
1009 	.install	= netns_install,
1010 	.owner		= netns_owner,
1011 };
1012 #endif
1013