xref: /openbmc/linux/net/core/net_namespace.c (revision b272a0ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 
23 #include <net/sock.h>
24 #include <net/netlink.h>
25 #include <net/net_namespace.h>
26 #include <net/netns/generic.h>
27 
28 /*
29  *	Our network namespace constructor/destructor lists
30  */
31 
32 static LIST_HEAD(pernet_list);
33 static struct list_head *first_device = &pernet_list;
34 
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37 
38 /* Protects net_namespace_list. Nests iside rtnl_lock() */
39 DECLARE_RWSEM(net_rwsem);
40 EXPORT_SYMBOL_GPL(net_rwsem);
41 
42 struct net init_net = {
43 	.count		= REFCOUNT_INIT(1),
44 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
45 };
46 EXPORT_SYMBOL(init_net);
47 
48 static bool init_net_initialized;
49 /*
50  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
51  * init_net_initialized and first_device pointer.
52  * This is internal net namespace object. Please, don't use it
53  * outside.
54  */
55 DECLARE_RWSEM(pernet_ops_rwsem);
56 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
57 
58 #define MIN_PERNET_OPS_ID	\
59 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
60 
61 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
62 
63 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
64 
65 static struct net_generic *net_alloc_generic(void)
66 {
67 	struct net_generic *ng;
68 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
69 
70 	ng = kzalloc(generic_size, GFP_KERNEL);
71 	if (ng)
72 		ng->s.len = max_gen_ptrs;
73 
74 	return ng;
75 }
76 
77 static int net_assign_generic(struct net *net, unsigned int id, void *data)
78 {
79 	struct net_generic *ng, *old_ng;
80 
81 	BUG_ON(id < MIN_PERNET_OPS_ID);
82 
83 	old_ng = rcu_dereference_protected(net->gen,
84 					   lockdep_is_held(&pernet_ops_rwsem));
85 	if (old_ng->s.len > id) {
86 		old_ng->ptr[id] = data;
87 		return 0;
88 	}
89 
90 	ng = net_alloc_generic();
91 	if (ng == NULL)
92 		return -ENOMEM;
93 
94 	/*
95 	 * Some synchronisation notes:
96 	 *
97 	 * The net_generic explores the net->gen array inside rcu
98 	 * read section. Besides once set the net->gen->ptr[x]
99 	 * pointer never changes (see rules in netns/generic.h).
100 	 *
101 	 * That said, we simply duplicate this array and schedule
102 	 * the old copy for kfree after a grace period.
103 	 */
104 
105 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
106 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
107 	ng->ptr[id] = data;
108 
109 	rcu_assign_pointer(net->gen, ng);
110 	kfree_rcu(old_ng, s.rcu);
111 	return 0;
112 }
113 
114 static int ops_init(const struct pernet_operations *ops, struct net *net)
115 {
116 	int err = -ENOMEM;
117 	void *data = NULL;
118 
119 	if (ops->id && ops->size) {
120 		data = kzalloc(ops->size, GFP_KERNEL);
121 		if (!data)
122 			goto out;
123 
124 		err = net_assign_generic(net, *ops->id, data);
125 		if (err)
126 			goto cleanup;
127 	}
128 	err = 0;
129 	if (ops->init)
130 		err = ops->init(net);
131 	if (!err)
132 		return 0;
133 
134 cleanup:
135 	kfree(data);
136 
137 out:
138 	return err;
139 }
140 
141 static void ops_free(const struct pernet_operations *ops, struct net *net)
142 {
143 	if (ops->id && ops->size) {
144 		kfree(net_generic(net, *ops->id));
145 	}
146 }
147 
148 static void ops_pre_exit_list(const struct pernet_operations *ops,
149 			      struct list_head *net_exit_list)
150 {
151 	struct net *net;
152 
153 	if (ops->pre_exit) {
154 		list_for_each_entry(net, net_exit_list, exit_list)
155 			ops->pre_exit(net);
156 	}
157 }
158 
159 static void ops_exit_list(const struct pernet_operations *ops,
160 			  struct list_head *net_exit_list)
161 {
162 	struct net *net;
163 	if (ops->exit) {
164 		list_for_each_entry(net, net_exit_list, exit_list)
165 			ops->exit(net);
166 	}
167 	if (ops->exit_batch)
168 		ops->exit_batch(net_exit_list);
169 }
170 
171 static void ops_free_list(const struct pernet_operations *ops,
172 			  struct list_head *net_exit_list)
173 {
174 	struct net *net;
175 	if (ops->size && ops->id) {
176 		list_for_each_entry(net, net_exit_list, exit_list)
177 			ops_free(ops, net);
178 	}
179 }
180 
181 /* should be called with nsid_lock held */
182 static int alloc_netid(struct net *net, struct net *peer, int reqid)
183 {
184 	int min = 0, max = 0;
185 
186 	if (reqid >= 0) {
187 		min = reqid;
188 		max = reqid + 1;
189 	}
190 
191 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
192 }
193 
194 /* This function is used by idr_for_each(). If net is equal to peer, the
195  * function returns the id so that idr_for_each() stops. Because we cannot
196  * returns the id 0 (idr_for_each() will not stop), we return the magic value
197  * NET_ID_ZERO (-1) for it.
198  */
199 #define NET_ID_ZERO -1
200 static int net_eq_idr(int id, void *net, void *peer)
201 {
202 	if (net_eq(net, peer))
203 		return id ? : NET_ID_ZERO;
204 	return 0;
205 }
206 
207 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
208  * is set to true, thus the caller knows that the new id must be notified via
209  * rtnl.
210  */
211 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
212 {
213 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
214 	bool alloc_it = *alloc;
215 
216 	*alloc = false;
217 
218 	/* Magic value for id 0. */
219 	if (id == NET_ID_ZERO)
220 		return 0;
221 	if (id > 0)
222 		return id;
223 
224 	if (alloc_it) {
225 		id = alloc_netid(net, peer, -1);
226 		*alloc = true;
227 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
228 	}
229 
230 	return NETNSA_NSID_NOT_ASSIGNED;
231 }
232 
233 /* should be called with nsid_lock held */
234 static int __peernet2id(struct net *net, struct net *peer)
235 {
236 	bool no = false;
237 
238 	return __peernet2id_alloc(net, peer, &no);
239 }
240 
241 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
242 /* This function returns the id of a peer netns. If no id is assigned, one will
243  * be allocated and returned.
244  */
245 int peernet2id_alloc(struct net *net, struct net *peer)
246 {
247 	bool alloc = false, alive = false;
248 	int id;
249 
250 	if (refcount_read(&net->count) == 0)
251 		return NETNSA_NSID_NOT_ASSIGNED;
252 	spin_lock_bh(&net->nsid_lock);
253 	/*
254 	 * When peer is obtained from RCU lists, we may race with
255 	 * its cleanup. Check whether it's alive, and this guarantees
256 	 * we never hash a peer back to net->netns_ids, after it has
257 	 * just been idr_remove()'d from there in cleanup_net().
258 	 */
259 	if (maybe_get_net(peer))
260 		alive = alloc = true;
261 	id = __peernet2id_alloc(net, peer, &alloc);
262 	spin_unlock_bh(&net->nsid_lock);
263 	if (alloc && id >= 0)
264 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
265 	if (alive)
266 		put_net(peer);
267 	return id;
268 }
269 EXPORT_SYMBOL_GPL(peernet2id_alloc);
270 
271 /* This function returns, if assigned, the id of a peer netns. */
272 int peernet2id(struct net *net, struct net *peer)
273 {
274 	int id;
275 
276 	spin_lock_bh(&net->nsid_lock);
277 	id = __peernet2id(net, peer);
278 	spin_unlock_bh(&net->nsid_lock);
279 	return id;
280 }
281 EXPORT_SYMBOL(peernet2id);
282 
283 /* This function returns true is the peer netns has an id assigned into the
284  * current netns.
285  */
286 bool peernet_has_id(struct net *net, struct net *peer)
287 {
288 	return peernet2id(net, peer) >= 0;
289 }
290 
291 struct net *get_net_ns_by_id(struct net *net, int id)
292 {
293 	struct net *peer;
294 
295 	if (id < 0)
296 		return NULL;
297 
298 	rcu_read_lock();
299 	peer = idr_find(&net->netns_ids, id);
300 	if (peer)
301 		peer = maybe_get_net(peer);
302 	rcu_read_unlock();
303 
304 	return peer;
305 }
306 
307 /*
308  * setup_net runs the initializers for the network namespace object.
309  */
310 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
311 {
312 	/* Must be called with pernet_ops_rwsem held */
313 	const struct pernet_operations *ops, *saved_ops;
314 	int error = 0;
315 	LIST_HEAD(net_exit_list);
316 
317 	refcount_set(&net->count, 1);
318 	refcount_set(&net->passive, 1);
319 	get_random_bytes(&net->hash_mix, sizeof(u32));
320 	net->dev_base_seq = 1;
321 	net->user_ns = user_ns;
322 	idr_init(&net->netns_ids);
323 	spin_lock_init(&net->nsid_lock);
324 	mutex_init(&net->ipv4.ra_mutex);
325 
326 	list_for_each_entry(ops, &pernet_list, list) {
327 		error = ops_init(ops, net);
328 		if (error < 0)
329 			goto out_undo;
330 	}
331 	down_write(&net_rwsem);
332 	list_add_tail_rcu(&net->list, &net_namespace_list);
333 	up_write(&net_rwsem);
334 out:
335 	return error;
336 
337 out_undo:
338 	/* Walk through the list backwards calling the exit functions
339 	 * for the pernet modules whose init functions did not fail.
340 	 */
341 	list_add(&net->exit_list, &net_exit_list);
342 	saved_ops = ops;
343 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
344 		ops_pre_exit_list(ops, &net_exit_list);
345 
346 	synchronize_rcu();
347 
348 	ops = saved_ops;
349 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
350 		ops_exit_list(ops, &net_exit_list);
351 
352 	ops = saved_ops;
353 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
354 		ops_free_list(ops, &net_exit_list);
355 
356 	rcu_barrier();
357 	goto out;
358 }
359 
360 static int __net_init net_defaults_init_net(struct net *net)
361 {
362 	net->core.sysctl_somaxconn = SOMAXCONN;
363 	return 0;
364 }
365 
366 static struct pernet_operations net_defaults_ops = {
367 	.init = net_defaults_init_net,
368 };
369 
370 static __init int net_defaults_init(void)
371 {
372 	if (register_pernet_subsys(&net_defaults_ops))
373 		panic("Cannot initialize net default settings");
374 
375 	return 0;
376 }
377 
378 core_initcall(net_defaults_init);
379 
380 #ifdef CONFIG_NET_NS
381 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
382 {
383 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
384 }
385 
386 static void dec_net_namespaces(struct ucounts *ucounts)
387 {
388 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
389 }
390 
391 static struct kmem_cache *net_cachep __ro_after_init;
392 static struct workqueue_struct *netns_wq;
393 
394 static struct net *net_alloc(void)
395 {
396 	struct net *net = NULL;
397 	struct net_generic *ng;
398 
399 	ng = net_alloc_generic();
400 	if (!ng)
401 		goto out;
402 
403 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
404 	if (!net)
405 		goto out_free;
406 
407 	rcu_assign_pointer(net->gen, ng);
408 out:
409 	return net;
410 
411 out_free:
412 	kfree(ng);
413 	goto out;
414 }
415 
416 static void net_free(struct net *net)
417 {
418 	kfree(rcu_access_pointer(net->gen));
419 	kmem_cache_free(net_cachep, net);
420 }
421 
422 void net_drop_ns(void *p)
423 {
424 	struct net *ns = p;
425 	if (ns && refcount_dec_and_test(&ns->passive))
426 		net_free(ns);
427 }
428 
429 struct net *copy_net_ns(unsigned long flags,
430 			struct user_namespace *user_ns, struct net *old_net)
431 {
432 	struct ucounts *ucounts;
433 	struct net *net;
434 	int rv;
435 
436 	if (!(flags & CLONE_NEWNET))
437 		return get_net(old_net);
438 
439 	ucounts = inc_net_namespaces(user_ns);
440 	if (!ucounts)
441 		return ERR_PTR(-ENOSPC);
442 
443 	net = net_alloc();
444 	if (!net) {
445 		rv = -ENOMEM;
446 		goto dec_ucounts;
447 	}
448 	refcount_set(&net->passive, 1);
449 	net->ucounts = ucounts;
450 	get_user_ns(user_ns);
451 
452 	rv = down_read_killable(&pernet_ops_rwsem);
453 	if (rv < 0)
454 		goto put_userns;
455 
456 	rv = setup_net(net, user_ns);
457 
458 	up_read(&pernet_ops_rwsem);
459 
460 	if (rv < 0) {
461 put_userns:
462 		put_user_ns(user_ns);
463 		net_drop_ns(net);
464 dec_ucounts:
465 		dec_net_namespaces(ucounts);
466 		return ERR_PTR(rv);
467 	}
468 	return net;
469 }
470 
471 /**
472  * net_ns_get_ownership - get sysfs ownership data for @net
473  * @net: network namespace in question (can be NULL)
474  * @uid: kernel user ID for sysfs objects
475  * @gid: kernel group ID for sysfs objects
476  *
477  * Returns the uid/gid pair of root in the user namespace associated with the
478  * given network namespace.
479  */
480 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
481 {
482 	if (net) {
483 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
484 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
485 
486 		if (uid_valid(ns_root_uid))
487 			*uid = ns_root_uid;
488 
489 		if (gid_valid(ns_root_gid))
490 			*gid = ns_root_gid;
491 	} else {
492 		*uid = GLOBAL_ROOT_UID;
493 		*gid = GLOBAL_ROOT_GID;
494 	}
495 }
496 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
497 
498 static void unhash_nsid(struct net *net, struct net *last)
499 {
500 	struct net *tmp;
501 	/* This function is only called from cleanup_net() work,
502 	 * and this work is the only process, that may delete
503 	 * a net from net_namespace_list. So, when the below
504 	 * is executing, the list may only grow. Thus, we do not
505 	 * use for_each_net_rcu() or net_rwsem.
506 	 */
507 	for_each_net(tmp) {
508 		int id;
509 
510 		spin_lock_bh(&tmp->nsid_lock);
511 		id = __peernet2id(tmp, net);
512 		if (id >= 0)
513 			idr_remove(&tmp->netns_ids, id);
514 		spin_unlock_bh(&tmp->nsid_lock);
515 		if (id >= 0)
516 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
517 		if (tmp == last)
518 			break;
519 	}
520 	spin_lock_bh(&net->nsid_lock);
521 	idr_destroy(&net->netns_ids);
522 	spin_unlock_bh(&net->nsid_lock);
523 }
524 
525 static LLIST_HEAD(cleanup_list);
526 
527 static void cleanup_net(struct work_struct *work)
528 {
529 	const struct pernet_operations *ops;
530 	struct net *net, *tmp, *last;
531 	struct llist_node *net_kill_list;
532 	LIST_HEAD(net_exit_list);
533 
534 	/* Atomically snapshot the list of namespaces to cleanup */
535 	net_kill_list = llist_del_all(&cleanup_list);
536 
537 	down_read(&pernet_ops_rwsem);
538 
539 	/* Don't let anyone else find us. */
540 	down_write(&net_rwsem);
541 	llist_for_each_entry(net, net_kill_list, cleanup_list)
542 		list_del_rcu(&net->list);
543 	/* Cache last net. After we unlock rtnl, no one new net
544 	 * added to net_namespace_list can assign nsid pointer
545 	 * to a net from net_kill_list (see peernet2id_alloc()).
546 	 * So, we skip them in unhash_nsid().
547 	 *
548 	 * Note, that unhash_nsid() does not delete nsid links
549 	 * between net_kill_list's nets, as they've already
550 	 * deleted from net_namespace_list. But, this would be
551 	 * useless anyway, as netns_ids are destroyed there.
552 	 */
553 	last = list_last_entry(&net_namespace_list, struct net, list);
554 	up_write(&net_rwsem);
555 
556 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
557 		unhash_nsid(net, last);
558 		list_add_tail(&net->exit_list, &net_exit_list);
559 	}
560 
561 	/* Run all of the network namespace pre_exit methods */
562 	list_for_each_entry_reverse(ops, &pernet_list, list)
563 		ops_pre_exit_list(ops, &net_exit_list);
564 
565 	/*
566 	 * Another CPU might be rcu-iterating the list, wait for it.
567 	 * This needs to be before calling the exit() notifiers, so
568 	 * the rcu_barrier() below isn't sufficient alone.
569 	 * Also the pre_exit() and exit() methods need this barrier.
570 	 */
571 	synchronize_rcu();
572 
573 	/* Run all of the network namespace exit methods */
574 	list_for_each_entry_reverse(ops, &pernet_list, list)
575 		ops_exit_list(ops, &net_exit_list);
576 
577 	/* Free the net generic variables */
578 	list_for_each_entry_reverse(ops, &pernet_list, list)
579 		ops_free_list(ops, &net_exit_list);
580 
581 	up_read(&pernet_ops_rwsem);
582 
583 	/* Ensure there are no outstanding rcu callbacks using this
584 	 * network namespace.
585 	 */
586 	rcu_barrier();
587 
588 	/* Finally it is safe to free my network namespace structure */
589 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
590 		list_del_init(&net->exit_list);
591 		dec_net_namespaces(net->ucounts);
592 		put_user_ns(net->user_ns);
593 		net_drop_ns(net);
594 	}
595 }
596 
597 /**
598  * net_ns_barrier - wait until concurrent net_cleanup_work is done
599  *
600  * cleanup_net runs from work queue and will first remove namespaces
601  * from the global list, then run net exit functions.
602  *
603  * Call this in module exit path to make sure that all netns
604  * ->exit ops have been invoked before the function is removed.
605  */
606 void net_ns_barrier(void)
607 {
608 	down_write(&pernet_ops_rwsem);
609 	up_write(&pernet_ops_rwsem);
610 }
611 EXPORT_SYMBOL(net_ns_barrier);
612 
613 static DECLARE_WORK(net_cleanup_work, cleanup_net);
614 
615 void __put_net(struct net *net)
616 {
617 	/* Cleanup the network namespace in process context */
618 	if (llist_add(&net->cleanup_list, &cleanup_list))
619 		queue_work(netns_wq, &net_cleanup_work);
620 }
621 EXPORT_SYMBOL_GPL(__put_net);
622 
623 struct net *get_net_ns_by_fd(int fd)
624 {
625 	struct file *file;
626 	struct ns_common *ns;
627 	struct net *net;
628 
629 	file = proc_ns_fget(fd);
630 	if (IS_ERR(file))
631 		return ERR_CAST(file);
632 
633 	ns = get_proc_ns(file_inode(file));
634 	if (ns->ops == &netns_operations)
635 		net = get_net(container_of(ns, struct net, ns));
636 	else
637 		net = ERR_PTR(-EINVAL);
638 
639 	fput(file);
640 	return net;
641 }
642 
643 #else
644 struct net *get_net_ns_by_fd(int fd)
645 {
646 	return ERR_PTR(-EINVAL);
647 }
648 #endif
649 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
650 
651 struct net *get_net_ns_by_pid(pid_t pid)
652 {
653 	struct task_struct *tsk;
654 	struct net *net;
655 
656 	/* Lookup the network namespace */
657 	net = ERR_PTR(-ESRCH);
658 	rcu_read_lock();
659 	tsk = find_task_by_vpid(pid);
660 	if (tsk) {
661 		struct nsproxy *nsproxy;
662 		task_lock(tsk);
663 		nsproxy = tsk->nsproxy;
664 		if (nsproxy)
665 			net = get_net(nsproxy->net_ns);
666 		task_unlock(tsk);
667 	}
668 	rcu_read_unlock();
669 	return net;
670 }
671 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
672 
673 static __net_init int net_ns_net_init(struct net *net)
674 {
675 #ifdef CONFIG_NET_NS
676 	net->ns.ops = &netns_operations;
677 #endif
678 	return ns_alloc_inum(&net->ns);
679 }
680 
681 static __net_exit void net_ns_net_exit(struct net *net)
682 {
683 	ns_free_inum(&net->ns);
684 }
685 
686 static struct pernet_operations __net_initdata net_ns_ops = {
687 	.init = net_ns_net_init,
688 	.exit = net_ns_net_exit,
689 };
690 
691 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
692 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
693 	[NETNSA_NSID]		= { .type = NLA_S32 },
694 	[NETNSA_PID]		= { .type = NLA_U32 },
695 	[NETNSA_FD]		= { .type = NLA_U32 },
696 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
697 };
698 
699 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
700 			  struct netlink_ext_ack *extack)
701 {
702 	struct net *net = sock_net(skb->sk);
703 	struct nlattr *tb[NETNSA_MAX + 1];
704 	struct nlattr *nla;
705 	struct net *peer;
706 	int nsid, err;
707 
708 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
709 				     NETNSA_MAX, rtnl_net_policy, extack);
710 	if (err < 0)
711 		return err;
712 	if (!tb[NETNSA_NSID]) {
713 		NL_SET_ERR_MSG(extack, "nsid is missing");
714 		return -EINVAL;
715 	}
716 	nsid = nla_get_s32(tb[NETNSA_NSID]);
717 
718 	if (tb[NETNSA_PID]) {
719 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
720 		nla = tb[NETNSA_PID];
721 	} else if (tb[NETNSA_FD]) {
722 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
723 		nla = tb[NETNSA_FD];
724 	} else {
725 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
726 		return -EINVAL;
727 	}
728 	if (IS_ERR(peer)) {
729 		NL_SET_BAD_ATTR(extack, nla);
730 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
731 		return PTR_ERR(peer);
732 	}
733 
734 	spin_lock_bh(&net->nsid_lock);
735 	if (__peernet2id(net, peer) >= 0) {
736 		spin_unlock_bh(&net->nsid_lock);
737 		err = -EEXIST;
738 		NL_SET_BAD_ATTR(extack, nla);
739 		NL_SET_ERR_MSG(extack,
740 			       "Peer netns already has a nsid assigned");
741 		goto out;
742 	}
743 
744 	err = alloc_netid(net, peer, nsid);
745 	spin_unlock_bh(&net->nsid_lock);
746 	if (err >= 0) {
747 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
748 		err = 0;
749 	} else if (err == -ENOSPC && nsid >= 0) {
750 		err = -EEXIST;
751 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
752 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
753 	}
754 out:
755 	put_net(peer);
756 	return err;
757 }
758 
759 static int rtnl_net_get_size(void)
760 {
761 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
762 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
763 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
764 	       ;
765 }
766 
767 struct net_fill_args {
768 	u32 portid;
769 	u32 seq;
770 	int flags;
771 	int cmd;
772 	int nsid;
773 	bool add_ref;
774 	int ref_nsid;
775 };
776 
777 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
778 {
779 	struct nlmsghdr *nlh;
780 	struct rtgenmsg *rth;
781 
782 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
783 			args->flags);
784 	if (!nlh)
785 		return -EMSGSIZE;
786 
787 	rth = nlmsg_data(nlh);
788 	rth->rtgen_family = AF_UNSPEC;
789 
790 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
791 		goto nla_put_failure;
792 
793 	if (args->add_ref &&
794 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
795 		goto nla_put_failure;
796 
797 	nlmsg_end(skb, nlh);
798 	return 0;
799 
800 nla_put_failure:
801 	nlmsg_cancel(skb, nlh);
802 	return -EMSGSIZE;
803 }
804 
805 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
806 				    const struct nlmsghdr *nlh,
807 				    struct nlattr **tb,
808 				    struct netlink_ext_ack *extack)
809 {
810 	int i, err;
811 
812 	if (!netlink_strict_get_check(skb))
813 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
814 					      tb, NETNSA_MAX, rtnl_net_policy,
815 					      extack);
816 
817 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
818 					    NETNSA_MAX, rtnl_net_policy,
819 					    extack);
820 	if (err)
821 		return err;
822 
823 	for (i = 0; i <= NETNSA_MAX; i++) {
824 		if (!tb[i])
825 			continue;
826 
827 		switch (i) {
828 		case NETNSA_PID:
829 		case NETNSA_FD:
830 		case NETNSA_NSID:
831 		case NETNSA_TARGET_NSID:
832 			break;
833 		default:
834 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
835 			return -EINVAL;
836 		}
837 	}
838 
839 	return 0;
840 }
841 
842 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
843 			  struct netlink_ext_ack *extack)
844 {
845 	struct net *net = sock_net(skb->sk);
846 	struct nlattr *tb[NETNSA_MAX + 1];
847 	struct net_fill_args fillargs = {
848 		.portid = NETLINK_CB(skb).portid,
849 		.seq = nlh->nlmsg_seq,
850 		.cmd = RTM_NEWNSID,
851 	};
852 	struct net *peer, *target = net;
853 	struct nlattr *nla;
854 	struct sk_buff *msg;
855 	int err;
856 
857 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
858 	if (err < 0)
859 		return err;
860 	if (tb[NETNSA_PID]) {
861 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
862 		nla = tb[NETNSA_PID];
863 	} else if (tb[NETNSA_FD]) {
864 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
865 		nla = tb[NETNSA_FD];
866 	} else if (tb[NETNSA_NSID]) {
867 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
868 		if (!peer)
869 			peer = ERR_PTR(-ENOENT);
870 		nla = tb[NETNSA_NSID];
871 	} else {
872 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
873 		return -EINVAL;
874 	}
875 
876 	if (IS_ERR(peer)) {
877 		NL_SET_BAD_ATTR(extack, nla);
878 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
879 		return PTR_ERR(peer);
880 	}
881 
882 	if (tb[NETNSA_TARGET_NSID]) {
883 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
884 
885 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
886 		if (IS_ERR(target)) {
887 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
888 			NL_SET_ERR_MSG(extack,
889 				       "Target netns reference is invalid");
890 			err = PTR_ERR(target);
891 			goto out;
892 		}
893 		fillargs.add_ref = true;
894 		fillargs.ref_nsid = peernet2id(net, peer);
895 	}
896 
897 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
898 	if (!msg) {
899 		err = -ENOMEM;
900 		goto out;
901 	}
902 
903 	fillargs.nsid = peernet2id(target, peer);
904 	err = rtnl_net_fill(msg, &fillargs);
905 	if (err < 0)
906 		goto err_out;
907 
908 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
909 	goto out;
910 
911 err_out:
912 	nlmsg_free(msg);
913 out:
914 	if (fillargs.add_ref)
915 		put_net(target);
916 	put_net(peer);
917 	return err;
918 }
919 
920 struct rtnl_net_dump_cb {
921 	struct net *tgt_net;
922 	struct net *ref_net;
923 	struct sk_buff *skb;
924 	struct net_fill_args fillargs;
925 	int idx;
926 	int s_idx;
927 };
928 
929 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
930 {
931 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
932 	int ret;
933 
934 	if (net_cb->idx < net_cb->s_idx)
935 		goto cont;
936 
937 	net_cb->fillargs.nsid = id;
938 	if (net_cb->fillargs.add_ref)
939 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
940 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
941 	if (ret < 0)
942 		return ret;
943 
944 cont:
945 	net_cb->idx++;
946 	return 0;
947 }
948 
949 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
950 				   struct rtnl_net_dump_cb *net_cb,
951 				   struct netlink_callback *cb)
952 {
953 	struct netlink_ext_ack *extack = cb->extack;
954 	struct nlattr *tb[NETNSA_MAX + 1];
955 	int err, i;
956 
957 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
958 					    NETNSA_MAX, rtnl_net_policy,
959 					    extack);
960 	if (err < 0)
961 		return err;
962 
963 	for (i = 0; i <= NETNSA_MAX; i++) {
964 		if (!tb[i])
965 			continue;
966 
967 		if (i == NETNSA_TARGET_NSID) {
968 			struct net *net;
969 
970 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
971 			if (IS_ERR(net)) {
972 				NL_SET_BAD_ATTR(extack, tb[i]);
973 				NL_SET_ERR_MSG(extack,
974 					       "Invalid target network namespace id");
975 				return PTR_ERR(net);
976 			}
977 			net_cb->fillargs.add_ref = true;
978 			net_cb->ref_net = net_cb->tgt_net;
979 			net_cb->tgt_net = net;
980 		} else {
981 			NL_SET_BAD_ATTR(extack, tb[i]);
982 			NL_SET_ERR_MSG(extack,
983 				       "Unsupported attribute in dump request");
984 			return -EINVAL;
985 		}
986 	}
987 
988 	return 0;
989 }
990 
991 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
992 {
993 	struct rtnl_net_dump_cb net_cb = {
994 		.tgt_net = sock_net(skb->sk),
995 		.skb = skb,
996 		.fillargs = {
997 			.portid = NETLINK_CB(cb->skb).portid,
998 			.seq = cb->nlh->nlmsg_seq,
999 			.flags = NLM_F_MULTI,
1000 			.cmd = RTM_NEWNSID,
1001 		},
1002 		.idx = 0,
1003 		.s_idx = cb->args[0],
1004 	};
1005 	int err = 0;
1006 
1007 	if (cb->strict_check) {
1008 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1009 		if (err < 0)
1010 			goto end;
1011 	}
1012 
1013 	spin_lock_bh(&net_cb.tgt_net->nsid_lock);
1014 	if (net_cb.fillargs.add_ref &&
1015 	    !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
1016 	    !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
1017 		spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1018 		err = -EAGAIN;
1019 		goto end;
1020 	}
1021 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1022 	if (net_cb.fillargs.add_ref &&
1023 	    !net_eq(net_cb.ref_net, net_cb.tgt_net))
1024 		spin_unlock_bh(&net_cb.ref_net->nsid_lock);
1025 	spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1026 
1027 	cb->args[0] = net_cb.idx;
1028 end:
1029 	if (net_cb.fillargs.add_ref)
1030 		put_net(net_cb.tgt_net);
1031 	return err < 0 ? err : skb->len;
1032 }
1033 
1034 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
1035 {
1036 	struct net_fill_args fillargs = {
1037 		.cmd = cmd,
1038 		.nsid = id,
1039 	};
1040 	struct sk_buff *msg;
1041 	int err = -ENOMEM;
1042 
1043 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1044 	if (!msg)
1045 		goto out;
1046 
1047 	err = rtnl_net_fill(msg, &fillargs);
1048 	if (err < 0)
1049 		goto err_out;
1050 
1051 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
1052 	return;
1053 
1054 err_out:
1055 	nlmsg_free(msg);
1056 out:
1057 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1058 }
1059 
1060 static int __init net_ns_init(void)
1061 {
1062 	struct net_generic *ng;
1063 
1064 #ifdef CONFIG_NET_NS
1065 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1066 					SMP_CACHE_BYTES,
1067 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1068 
1069 	/* Create workqueue for cleanup */
1070 	netns_wq = create_singlethread_workqueue("netns");
1071 	if (!netns_wq)
1072 		panic("Could not create netns workq");
1073 #endif
1074 
1075 	ng = net_alloc_generic();
1076 	if (!ng)
1077 		panic("Could not allocate generic netns");
1078 
1079 	rcu_assign_pointer(init_net.gen, ng);
1080 
1081 	down_write(&pernet_ops_rwsem);
1082 	if (setup_net(&init_net, &init_user_ns))
1083 		panic("Could not setup the initial network namespace");
1084 
1085 	init_net_initialized = true;
1086 	up_write(&pernet_ops_rwsem);
1087 
1088 	if (register_pernet_subsys(&net_ns_ops))
1089 		panic("Could not register network namespace subsystems");
1090 
1091 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1092 		      RTNL_FLAG_DOIT_UNLOCKED);
1093 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1094 		      RTNL_FLAG_DOIT_UNLOCKED);
1095 
1096 	return 0;
1097 }
1098 
1099 pure_initcall(net_ns_init);
1100 
1101 #ifdef CONFIG_NET_NS
1102 static int __register_pernet_operations(struct list_head *list,
1103 					struct pernet_operations *ops)
1104 {
1105 	struct net *net;
1106 	int error;
1107 	LIST_HEAD(net_exit_list);
1108 
1109 	list_add_tail(&ops->list, list);
1110 	if (ops->init || (ops->id && ops->size)) {
1111 		/* We held write locked pernet_ops_rwsem, and parallel
1112 		 * setup_net() and cleanup_net() are not possible.
1113 		 */
1114 		for_each_net(net) {
1115 			error = ops_init(ops, net);
1116 			if (error)
1117 				goto out_undo;
1118 			list_add_tail(&net->exit_list, &net_exit_list);
1119 		}
1120 	}
1121 	return 0;
1122 
1123 out_undo:
1124 	/* If I have an error cleanup all namespaces I initialized */
1125 	list_del(&ops->list);
1126 	ops_pre_exit_list(ops, &net_exit_list);
1127 	synchronize_rcu();
1128 	ops_exit_list(ops, &net_exit_list);
1129 	ops_free_list(ops, &net_exit_list);
1130 	return error;
1131 }
1132 
1133 static void __unregister_pernet_operations(struct pernet_operations *ops)
1134 {
1135 	struct net *net;
1136 	LIST_HEAD(net_exit_list);
1137 
1138 	list_del(&ops->list);
1139 	/* See comment in __register_pernet_operations() */
1140 	for_each_net(net)
1141 		list_add_tail(&net->exit_list, &net_exit_list);
1142 	ops_pre_exit_list(ops, &net_exit_list);
1143 	synchronize_rcu();
1144 	ops_exit_list(ops, &net_exit_list);
1145 	ops_free_list(ops, &net_exit_list);
1146 }
1147 
1148 #else
1149 
1150 static int __register_pernet_operations(struct list_head *list,
1151 					struct pernet_operations *ops)
1152 {
1153 	if (!init_net_initialized) {
1154 		list_add_tail(&ops->list, list);
1155 		return 0;
1156 	}
1157 
1158 	return ops_init(ops, &init_net);
1159 }
1160 
1161 static void __unregister_pernet_operations(struct pernet_operations *ops)
1162 {
1163 	if (!init_net_initialized) {
1164 		list_del(&ops->list);
1165 	} else {
1166 		LIST_HEAD(net_exit_list);
1167 		list_add(&init_net.exit_list, &net_exit_list);
1168 		ops_pre_exit_list(ops, &net_exit_list);
1169 		synchronize_rcu();
1170 		ops_exit_list(ops, &net_exit_list);
1171 		ops_free_list(ops, &net_exit_list);
1172 	}
1173 }
1174 
1175 #endif /* CONFIG_NET_NS */
1176 
1177 static DEFINE_IDA(net_generic_ids);
1178 
1179 static int register_pernet_operations(struct list_head *list,
1180 				      struct pernet_operations *ops)
1181 {
1182 	int error;
1183 
1184 	if (ops->id) {
1185 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1186 				GFP_KERNEL);
1187 		if (error < 0)
1188 			return error;
1189 		*ops->id = error;
1190 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1191 	}
1192 	error = __register_pernet_operations(list, ops);
1193 	if (error) {
1194 		rcu_barrier();
1195 		if (ops->id)
1196 			ida_free(&net_generic_ids, *ops->id);
1197 	}
1198 
1199 	return error;
1200 }
1201 
1202 static void unregister_pernet_operations(struct pernet_operations *ops)
1203 {
1204 	__unregister_pernet_operations(ops);
1205 	rcu_barrier();
1206 	if (ops->id)
1207 		ida_free(&net_generic_ids, *ops->id);
1208 }
1209 
1210 /**
1211  *      register_pernet_subsys - register a network namespace subsystem
1212  *	@ops:  pernet operations structure for the subsystem
1213  *
1214  *	Register a subsystem which has init and exit functions
1215  *	that are called when network namespaces are created and
1216  *	destroyed respectively.
1217  *
1218  *	When registered all network namespace init functions are
1219  *	called for every existing network namespace.  Allowing kernel
1220  *	modules to have a race free view of the set of network namespaces.
1221  *
1222  *	When a new network namespace is created all of the init
1223  *	methods are called in the order in which they were registered.
1224  *
1225  *	When a network namespace is destroyed all of the exit methods
1226  *	are called in the reverse of the order with which they were
1227  *	registered.
1228  */
1229 int register_pernet_subsys(struct pernet_operations *ops)
1230 {
1231 	int error;
1232 	down_write(&pernet_ops_rwsem);
1233 	error =  register_pernet_operations(first_device, ops);
1234 	up_write(&pernet_ops_rwsem);
1235 	return error;
1236 }
1237 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1238 
1239 /**
1240  *      unregister_pernet_subsys - unregister a network namespace subsystem
1241  *	@ops: pernet operations structure to manipulate
1242  *
1243  *	Remove the pernet operations structure from the list to be
1244  *	used when network namespaces are created or destroyed.  In
1245  *	addition run the exit method for all existing network
1246  *	namespaces.
1247  */
1248 void unregister_pernet_subsys(struct pernet_operations *ops)
1249 {
1250 	down_write(&pernet_ops_rwsem);
1251 	unregister_pernet_operations(ops);
1252 	up_write(&pernet_ops_rwsem);
1253 }
1254 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1255 
1256 /**
1257  *      register_pernet_device - register a network namespace device
1258  *	@ops:  pernet operations structure for the subsystem
1259  *
1260  *	Register a device which has init and exit functions
1261  *	that are called when network namespaces are created and
1262  *	destroyed respectively.
1263  *
1264  *	When registered all network namespace init functions are
1265  *	called for every existing network namespace.  Allowing kernel
1266  *	modules to have a race free view of the set of network namespaces.
1267  *
1268  *	When a new network namespace is created all of the init
1269  *	methods are called in the order in which they were registered.
1270  *
1271  *	When a network namespace is destroyed all of the exit methods
1272  *	are called in the reverse of the order with which they were
1273  *	registered.
1274  */
1275 int register_pernet_device(struct pernet_operations *ops)
1276 {
1277 	int error;
1278 	down_write(&pernet_ops_rwsem);
1279 	error = register_pernet_operations(&pernet_list, ops);
1280 	if (!error && (first_device == &pernet_list))
1281 		first_device = &ops->list;
1282 	up_write(&pernet_ops_rwsem);
1283 	return error;
1284 }
1285 EXPORT_SYMBOL_GPL(register_pernet_device);
1286 
1287 /**
1288  *      unregister_pernet_device - unregister a network namespace netdevice
1289  *	@ops: pernet operations structure to manipulate
1290  *
1291  *	Remove the pernet operations structure from the list to be
1292  *	used when network namespaces are created or destroyed.  In
1293  *	addition run the exit method for all existing network
1294  *	namespaces.
1295  */
1296 void unregister_pernet_device(struct pernet_operations *ops)
1297 {
1298 	down_write(&pernet_ops_rwsem);
1299 	if (&ops->list == first_device)
1300 		first_device = first_device->next;
1301 	unregister_pernet_operations(ops);
1302 	up_write(&pernet_ops_rwsem);
1303 }
1304 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1305 
1306 #ifdef CONFIG_NET_NS
1307 static struct ns_common *netns_get(struct task_struct *task)
1308 {
1309 	struct net *net = NULL;
1310 	struct nsproxy *nsproxy;
1311 
1312 	task_lock(task);
1313 	nsproxy = task->nsproxy;
1314 	if (nsproxy)
1315 		net = get_net(nsproxy->net_ns);
1316 	task_unlock(task);
1317 
1318 	return net ? &net->ns : NULL;
1319 }
1320 
1321 static inline struct net *to_net_ns(struct ns_common *ns)
1322 {
1323 	return container_of(ns, struct net, ns);
1324 }
1325 
1326 static void netns_put(struct ns_common *ns)
1327 {
1328 	put_net(to_net_ns(ns));
1329 }
1330 
1331 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1332 {
1333 	struct net *net = to_net_ns(ns);
1334 
1335 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1336 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1337 		return -EPERM;
1338 
1339 	put_net(nsproxy->net_ns);
1340 	nsproxy->net_ns = get_net(net);
1341 	return 0;
1342 }
1343 
1344 static struct user_namespace *netns_owner(struct ns_common *ns)
1345 {
1346 	return to_net_ns(ns)->user_ns;
1347 }
1348 
1349 const struct proc_ns_operations netns_operations = {
1350 	.name		= "net",
1351 	.type		= CLONE_NEWNET,
1352 	.get		= netns_get,
1353 	.put		= netns_put,
1354 	.install	= netns_install,
1355 	.owner		= netns_owner,
1356 };
1357 #endif
1358