xref: /openbmc/linux/net/core/net_namespace.c (revision bc51dddf)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 static bool init_net_initialized;
41 
42 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
43 
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45 
46 static struct net_generic *net_alloc_generic(void)
47 {
48 	struct net_generic *ng;
49 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50 
51 	ng = kzalloc(generic_size, GFP_KERNEL);
52 	if (ng)
53 		ng->len = max_gen_ptrs;
54 
55 	return ng;
56 }
57 
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 	struct net_generic *ng, *old_ng;
61 
62 	BUG_ON(!mutex_is_locked(&net_mutex));
63 	BUG_ON(id == 0);
64 
65 	old_ng = rcu_dereference_protected(net->gen,
66 					   lockdep_is_held(&net_mutex));
67 	ng = old_ng;
68 	if (old_ng->len >= id)
69 		goto assign;
70 
71 	ng = net_alloc_generic();
72 	if (ng == NULL)
73 		return -ENOMEM;
74 
75 	/*
76 	 * Some synchronisation notes:
77 	 *
78 	 * The net_generic explores the net->gen array inside rcu
79 	 * read section. Besides once set the net->gen->ptr[x]
80 	 * pointer never changes (see rules in netns/generic.h).
81 	 *
82 	 * That said, we simply duplicate this array and schedule
83 	 * the old copy for kfree after a grace period.
84 	 */
85 
86 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87 
88 	rcu_assign_pointer(net->gen, ng);
89 	kfree_rcu(old_ng, rcu);
90 assign:
91 	ng->ptr[id - 1] = data;
92 	return 0;
93 }
94 
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 	int err = -ENOMEM;
98 	void *data = NULL;
99 
100 	if (ops->id && ops->size) {
101 		data = kzalloc(ops->size, GFP_KERNEL);
102 		if (!data)
103 			goto out;
104 
105 		err = net_assign_generic(net, *ops->id, data);
106 		if (err)
107 			goto cleanup;
108 	}
109 	err = 0;
110 	if (ops->init)
111 		err = ops->init(net);
112 	if (!err)
113 		return 0;
114 
115 cleanup:
116 	kfree(data);
117 
118 out:
119 	return err;
120 }
121 
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 	if (ops->id && ops->size) {
125 		int id = *ops->id;
126 		kfree(net_generic(net, id));
127 	}
128 }
129 
130 static void ops_exit_list(const struct pernet_operations *ops,
131 			  struct list_head *net_exit_list)
132 {
133 	struct net *net;
134 	if (ops->exit) {
135 		list_for_each_entry(net, net_exit_list, exit_list)
136 			ops->exit(net);
137 	}
138 	if (ops->exit_batch)
139 		ops->exit_batch(net_exit_list);
140 }
141 
142 static void ops_free_list(const struct pernet_operations *ops,
143 			  struct list_head *net_exit_list)
144 {
145 	struct net *net;
146 	if (ops->size && ops->id) {
147 		list_for_each_entry(net, net_exit_list, exit_list)
148 			ops_free(ops, net);
149 	}
150 }
151 
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 	int min = 0, max = 0;
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164 
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166  * function returns the id so that idr_for_each() stops. Because we cannot
167  * returns the id 0 (idr_for_each() will not stop), we return the magic value
168  * NET_ID_ZERO (-1) for it.
169  */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 	if (net_eq(net, peer))
174 		return id ? : NET_ID_ZERO;
175 	return 0;
176 }
177 
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179  * is set to true, thus the caller knows that the new id must be notified via
180  * rtnl.
181  */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 	bool alloc_it = *alloc;
186 
187 	*alloc = false;
188 
189 	/* Magic value for id 0. */
190 	if (id == NET_ID_ZERO)
191 		return 0;
192 	if (id > 0)
193 		return id;
194 
195 	if (alloc_it) {
196 		id = alloc_netid(net, peer, -1);
197 		*alloc = true;
198 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 	}
200 
201 	return NETNSA_NSID_NOT_ASSIGNED;
202 }
203 
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 	bool no = false;
208 
209 	return __peernet2id_alloc(net, peer, &no);
210 }
211 
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214  * be allocated and returned.
215  */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 	bool alloc;
219 	int id;
220 
221 	spin_lock_bh(&net->nsid_lock);
222 	alloc = atomic_read(&peer->count) == 0 ? false : true;
223 	id = __peernet2id_alloc(net, peer, &alloc);
224 	spin_unlock_bh(&net->nsid_lock);
225 	if (alloc && id >= 0)
226 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
227 	return id;
228 }
229 
230 /* This function returns, if assigned, the id of a peer netns. */
231 int peernet2id(struct net *net, struct net *peer)
232 {
233 	int id;
234 
235 	spin_lock_bh(&net->nsid_lock);
236 	id = __peernet2id(net, peer);
237 	spin_unlock_bh(&net->nsid_lock);
238 	return id;
239 }
240 EXPORT_SYMBOL(peernet2id);
241 
242 /* This function returns true is the peer netns has an id assigned into the
243  * current netns.
244  */
245 bool peernet_has_id(struct net *net, struct net *peer)
246 {
247 	return peernet2id(net, peer) >= 0;
248 }
249 
250 struct net *get_net_ns_by_id(struct net *net, int id)
251 {
252 	struct net *peer;
253 
254 	if (id < 0)
255 		return NULL;
256 
257 	rcu_read_lock();
258 	spin_lock_bh(&net->nsid_lock);
259 	peer = idr_find(&net->netns_ids, id);
260 	if (peer)
261 		get_net(peer);
262 	spin_unlock_bh(&net->nsid_lock);
263 	rcu_read_unlock();
264 
265 	return peer;
266 }
267 
268 /*
269  * setup_net runs the initializers for the network namespace object.
270  */
271 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
272 {
273 	/* Must be called with net_mutex held */
274 	const struct pernet_operations *ops, *saved_ops;
275 	int error = 0;
276 	LIST_HEAD(net_exit_list);
277 
278 	atomic_set(&net->count, 1);
279 	atomic_set(&net->passive, 1);
280 	net->dev_base_seq = 1;
281 	net->user_ns = user_ns;
282 	idr_init(&net->netns_ids);
283 	spin_lock_init(&net->nsid_lock);
284 
285 	list_for_each_entry(ops, &pernet_list, list) {
286 		error = ops_init(ops, net);
287 		if (error < 0)
288 			goto out_undo;
289 	}
290 out:
291 	return error;
292 
293 out_undo:
294 	/* Walk through the list backwards calling the exit functions
295 	 * for the pernet modules whose init functions did not fail.
296 	 */
297 	list_add(&net->exit_list, &net_exit_list);
298 	saved_ops = ops;
299 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
300 		ops_exit_list(ops, &net_exit_list);
301 
302 	ops = saved_ops;
303 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
304 		ops_free_list(ops, &net_exit_list);
305 
306 	rcu_barrier();
307 	goto out;
308 }
309 
310 
311 #ifdef CONFIG_NET_NS
312 static struct kmem_cache *net_cachep;
313 static struct workqueue_struct *netns_wq;
314 
315 static struct net *net_alloc(void)
316 {
317 	struct net *net = NULL;
318 	struct net_generic *ng;
319 
320 	ng = net_alloc_generic();
321 	if (!ng)
322 		goto out;
323 
324 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
325 	if (!net)
326 		goto out_free;
327 
328 	rcu_assign_pointer(net->gen, ng);
329 out:
330 	return net;
331 
332 out_free:
333 	kfree(ng);
334 	goto out;
335 }
336 
337 static void net_free(struct net *net)
338 {
339 	kfree(rcu_access_pointer(net->gen));
340 	kmem_cache_free(net_cachep, net);
341 }
342 
343 void net_drop_ns(void *p)
344 {
345 	struct net *ns = p;
346 	if (ns && atomic_dec_and_test(&ns->passive))
347 		net_free(ns);
348 }
349 
350 struct net *copy_net_ns(unsigned long flags,
351 			struct user_namespace *user_ns, struct net *old_net)
352 {
353 	struct net *net;
354 	int rv;
355 
356 	if (!(flags & CLONE_NEWNET))
357 		return get_net(old_net);
358 
359 	net = net_alloc();
360 	if (!net)
361 		return ERR_PTR(-ENOMEM);
362 
363 	get_user_ns(user_ns);
364 
365 	mutex_lock(&net_mutex);
366 	rv = setup_net(net, user_ns);
367 	if (rv == 0) {
368 		rtnl_lock();
369 		list_add_tail_rcu(&net->list, &net_namespace_list);
370 		rtnl_unlock();
371 	}
372 	mutex_unlock(&net_mutex);
373 	if (rv < 0) {
374 		put_user_ns(user_ns);
375 		net_drop_ns(net);
376 		return ERR_PTR(rv);
377 	}
378 	return net;
379 }
380 
381 static DEFINE_SPINLOCK(cleanup_list_lock);
382 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
383 
384 static void cleanup_net(struct work_struct *work)
385 {
386 	const struct pernet_operations *ops;
387 	struct net *net, *tmp;
388 	struct list_head net_kill_list;
389 	LIST_HEAD(net_exit_list);
390 
391 	/* Atomically snapshot the list of namespaces to cleanup */
392 	spin_lock_irq(&cleanup_list_lock);
393 	list_replace_init(&cleanup_list, &net_kill_list);
394 	spin_unlock_irq(&cleanup_list_lock);
395 
396 	mutex_lock(&net_mutex);
397 
398 	/* Don't let anyone else find us. */
399 	rtnl_lock();
400 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
401 		list_del_rcu(&net->list);
402 		list_add_tail(&net->exit_list, &net_exit_list);
403 		for_each_net(tmp) {
404 			int id;
405 
406 			spin_lock_bh(&tmp->nsid_lock);
407 			id = __peernet2id(tmp, net);
408 			if (id >= 0)
409 				idr_remove(&tmp->netns_ids, id);
410 			spin_unlock_bh(&tmp->nsid_lock);
411 			if (id >= 0)
412 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
413 		}
414 		spin_lock_bh(&net->nsid_lock);
415 		idr_destroy(&net->netns_ids);
416 		spin_unlock_bh(&net->nsid_lock);
417 
418 	}
419 	rtnl_unlock();
420 
421 	/*
422 	 * Another CPU might be rcu-iterating the list, wait for it.
423 	 * This needs to be before calling the exit() notifiers, so
424 	 * the rcu_barrier() below isn't sufficient alone.
425 	 */
426 	synchronize_rcu();
427 
428 	/* Run all of the network namespace exit methods */
429 	list_for_each_entry_reverse(ops, &pernet_list, list)
430 		ops_exit_list(ops, &net_exit_list);
431 
432 	/* Free the net generic variables */
433 	list_for_each_entry_reverse(ops, &pernet_list, list)
434 		ops_free_list(ops, &net_exit_list);
435 
436 	mutex_unlock(&net_mutex);
437 
438 	/* Ensure there are no outstanding rcu callbacks using this
439 	 * network namespace.
440 	 */
441 	rcu_barrier();
442 
443 	/* Finally it is safe to free my network namespace structure */
444 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
445 		list_del_init(&net->exit_list);
446 		put_user_ns(net->user_ns);
447 		net_drop_ns(net);
448 	}
449 }
450 static DECLARE_WORK(net_cleanup_work, cleanup_net);
451 
452 void __put_net(struct net *net)
453 {
454 	/* Cleanup the network namespace in process context */
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(&cleanup_list_lock, flags);
458 	list_add(&net->cleanup_list, &cleanup_list);
459 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
460 
461 	queue_work(netns_wq, &net_cleanup_work);
462 }
463 EXPORT_SYMBOL_GPL(__put_net);
464 
465 struct net *get_net_ns_by_fd(int fd)
466 {
467 	struct file *file;
468 	struct ns_common *ns;
469 	struct net *net;
470 
471 	file = proc_ns_fget(fd);
472 	if (IS_ERR(file))
473 		return ERR_CAST(file);
474 
475 	ns = get_proc_ns(file_inode(file));
476 	if (ns->ops == &netns_operations)
477 		net = get_net(container_of(ns, struct net, ns));
478 	else
479 		net = ERR_PTR(-EINVAL);
480 
481 	fput(file);
482 	return net;
483 }
484 
485 #else
486 struct net *get_net_ns_by_fd(int fd)
487 {
488 	return ERR_PTR(-EINVAL);
489 }
490 #endif
491 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
492 
493 struct net *get_net_ns_by_pid(pid_t pid)
494 {
495 	struct task_struct *tsk;
496 	struct net *net;
497 
498 	/* Lookup the network namespace */
499 	net = ERR_PTR(-ESRCH);
500 	rcu_read_lock();
501 	tsk = find_task_by_vpid(pid);
502 	if (tsk) {
503 		struct nsproxy *nsproxy;
504 		task_lock(tsk);
505 		nsproxy = tsk->nsproxy;
506 		if (nsproxy)
507 			net = get_net(nsproxy->net_ns);
508 		task_unlock(tsk);
509 	}
510 	rcu_read_unlock();
511 	return net;
512 }
513 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
514 
515 static __net_init int net_ns_net_init(struct net *net)
516 {
517 #ifdef CONFIG_NET_NS
518 	net->ns.ops = &netns_operations;
519 #endif
520 	return ns_alloc_inum(&net->ns);
521 }
522 
523 static __net_exit void net_ns_net_exit(struct net *net)
524 {
525 	ns_free_inum(&net->ns);
526 }
527 
528 static struct pernet_operations __net_initdata net_ns_ops = {
529 	.init = net_ns_net_init,
530 	.exit = net_ns_net_exit,
531 };
532 
533 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
534 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
535 	[NETNSA_NSID]		= { .type = NLA_S32 },
536 	[NETNSA_PID]		= { .type = NLA_U32 },
537 	[NETNSA_FD]		= { .type = NLA_U32 },
538 };
539 
540 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
541 {
542 	struct net *net = sock_net(skb->sk);
543 	struct nlattr *tb[NETNSA_MAX + 1];
544 	struct net *peer;
545 	int nsid, err;
546 
547 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
548 			  rtnl_net_policy);
549 	if (err < 0)
550 		return err;
551 	if (!tb[NETNSA_NSID])
552 		return -EINVAL;
553 	nsid = nla_get_s32(tb[NETNSA_NSID]);
554 
555 	if (tb[NETNSA_PID])
556 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
557 	else if (tb[NETNSA_FD])
558 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
559 	else
560 		return -EINVAL;
561 	if (IS_ERR(peer))
562 		return PTR_ERR(peer);
563 
564 	spin_lock_bh(&net->nsid_lock);
565 	if (__peernet2id(net, peer) >= 0) {
566 		spin_unlock_bh(&net->nsid_lock);
567 		err = -EEXIST;
568 		goto out;
569 	}
570 
571 	err = alloc_netid(net, peer, nsid);
572 	spin_unlock_bh(&net->nsid_lock);
573 	if (err >= 0) {
574 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
575 		err = 0;
576 	}
577 out:
578 	put_net(peer);
579 	return err;
580 }
581 
582 static int rtnl_net_get_size(void)
583 {
584 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
585 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
586 	       ;
587 }
588 
589 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
590 			 int cmd, struct net *net, int nsid)
591 {
592 	struct nlmsghdr *nlh;
593 	struct rtgenmsg *rth;
594 
595 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
596 	if (!nlh)
597 		return -EMSGSIZE;
598 
599 	rth = nlmsg_data(nlh);
600 	rth->rtgen_family = AF_UNSPEC;
601 
602 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
603 		goto nla_put_failure;
604 
605 	nlmsg_end(skb, nlh);
606 	return 0;
607 
608 nla_put_failure:
609 	nlmsg_cancel(skb, nlh);
610 	return -EMSGSIZE;
611 }
612 
613 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
614 {
615 	struct net *net = sock_net(skb->sk);
616 	struct nlattr *tb[NETNSA_MAX + 1];
617 	struct sk_buff *msg;
618 	struct net *peer;
619 	int err, id;
620 
621 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
622 			  rtnl_net_policy);
623 	if (err < 0)
624 		return err;
625 	if (tb[NETNSA_PID])
626 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
627 	else if (tb[NETNSA_FD])
628 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
629 	else
630 		return -EINVAL;
631 
632 	if (IS_ERR(peer))
633 		return PTR_ERR(peer);
634 
635 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
636 	if (!msg) {
637 		err = -ENOMEM;
638 		goto out;
639 	}
640 
641 	id = peernet2id(net, peer);
642 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
643 			    RTM_NEWNSID, net, id);
644 	if (err < 0)
645 		goto err_out;
646 
647 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
648 	goto out;
649 
650 err_out:
651 	nlmsg_free(msg);
652 out:
653 	put_net(peer);
654 	return err;
655 }
656 
657 struct rtnl_net_dump_cb {
658 	struct net *net;
659 	struct sk_buff *skb;
660 	struct netlink_callback *cb;
661 	int idx;
662 	int s_idx;
663 };
664 
665 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
666 {
667 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
668 	int ret;
669 
670 	if (net_cb->idx < net_cb->s_idx)
671 		goto cont;
672 
673 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
674 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
675 			    RTM_NEWNSID, net_cb->net, id);
676 	if (ret < 0)
677 		return ret;
678 
679 cont:
680 	net_cb->idx++;
681 	return 0;
682 }
683 
684 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
685 {
686 	struct net *net = sock_net(skb->sk);
687 	struct rtnl_net_dump_cb net_cb = {
688 		.net = net,
689 		.skb = skb,
690 		.cb = cb,
691 		.idx = 0,
692 		.s_idx = cb->args[0],
693 	};
694 
695 	spin_lock_bh(&net->nsid_lock);
696 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
697 	spin_unlock_bh(&net->nsid_lock);
698 
699 	cb->args[0] = net_cb.idx;
700 	return skb->len;
701 }
702 
703 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
704 {
705 	struct sk_buff *msg;
706 	int err = -ENOMEM;
707 
708 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
709 	if (!msg)
710 		goto out;
711 
712 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
713 	if (err < 0)
714 		goto err_out;
715 
716 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
717 	return;
718 
719 err_out:
720 	nlmsg_free(msg);
721 out:
722 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
723 }
724 
725 static int __init net_ns_init(void)
726 {
727 	struct net_generic *ng;
728 
729 #ifdef CONFIG_NET_NS
730 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
731 					SMP_CACHE_BYTES,
732 					SLAB_PANIC, NULL);
733 
734 	/* Create workqueue for cleanup */
735 	netns_wq = create_singlethread_workqueue("netns");
736 	if (!netns_wq)
737 		panic("Could not create netns workq");
738 #endif
739 
740 	ng = net_alloc_generic();
741 	if (!ng)
742 		panic("Could not allocate generic netns");
743 
744 	rcu_assign_pointer(init_net.gen, ng);
745 
746 	mutex_lock(&net_mutex);
747 	if (setup_net(&init_net, &init_user_ns))
748 		panic("Could not setup the initial network namespace");
749 
750 	init_net_initialized = true;
751 
752 	rtnl_lock();
753 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
754 	rtnl_unlock();
755 
756 	mutex_unlock(&net_mutex);
757 
758 	register_pernet_subsys(&net_ns_ops);
759 
760 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
761 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
762 		      NULL);
763 
764 	return 0;
765 }
766 
767 pure_initcall(net_ns_init);
768 
769 #ifdef CONFIG_NET_NS
770 static int __register_pernet_operations(struct list_head *list,
771 					struct pernet_operations *ops)
772 {
773 	struct net *net;
774 	int error;
775 	LIST_HEAD(net_exit_list);
776 
777 	list_add_tail(&ops->list, list);
778 	if (ops->init || (ops->id && ops->size)) {
779 		for_each_net(net) {
780 			error = ops_init(ops, net);
781 			if (error)
782 				goto out_undo;
783 			list_add_tail(&net->exit_list, &net_exit_list);
784 		}
785 	}
786 	return 0;
787 
788 out_undo:
789 	/* If I have an error cleanup all namespaces I initialized */
790 	list_del(&ops->list);
791 	ops_exit_list(ops, &net_exit_list);
792 	ops_free_list(ops, &net_exit_list);
793 	return error;
794 }
795 
796 static void __unregister_pernet_operations(struct pernet_operations *ops)
797 {
798 	struct net *net;
799 	LIST_HEAD(net_exit_list);
800 
801 	list_del(&ops->list);
802 	for_each_net(net)
803 		list_add_tail(&net->exit_list, &net_exit_list);
804 	ops_exit_list(ops, &net_exit_list);
805 	ops_free_list(ops, &net_exit_list);
806 }
807 
808 #else
809 
810 static int __register_pernet_operations(struct list_head *list,
811 					struct pernet_operations *ops)
812 {
813 	if (!init_net_initialized) {
814 		list_add_tail(&ops->list, list);
815 		return 0;
816 	}
817 
818 	return ops_init(ops, &init_net);
819 }
820 
821 static void __unregister_pernet_operations(struct pernet_operations *ops)
822 {
823 	if (!init_net_initialized) {
824 		list_del(&ops->list);
825 	} else {
826 		LIST_HEAD(net_exit_list);
827 		list_add(&init_net.exit_list, &net_exit_list);
828 		ops_exit_list(ops, &net_exit_list);
829 		ops_free_list(ops, &net_exit_list);
830 	}
831 }
832 
833 #endif /* CONFIG_NET_NS */
834 
835 static DEFINE_IDA(net_generic_ids);
836 
837 static int register_pernet_operations(struct list_head *list,
838 				      struct pernet_operations *ops)
839 {
840 	int error;
841 
842 	if (ops->id) {
843 again:
844 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
845 		if (error < 0) {
846 			if (error == -EAGAIN) {
847 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
848 				goto again;
849 			}
850 			return error;
851 		}
852 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
853 	}
854 	error = __register_pernet_operations(list, ops);
855 	if (error) {
856 		rcu_barrier();
857 		if (ops->id)
858 			ida_remove(&net_generic_ids, *ops->id);
859 	}
860 
861 	return error;
862 }
863 
864 static void unregister_pernet_operations(struct pernet_operations *ops)
865 {
866 
867 	__unregister_pernet_operations(ops);
868 	rcu_barrier();
869 	if (ops->id)
870 		ida_remove(&net_generic_ids, *ops->id);
871 }
872 
873 /**
874  *      register_pernet_subsys - register a network namespace subsystem
875  *	@ops:  pernet operations structure for the subsystem
876  *
877  *	Register a subsystem which has init and exit functions
878  *	that are called when network namespaces are created and
879  *	destroyed respectively.
880  *
881  *	When registered all network namespace init functions are
882  *	called for every existing network namespace.  Allowing kernel
883  *	modules to have a race free view of the set of network namespaces.
884  *
885  *	When a new network namespace is created all of the init
886  *	methods are called in the order in which they were registered.
887  *
888  *	When a network namespace is destroyed all of the exit methods
889  *	are called in the reverse of the order with which they were
890  *	registered.
891  */
892 int register_pernet_subsys(struct pernet_operations *ops)
893 {
894 	int error;
895 	mutex_lock(&net_mutex);
896 	error =  register_pernet_operations(first_device, ops);
897 	mutex_unlock(&net_mutex);
898 	return error;
899 }
900 EXPORT_SYMBOL_GPL(register_pernet_subsys);
901 
902 /**
903  *      unregister_pernet_subsys - unregister a network namespace subsystem
904  *	@ops: pernet operations structure to manipulate
905  *
906  *	Remove the pernet operations structure from the list to be
907  *	used when network namespaces are created or destroyed.  In
908  *	addition run the exit method for all existing network
909  *	namespaces.
910  */
911 void unregister_pernet_subsys(struct pernet_operations *ops)
912 {
913 	mutex_lock(&net_mutex);
914 	unregister_pernet_operations(ops);
915 	mutex_unlock(&net_mutex);
916 }
917 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
918 
919 /**
920  *      register_pernet_device - register a network namespace device
921  *	@ops:  pernet operations structure for the subsystem
922  *
923  *	Register a device which has init and exit functions
924  *	that are called when network namespaces are created and
925  *	destroyed respectively.
926  *
927  *	When registered all network namespace init functions are
928  *	called for every existing network namespace.  Allowing kernel
929  *	modules to have a race free view of the set of network namespaces.
930  *
931  *	When a new network namespace is created all of the init
932  *	methods are called in the order in which they were registered.
933  *
934  *	When a network namespace is destroyed all of the exit methods
935  *	are called in the reverse of the order with which they were
936  *	registered.
937  */
938 int register_pernet_device(struct pernet_operations *ops)
939 {
940 	int error;
941 	mutex_lock(&net_mutex);
942 	error = register_pernet_operations(&pernet_list, ops);
943 	if (!error && (first_device == &pernet_list))
944 		first_device = &ops->list;
945 	mutex_unlock(&net_mutex);
946 	return error;
947 }
948 EXPORT_SYMBOL_GPL(register_pernet_device);
949 
950 /**
951  *      unregister_pernet_device - unregister a network namespace netdevice
952  *	@ops: pernet operations structure to manipulate
953  *
954  *	Remove the pernet operations structure from the list to be
955  *	used when network namespaces are created or destroyed.  In
956  *	addition run the exit method for all existing network
957  *	namespaces.
958  */
959 void unregister_pernet_device(struct pernet_operations *ops)
960 {
961 	mutex_lock(&net_mutex);
962 	if (&ops->list == first_device)
963 		first_device = first_device->next;
964 	unregister_pernet_operations(ops);
965 	mutex_unlock(&net_mutex);
966 }
967 EXPORT_SYMBOL_GPL(unregister_pernet_device);
968 
969 #ifdef CONFIG_NET_NS
970 static struct ns_common *netns_get(struct task_struct *task)
971 {
972 	struct net *net = NULL;
973 	struct nsproxy *nsproxy;
974 
975 	task_lock(task);
976 	nsproxy = task->nsproxy;
977 	if (nsproxy)
978 		net = get_net(nsproxy->net_ns);
979 	task_unlock(task);
980 
981 	return net ? &net->ns : NULL;
982 }
983 
984 static inline struct net *to_net_ns(struct ns_common *ns)
985 {
986 	return container_of(ns, struct net, ns);
987 }
988 
989 static void netns_put(struct ns_common *ns)
990 {
991 	put_net(to_net_ns(ns));
992 }
993 
994 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
995 {
996 	struct net *net = to_net_ns(ns);
997 
998 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
999 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1000 		return -EPERM;
1001 
1002 	put_net(nsproxy->net_ns);
1003 	nsproxy->net_ns = get_net(net);
1004 	return 0;
1005 }
1006 
1007 const struct proc_ns_operations netns_operations = {
1008 	.name		= "net",
1009 	.type		= CLONE_NEWNET,
1010 	.get		= netns_get,
1011 	.put		= netns_put,
1012 	.install	= netns_install,
1013 };
1014 #endif
1015