1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 23 #include <net/sock.h> 24 #include <net/netlink.h> 25 #include <net/net_namespace.h> 26 #include <net/netns/generic.h> 27 28 /* 29 * Our network namespace constructor/destructor lists 30 */ 31 32 static LIST_HEAD(pernet_list); 33 static struct list_head *first_device = &pernet_list; 34 35 LIST_HEAD(net_namespace_list); 36 EXPORT_SYMBOL_GPL(net_namespace_list); 37 38 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 39 DECLARE_RWSEM(net_rwsem); 40 EXPORT_SYMBOL_GPL(net_rwsem); 41 42 #ifdef CONFIG_KEYS 43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 44 #endif 45 46 struct net init_net = { 47 .count = REFCOUNT_INIT(1), 48 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 49 #ifdef CONFIG_KEYS 50 .key_domain = &init_net_key_domain, 51 #endif 52 }; 53 EXPORT_SYMBOL(init_net); 54 55 static bool init_net_initialized; 56 /* 57 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 58 * init_net_initialized and first_device pointer. 59 * This is internal net namespace object. Please, don't use it 60 * outside. 61 */ 62 DECLARE_RWSEM(pernet_ops_rwsem); 63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 64 65 #define MIN_PERNET_OPS_ID \ 66 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 67 68 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 69 70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 71 72 static struct net_generic *net_alloc_generic(void) 73 { 74 struct net_generic *ng; 75 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = max_gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (ng == NULL) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 int err = -ENOMEM; 124 void *data = NULL; 125 126 if (ops->id && ops->size) { 127 data = kzalloc(ops->size, GFP_KERNEL); 128 if (!data) 129 goto out; 130 131 err = net_assign_generic(net, *ops->id, data); 132 if (err) 133 goto cleanup; 134 } 135 err = 0; 136 if (ops->init) 137 err = ops->init(net); 138 if (!err) 139 return 0; 140 141 cleanup: 142 kfree(data); 143 144 out: 145 return err; 146 } 147 148 static void ops_free(const struct pernet_operations *ops, struct net *net) 149 { 150 if (ops->id && ops->size) { 151 kfree(net_generic(net, *ops->id)); 152 } 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_list(const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 struct net *net; 170 if (ops->exit) { 171 list_for_each_entry(net, net_exit_list, exit_list) 172 ops->exit(net); 173 } 174 if (ops->exit_batch) 175 ops->exit_batch(net_exit_list); 176 } 177 178 static void ops_free_list(const struct pernet_operations *ops, 179 struct list_head *net_exit_list) 180 { 181 struct net *net; 182 if (ops->size && ops->id) { 183 list_for_each_entry(net, net_exit_list, exit_list) 184 ops_free(ops, net); 185 } 186 } 187 188 /* should be called with nsid_lock held */ 189 static int alloc_netid(struct net *net, struct net *peer, int reqid) 190 { 191 int min = 0, max = 0; 192 193 if (reqid >= 0) { 194 min = reqid; 195 max = reqid + 1; 196 } 197 198 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 199 } 200 201 /* This function is used by idr_for_each(). If net is equal to peer, the 202 * function returns the id so that idr_for_each() stops. Because we cannot 203 * returns the id 0 (idr_for_each() will not stop), we return the magic value 204 * NET_ID_ZERO (-1) for it. 205 */ 206 #define NET_ID_ZERO -1 207 static int net_eq_idr(int id, void *net, void *peer) 208 { 209 if (net_eq(net, peer)) 210 return id ? : NET_ID_ZERO; 211 return 0; 212 } 213 214 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 215 * is set to true, thus the caller knows that the new id must be notified via 216 * rtnl. 217 */ 218 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 bool alloc_it = *alloc; 222 223 *alloc = false; 224 225 /* Magic value for id 0. */ 226 if (id == NET_ID_ZERO) 227 return 0; 228 if (id > 0) 229 return id; 230 231 if (alloc_it) { 232 id = alloc_netid(net, peer, -1); 233 *alloc = true; 234 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 235 } 236 237 return NETNSA_NSID_NOT_ASSIGNED; 238 } 239 240 /* should be called with nsid_lock held */ 241 static int __peernet2id(struct net *net, struct net *peer) 242 { 243 bool no = false; 244 245 return __peernet2id_alloc(net, peer, &no); 246 } 247 248 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 249 struct nlmsghdr *nlh, gfp_t gfp); 250 /* This function returns the id of a peer netns. If no id is assigned, one will 251 * be allocated and returned. 252 */ 253 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 254 { 255 bool alloc = false, alive = false; 256 int id; 257 258 if (refcount_read(&net->count) == 0) 259 return NETNSA_NSID_NOT_ASSIGNED; 260 spin_lock_bh(&net->nsid_lock); 261 /* 262 * When peer is obtained from RCU lists, we may race with 263 * its cleanup. Check whether it's alive, and this guarantees 264 * we never hash a peer back to net->netns_ids, after it has 265 * just been idr_remove()'d from there in cleanup_net(). 266 */ 267 if (maybe_get_net(peer)) 268 alive = alloc = true; 269 id = __peernet2id_alloc(net, peer, &alloc); 270 spin_unlock_bh(&net->nsid_lock); 271 if (alloc && id >= 0) 272 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 273 if (alive) 274 put_net(peer); 275 return id; 276 } 277 EXPORT_SYMBOL_GPL(peernet2id_alloc); 278 279 /* This function returns, if assigned, the id of a peer netns. */ 280 int peernet2id(struct net *net, struct net *peer) 281 { 282 int id; 283 284 spin_lock_bh(&net->nsid_lock); 285 id = __peernet2id(net, peer); 286 spin_unlock_bh(&net->nsid_lock); 287 return id; 288 } 289 EXPORT_SYMBOL(peernet2id); 290 291 /* This function returns true is the peer netns has an id assigned into the 292 * current netns. 293 */ 294 bool peernet_has_id(struct net *net, struct net *peer) 295 { 296 return peernet2id(net, peer) >= 0; 297 } 298 299 struct net *get_net_ns_by_id(struct net *net, int id) 300 { 301 struct net *peer; 302 303 if (id < 0) 304 return NULL; 305 306 rcu_read_lock(); 307 peer = idr_find(&net->netns_ids, id); 308 if (peer) 309 peer = maybe_get_net(peer); 310 rcu_read_unlock(); 311 312 return peer; 313 } 314 315 /* 316 * setup_net runs the initializers for the network namespace object. 317 */ 318 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 319 { 320 /* Must be called with pernet_ops_rwsem held */ 321 const struct pernet_operations *ops, *saved_ops; 322 int error = 0; 323 LIST_HEAD(net_exit_list); 324 325 refcount_set(&net->count, 1); 326 refcount_set(&net->passive, 1); 327 get_random_bytes(&net->hash_mix, sizeof(u32)); 328 net->dev_base_seq = 1; 329 net->user_ns = user_ns; 330 idr_init(&net->netns_ids); 331 spin_lock_init(&net->nsid_lock); 332 mutex_init(&net->ipv4.ra_mutex); 333 334 list_for_each_entry(ops, &pernet_list, list) { 335 error = ops_init(ops, net); 336 if (error < 0) 337 goto out_undo; 338 } 339 down_write(&net_rwsem); 340 list_add_tail_rcu(&net->list, &net_namespace_list); 341 up_write(&net_rwsem); 342 out: 343 return error; 344 345 out_undo: 346 /* Walk through the list backwards calling the exit functions 347 * for the pernet modules whose init functions did not fail. 348 */ 349 list_add(&net->exit_list, &net_exit_list); 350 saved_ops = ops; 351 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 352 ops_pre_exit_list(ops, &net_exit_list); 353 354 synchronize_rcu(); 355 356 ops = saved_ops; 357 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 358 ops_exit_list(ops, &net_exit_list); 359 360 ops = saved_ops; 361 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 362 ops_free_list(ops, &net_exit_list); 363 364 rcu_barrier(); 365 goto out; 366 } 367 368 static int __net_init net_defaults_init_net(struct net *net) 369 { 370 net->core.sysctl_somaxconn = SOMAXCONN; 371 return 0; 372 } 373 374 static struct pernet_operations net_defaults_ops = { 375 .init = net_defaults_init_net, 376 }; 377 378 static __init int net_defaults_init(void) 379 { 380 if (register_pernet_subsys(&net_defaults_ops)) 381 panic("Cannot initialize net default settings"); 382 383 return 0; 384 } 385 386 core_initcall(net_defaults_init); 387 388 #ifdef CONFIG_NET_NS 389 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 390 { 391 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 392 } 393 394 static void dec_net_namespaces(struct ucounts *ucounts) 395 { 396 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 397 } 398 399 static struct kmem_cache *net_cachep __ro_after_init; 400 static struct workqueue_struct *netns_wq; 401 402 static struct net *net_alloc(void) 403 { 404 struct net *net = NULL; 405 struct net_generic *ng; 406 407 ng = net_alloc_generic(); 408 if (!ng) 409 goto out; 410 411 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 412 if (!net) 413 goto out_free; 414 415 #ifdef CONFIG_KEYS 416 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 417 if (!net->key_domain) 418 goto out_free_2; 419 refcount_set(&net->key_domain->usage, 1); 420 #endif 421 422 rcu_assign_pointer(net->gen, ng); 423 out: 424 return net; 425 426 #ifdef CONFIG_KEYS 427 out_free_2: 428 kmem_cache_free(net_cachep, net); 429 net = NULL; 430 #endif 431 out_free: 432 kfree(ng); 433 goto out; 434 } 435 436 static void net_free(struct net *net) 437 { 438 kfree(rcu_access_pointer(net->gen)); 439 kmem_cache_free(net_cachep, net); 440 } 441 442 void net_drop_ns(void *p) 443 { 444 struct net *ns = p; 445 if (ns && refcount_dec_and_test(&ns->passive)) 446 net_free(ns); 447 } 448 449 struct net *copy_net_ns(unsigned long flags, 450 struct user_namespace *user_ns, struct net *old_net) 451 { 452 struct ucounts *ucounts; 453 struct net *net; 454 int rv; 455 456 if (!(flags & CLONE_NEWNET)) 457 return get_net(old_net); 458 459 ucounts = inc_net_namespaces(user_ns); 460 if (!ucounts) 461 return ERR_PTR(-ENOSPC); 462 463 net = net_alloc(); 464 if (!net) { 465 rv = -ENOMEM; 466 goto dec_ucounts; 467 } 468 refcount_set(&net->passive, 1); 469 net->ucounts = ucounts; 470 get_user_ns(user_ns); 471 472 rv = down_read_killable(&pernet_ops_rwsem); 473 if (rv < 0) 474 goto put_userns; 475 476 rv = setup_net(net, user_ns); 477 478 up_read(&pernet_ops_rwsem); 479 480 if (rv < 0) { 481 put_userns: 482 key_remove_domain(net->key_domain); 483 put_user_ns(user_ns); 484 net_drop_ns(net); 485 dec_ucounts: 486 dec_net_namespaces(ucounts); 487 return ERR_PTR(rv); 488 } 489 return net; 490 } 491 492 /** 493 * net_ns_get_ownership - get sysfs ownership data for @net 494 * @net: network namespace in question (can be NULL) 495 * @uid: kernel user ID for sysfs objects 496 * @gid: kernel group ID for sysfs objects 497 * 498 * Returns the uid/gid pair of root in the user namespace associated with the 499 * given network namespace. 500 */ 501 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 502 { 503 if (net) { 504 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 505 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 506 507 if (uid_valid(ns_root_uid)) 508 *uid = ns_root_uid; 509 510 if (gid_valid(ns_root_gid)) 511 *gid = ns_root_gid; 512 } else { 513 *uid = GLOBAL_ROOT_UID; 514 *gid = GLOBAL_ROOT_GID; 515 } 516 } 517 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 518 519 static void unhash_nsid(struct net *net, struct net *last) 520 { 521 struct net *tmp; 522 /* This function is only called from cleanup_net() work, 523 * and this work is the only process, that may delete 524 * a net from net_namespace_list. So, when the below 525 * is executing, the list may only grow. Thus, we do not 526 * use for_each_net_rcu() or net_rwsem. 527 */ 528 for_each_net(tmp) { 529 int id; 530 531 spin_lock_bh(&tmp->nsid_lock); 532 id = __peernet2id(tmp, net); 533 if (id >= 0) 534 idr_remove(&tmp->netns_ids, id); 535 spin_unlock_bh(&tmp->nsid_lock); 536 if (id >= 0) 537 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 538 GFP_KERNEL); 539 if (tmp == last) 540 break; 541 } 542 spin_lock_bh(&net->nsid_lock); 543 idr_destroy(&net->netns_ids); 544 spin_unlock_bh(&net->nsid_lock); 545 } 546 547 static LLIST_HEAD(cleanup_list); 548 549 static void cleanup_net(struct work_struct *work) 550 { 551 const struct pernet_operations *ops; 552 struct net *net, *tmp, *last; 553 struct llist_node *net_kill_list; 554 LIST_HEAD(net_exit_list); 555 556 /* Atomically snapshot the list of namespaces to cleanup */ 557 net_kill_list = llist_del_all(&cleanup_list); 558 559 down_read(&pernet_ops_rwsem); 560 561 /* Don't let anyone else find us. */ 562 down_write(&net_rwsem); 563 llist_for_each_entry(net, net_kill_list, cleanup_list) 564 list_del_rcu(&net->list); 565 /* Cache last net. After we unlock rtnl, no one new net 566 * added to net_namespace_list can assign nsid pointer 567 * to a net from net_kill_list (see peernet2id_alloc()). 568 * So, we skip them in unhash_nsid(). 569 * 570 * Note, that unhash_nsid() does not delete nsid links 571 * between net_kill_list's nets, as they've already 572 * deleted from net_namespace_list. But, this would be 573 * useless anyway, as netns_ids are destroyed there. 574 */ 575 last = list_last_entry(&net_namespace_list, struct net, list); 576 up_write(&net_rwsem); 577 578 llist_for_each_entry(net, net_kill_list, cleanup_list) { 579 unhash_nsid(net, last); 580 list_add_tail(&net->exit_list, &net_exit_list); 581 } 582 583 /* Run all of the network namespace pre_exit methods */ 584 list_for_each_entry_reverse(ops, &pernet_list, list) 585 ops_pre_exit_list(ops, &net_exit_list); 586 587 /* 588 * Another CPU might be rcu-iterating the list, wait for it. 589 * This needs to be before calling the exit() notifiers, so 590 * the rcu_barrier() below isn't sufficient alone. 591 * Also the pre_exit() and exit() methods need this barrier. 592 */ 593 synchronize_rcu(); 594 595 /* Run all of the network namespace exit methods */ 596 list_for_each_entry_reverse(ops, &pernet_list, list) 597 ops_exit_list(ops, &net_exit_list); 598 599 /* Free the net generic variables */ 600 list_for_each_entry_reverse(ops, &pernet_list, list) 601 ops_free_list(ops, &net_exit_list); 602 603 up_read(&pernet_ops_rwsem); 604 605 /* Ensure there are no outstanding rcu callbacks using this 606 * network namespace. 607 */ 608 rcu_barrier(); 609 610 /* Finally it is safe to free my network namespace structure */ 611 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 612 list_del_init(&net->exit_list); 613 dec_net_namespaces(net->ucounts); 614 key_remove_domain(net->key_domain); 615 put_user_ns(net->user_ns); 616 net_drop_ns(net); 617 } 618 } 619 620 /** 621 * net_ns_barrier - wait until concurrent net_cleanup_work is done 622 * 623 * cleanup_net runs from work queue and will first remove namespaces 624 * from the global list, then run net exit functions. 625 * 626 * Call this in module exit path to make sure that all netns 627 * ->exit ops have been invoked before the function is removed. 628 */ 629 void net_ns_barrier(void) 630 { 631 down_write(&pernet_ops_rwsem); 632 up_write(&pernet_ops_rwsem); 633 } 634 EXPORT_SYMBOL(net_ns_barrier); 635 636 static DECLARE_WORK(net_cleanup_work, cleanup_net); 637 638 void __put_net(struct net *net) 639 { 640 /* Cleanup the network namespace in process context */ 641 if (llist_add(&net->cleanup_list, &cleanup_list)) 642 queue_work(netns_wq, &net_cleanup_work); 643 } 644 EXPORT_SYMBOL_GPL(__put_net); 645 646 struct net *get_net_ns_by_fd(int fd) 647 { 648 struct file *file; 649 struct ns_common *ns; 650 struct net *net; 651 652 file = proc_ns_fget(fd); 653 if (IS_ERR(file)) 654 return ERR_CAST(file); 655 656 ns = get_proc_ns(file_inode(file)); 657 if (ns->ops == &netns_operations) 658 net = get_net(container_of(ns, struct net, ns)); 659 else 660 net = ERR_PTR(-EINVAL); 661 662 fput(file); 663 return net; 664 } 665 666 #else 667 struct net *get_net_ns_by_fd(int fd) 668 { 669 return ERR_PTR(-EINVAL); 670 } 671 #endif 672 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 673 674 struct net *get_net_ns_by_pid(pid_t pid) 675 { 676 struct task_struct *tsk; 677 struct net *net; 678 679 /* Lookup the network namespace */ 680 net = ERR_PTR(-ESRCH); 681 rcu_read_lock(); 682 tsk = find_task_by_vpid(pid); 683 if (tsk) { 684 struct nsproxy *nsproxy; 685 task_lock(tsk); 686 nsproxy = tsk->nsproxy; 687 if (nsproxy) 688 net = get_net(nsproxy->net_ns); 689 task_unlock(tsk); 690 } 691 rcu_read_unlock(); 692 return net; 693 } 694 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 695 696 static __net_init int net_ns_net_init(struct net *net) 697 { 698 #ifdef CONFIG_NET_NS 699 net->ns.ops = &netns_operations; 700 #endif 701 return ns_alloc_inum(&net->ns); 702 } 703 704 static __net_exit void net_ns_net_exit(struct net *net) 705 { 706 ns_free_inum(&net->ns); 707 } 708 709 static struct pernet_operations __net_initdata net_ns_ops = { 710 .init = net_ns_net_init, 711 .exit = net_ns_net_exit, 712 }; 713 714 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 715 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 716 [NETNSA_NSID] = { .type = NLA_S32 }, 717 [NETNSA_PID] = { .type = NLA_U32 }, 718 [NETNSA_FD] = { .type = NLA_U32 }, 719 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 720 }; 721 722 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 723 struct netlink_ext_ack *extack) 724 { 725 struct net *net = sock_net(skb->sk); 726 struct nlattr *tb[NETNSA_MAX + 1]; 727 struct nlattr *nla; 728 struct net *peer; 729 int nsid, err; 730 731 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 732 NETNSA_MAX, rtnl_net_policy, extack); 733 if (err < 0) 734 return err; 735 if (!tb[NETNSA_NSID]) { 736 NL_SET_ERR_MSG(extack, "nsid is missing"); 737 return -EINVAL; 738 } 739 nsid = nla_get_s32(tb[NETNSA_NSID]); 740 741 if (tb[NETNSA_PID]) { 742 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 743 nla = tb[NETNSA_PID]; 744 } else if (tb[NETNSA_FD]) { 745 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 746 nla = tb[NETNSA_FD]; 747 } else { 748 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 749 return -EINVAL; 750 } 751 if (IS_ERR(peer)) { 752 NL_SET_BAD_ATTR(extack, nla); 753 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 754 return PTR_ERR(peer); 755 } 756 757 spin_lock_bh(&net->nsid_lock); 758 if (__peernet2id(net, peer) >= 0) { 759 spin_unlock_bh(&net->nsid_lock); 760 err = -EEXIST; 761 NL_SET_BAD_ATTR(extack, nla); 762 NL_SET_ERR_MSG(extack, 763 "Peer netns already has a nsid assigned"); 764 goto out; 765 } 766 767 err = alloc_netid(net, peer, nsid); 768 spin_unlock_bh(&net->nsid_lock); 769 if (err >= 0) { 770 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 771 nlh, GFP_KERNEL); 772 err = 0; 773 } else if (err == -ENOSPC && nsid >= 0) { 774 err = -EEXIST; 775 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 776 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 777 } 778 out: 779 put_net(peer); 780 return err; 781 } 782 783 static int rtnl_net_get_size(void) 784 { 785 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 786 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 787 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 788 ; 789 } 790 791 struct net_fill_args { 792 u32 portid; 793 u32 seq; 794 int flags; 795 int cmd; 796 int nsid; 797 bool add_ref; 798 int ref_nsid; 799 }; 800 801 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 802 { 803 struct nlmsghdr *nlh; 804 struct rtgenmsg *rth; 805 806 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 807 args->flags); 808 if (!nlh) 809 return -EMSGSIZE; 810 811 rth = nlmsg_data(nlh); 812 rth->rtgen_family = AF_UNSPEC; 813 814 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 815 goto nla_put_failure; 816 817 if (args->add_ref && 818 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 819 goto nla_put_failure; 820 821 nlmsg_end(skb, nlh); 822 return 0; 823 824 nla_put_failure: 825 nlmsg_cancel(skb, nlh); 826 return -EMSGSIZE; 827 } 828 829 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 830 const struct nlmsghdr *nlh, 831 struct nlattr **tb, 832 struct netlink_ext_ack *extack) 833 { 834 int i, err; 835 836 if (!netlink_strict_get_check(skb)) 837 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 838 tb, NETNSA_MAX, rtnl_net_policy, 839 extack); 840 841 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 842 NETNSA_MAX, rtnl_net_policy, 843 extack); 844 if (err) 845 return err; 846 847 for (i = 0; i <= NETNSA_MAX; i++) { 848 if (!tb[i]) 849 continue; 850 851 switch (i) { 852 case NETNSA_PID: 853 case NETNSA_FD: 854 case NETNSA_NSID: 855 case NETNSA_TARGET_NSID: 856 break; 857 default: 858 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 859 return -EINVAL; 860 } 861 } 862 863 return 0; 864 } 865 866 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 867 struct netlink_ext_ack *extack) 868 { 869 struct net *net = sock_net(skb->sk); 870 struct nlattr *tb[NETNSA_MAX + 1]; 871 struct net_fill_args fillargs = { 872 .portid = NETLINK_CB(skb).portid, 873 .seq = nlh->nlmsg_seq, 874 .cmd = RTM_NEWNSID, 875 }; 876 struct net *peer, *target = net; 877 struct nlattr *nla; 878 struct sk_buff *msg; 879 int err; 880 881 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 882 if (err < 0) 883 return err; 884 if (tb[NETNSA_PID]) { 885 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 886 nla = tb[NETNSA_PID]; 887 } else if (tb[NETNSA_FD]) { 888 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 889 nla = tb[NETNSA_FD]; 890 } else if (tb[NETNSA_NSID]) { 891 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 892 if (!peer) 893 peer = ERR_PTR(-ENOENT); 894 nla = tb[NETNSA_NSID]; 895 } else { 896 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 897 return -EINVAL; 898 } 899 900 if (IS_ERR(peer)) { 901 NL_SET_BAD_ATTR(extack, nla); 902 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 903 return PTR_ERR(peer); 904 } 905 906 if (tb[NETNSA_TARGET_NSID]) { 907 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 908 909 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 910 if (IS_ERR(target)) { 911 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 912 NL_SET_ERR_MSG(extack, 913 "Target netns reference is invalid"); 914 err = PTR_ERR(target); 915 goto out; 916 } 917 fillargs.add_ref = true; 918 fillargs.ref_nsid = peernet2id(net, peer); 919 } 920 921 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 922 if (!msg) { 923 err = -ENOMEM; 924 goto out; 925 } 926 927 fillargs.nsid = peernet2id(target, peer); 928 err = rtnl_net_fill(msg, &fillargs); 929 if (err < 0) 930 goto err_out; 931 932 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 933 goto out; 934 935 err_out: 936 nlmsg_free(msg); 937 out: 938 if (fillargs.add_ref) 939 put_net(target); 940 put_net(peer); 941 return err; 942 } 943 944 struct rtnl_net_dump_cb { 945 struct net *tgt_net; 946 struct net *ref_net; 947 struct sk_buff *skb; 948 struct net_fill_args fillargs; 949 int idx; 950 int s_idx; 951 }; 952 953 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 954 { 955 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 956 int ret; 957 958 if (net_cb->idx < net_cb->s_idx) 959 goto cont; 960 961 net_cb->fillargs.nsid = id; 962 if (net_cb->fillargs.add_ref) 963 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 964 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 965 if (ret < 0) 966 return ret; 967 968 cont: 969 net_cb->idx++; 970 return 0; 971 } 972 973 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 974 struct rtnl_net_dump_cb *net_cb, 975 struct netlink_callback *cb) 976 { 977 struct netlink_ext_ack *extack = cb->extack; 978 struct nlattr *tb[NETNSA_MAX + 1]; 979 int err, i; 980 981 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 982 NETNSA_MAX, rtnl_net_policy, 983 extack); 984 if (err < 0) 985 return err; 986 987 for (i = 0; i <= NETNSA_MAX; i++) { 988 if (!tb[i]) 989 continue; 990 991 if (i == NETNSA_TARGET_NSID) { 992 struct net *net; 993 994 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 995 if (IS_ERR(net)) { 996 NL_SET_BAD_ATTR(extack, tb[i]); 997 NL_SET_ERR_MSG(extack, 998 "Invalid target network namespace id"); 999 return PTR_ERR(net); 1000 } 1001 net_cb->fillargs.add_ref = true; 1002 net_cb->ref_net = net_cb->tgt_net; 1003 net_cb->tgt_net = net; 1004 } else { 1005 NL_SET_BAD_ATTR(extack, tb[i]); 1006 NL_SET_ERR_MSG(extack, 1007 "Unsupported attribute in dump request"); 1008 return -EINVAL; 1009 } 1010 } 1011 1012 return 0; 1013 } 1014 1015 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1016 { 1017 struct rtnl_net_dump_cb net_cb = { 1018 .tgt_net = sock_net(skb->sk), 1019 .skb = skb, 1020 .fillargs = { 1021 .portid = NETLINK_CB(cb->skb).portid, 1022 .seq = cb->nlh->nlmsg_seq, 1023 .flags = NLM_F_MULTI, 1024 .cmd = RTM_NEWNSID, 1025 }, 1026 .idx = 0, 1027 .s_idx = cb->args[0], 1028 }; 1029 int err = 0; 1030 1031 if (cb->strict_check) { 1032 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1033 if (err < 0) 1034 goto end; 1035 } 1036 1037 spin_lock_bh(&net_cb.tgt_net->nsid_lock); 1038 if (net_cb.fillargs.add_ref && 1039 !net_eq(net_cb.ref_net, net_cb.tgt_net) && 1040 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) { 1041 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1042 err = -EAGAIN; 1043 goto end; 1044 } 1045 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1046 if (net_cb.fillargs.add_ref && 1047 !net_eq(net_cb.ref_net, net_cb.tgt_net)) 1048 spin_unlock_bh(&net_cb.ref_net->nsid_lock); 1049 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1050 1051 cb->args[0] = net_cb.idx; 1052 end: 1053 if (net_cb.fillargs.add_ref) 1054 put_net(net_cb.tgt_net); 1055 return err < 0 ? err : skb->len; 1056 } 1057 1058 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1059 struct nlmsghdr *nlh, gfp_t gfp) 1060 { 1061 struct net_fill_args fillargs = { 1062 .portid = portid, 1063 .seq = nlh ? nlh->nlmsg_seq : 0, 1064 .cmd = cmd, 1065 .nsid = id, 1066 }; 1067 struct sk_buff *msg; 1068 int err = -ENOMEM; 1069 1070 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1071 if (!msg) 1072 goto out; 1073 1074 err = rtnl_net_fill(msg, &fillargs); 1075 if (err < 0) 1076 goto err_out; 1077 1078 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1079 return; 1080 1081 err_out: 1082 nlmsg_free(msg); 1083 out: 1084 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1085 } 1086 1087 static int __init net_ns_init(void) 1088 { 1089 struct net_generic *ng; 1090 1091 #ifdef CONFIG_NET_NS 1092 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1093 SMP_CACHE_BYTES, 1094 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1095 1096 /* Create workqueue for cleanup */ 1097 netns_wq = create_singlethread_workqueue("netns"); 1098 if (!netns_wq) 1099 panic("Could not create netns workq"); 1100 #endif 1101 1102 ng = net_alloc_generic(); 1103 if (!ng) 1104 panic("Could not allocate generic netns"); 1105 1106 rcu_assign_pointer(init_net.gen, ng); 1107 1108 down_write(&pernet_ops_rwsem); 1109 if (setup_net(&init_net, &init_user_ns)) 1110 panic("Could not setup the initial network namespace"); 1111 1112 init_net_initialized = true; 1113 up_write(&pernet_ops_rwsem); 1114 1115 if (register_pernet_subsys(&net_ns_ops)) 1116 panic("Could not register network namespace subsystems"); 1117 1118 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1119 RTNL_FLAG_DOIT_UNLOCKED); 1120 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1121 RTNL_FLAG_DOIT_UNLOCKED); 1122 1123 return 0; 1124 } 1125 1126 pure_initcall(net_ns_init); 1127 1128 #ifdef CONFIG_NET_NS 1129 static int __register_pernet_operations(struct list_head *list, 1130 struct pernet_operations *ops) 1131 { 1132 struct net *net; 1133 int error; 1134 LIST_HEAD(net_exit_list); 1135 1136 list_add_tail(&ops->list, list); 1137 if (ops->init || (ops->id && ops->size)) { 1138 /* We held write locked pernet_ops_rwsem, and parallel 1139 * setup_net() and cleanup_net() are not possible. 1140 */ 1141 for_each_net(net) { 1142 error = ops_init(ops, net); 1143 if (error) 1144 goto out_undo; 1145 list_add_tail(&net->exit_list, &net_exit_list); 1146 } 1147 } 1148 return 0; 1149 1150 out_undo: 1151 /* If I have an error cleanup all namespaces I initialized */ 1152 list_del(&ops->list); 1153 ops_pre_exit_list(ops, &net_exit_list); 1154 synchronize_rcu(); 1155 ops_exit_list(ops, &net_exit_list); 1156 ops_free_list(ops, &net_exit_list); 1157 return error; 1158 } 1159 1160 static void __unregister_pernet_operations(struct pernet_operations *ops) 1161 { 1162 struct net *net; 1163 LIST_HEAD(net_exit_list); 1164 1165 list_del(&ops->list); 1166 /* See comment in __register_pernet_operations() */ 1167 for_each_net(net) 1168 list_add_tail(&net->exit_list, &net_exit_list); 1169 ops_pre_exit_list(ops, &net_exit_list); 1170 synchronize_rcu(); 1171 ops_exit_list(ops, &net_exit_list); 1172 ops_free_list(ops, &net_exit_list); 1173 } 1174 1175 #else 1176 1177 static int __register_pernet_operations(struct list_head *list, 1178 struct pernet_operations *ops) 1179 { 1180 if (!init_net_initialized) { 1181 list_add_tail(&ops->list, list); 1182 return 0; 1183 } 1184 1185 return ops_init(ops, &init_net); 1186 } 1187 1188 static void __unregister_pernet_operations(struct pernet_operations *ops) 1189 { 1190 if (!init_net_initialized) { 1191 list_del(&ops->list); 1192 } else { 1193 LIST_HEAD(net_exit_list); 1194 list_add(&init_net.exit_list, &net_exit_list); 1195 ops_pre_exit_list(ops, &net_exit_list); 1196 synchronize_rcu(); 1197 ops_exit_list(ops, &net_exit_list); 1198 ops_free_list(ops, &net_exit_list); 1199 } 1200 } 1201 1202 #endif /* CONFIG_NET_NS */ 1203 1204 static DEFINE_IDA(net_generic_ids); 1205 1206 static int register_pernet_operations(struct list_head *list, 1207 struct pernet_operations *ops) 1208 { 1209 int error; 1210 1211 if (ops->id) { 1212 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1213 GFP_KERNEL); 1214 if (error < 0) 1215 return error; 1216 *ops->id = error; 1217 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1218 } 1219 error = __register_pernet_operations(list, ops); 1220 if (error) { 1221 rcu_barrier(); 1222 if (ops->id) 1223 ida_free(&net_generic_ids, *ops->id); 1224 } 1225 1226 return error; 1227 } 1228 1229 static void unregister_pernet_operations(struct pernet_operations *ops) 1230 { 1231 __unregister_pernet_operations(ops); 1232 rcu_barrier(); 1233 if (ops->id) 1234 ida_free(&net_generic_ids, *ops->id); 1235 } 1236 1237 /** 1238 * register_pernet_subsys - register a network namespace subsystem 1239 * @ops: pernet operations structure for the subsystem 1240 * 1241 * Register a subsystem which has init and exit functions 1242 * that are called when network namespaces are created and 1243 * destroyed respectively. 1244 * 1245 * When registered all network namespace init functions are 1246 * called for every existing network namespace. Allowing kernel 1247 * modules to have a race free view of the set of network namespaces. 1248 * 1249 * When a new network namespace is created all of the init 1250 * methods are called in the order in which they were registered. 1251 * 1252 * When a network namespace is destroyed all of the exit methods 1253 * are called in the reverse of the order with which they were 1254 * registered. 1255 */ 1256 int register_pernet_subsys(struct pernet_operations *ops) 1257 { 1258 int error; 1259 down_write(&pernet_ops_rwsem); 1260 error = register_pernet_operations(first_device, ops); 1261 up_write(&pernet_ops_rwsem); 1262 return error; 1263 } 1264 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1265 1266 /** 1267 * unregister_pernet_subsys - unregister a network namespace subsystem 1268 * @ops: pernet operations structure to manipulate 1269 * 1270 * Remove the pernet operations structure from the list to be 1271 * used when network namespaces are created or destroyed. In 1272 * addition run the exit method for all existing network 1273 * namespaces. 1274 */ 1275 void unregister_pernet_subsys(struct pernet_operations *ops) 1276 { 1277 down_write(&pernet_ops_rwsem); 1278 unregister_pernet_operations(ops); 1279 up_write(&pernet_ops_rwsem); 1280 } 1281 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1282 1283 /** 1284 * register_pernet_device - register a network namespace device 1285 * @ops: pernet operations structure for the subsystem 1286 * 1287 * Register a device which has init and exit functions 1288 * that are called when network namespaces are created and 1289 * destroyed respectively. 1290 * 1291 * When registered all network namespace init functions are 1292 * called for every existing network namespace. Allowing kernel 1293 * modules to have a race free view of the set of network namespaces. 1294 * 1295 * When a new network namespace is created all of the init 1296 * methods are called in the order in which they were registered. 1297 * 1298 * When a network namespace is destroyed all of the exit methods 1299 * are called in the reverse of the order with which they were 1300 * registered. 1301 */ 1302 int register_pernet_device(struct pernet_operations *ops) 1303 { 1304 int error; 1305 down_write(&pernet_ops_rwsem); 1306 error = register_pernet_operations(&pernet_list, ops); 1307 if (!error && (first_device == &pernet_list)) 1308 first_device = &ops->list; 1309 up_write(&pernet_ops_rwsem); 1310 return error; 1311 } 1312 EXPORT_SYMBOL_GPL(register_pernet_device); 1313 1314 /** 1315 * unregister_pernet_device - unregister a network namespace netdevice 1316 * @ops: pernet operations structure to manipulate 1317 * 1318 * Remove the pernet operations structure from the list to be 1319 * used when network namespaces are created or destroyed. In 1320 * addition run the exit method for all existing network 1321 * namespaces. 1322 */ 1323 void unregister_pernet_device(struct pernet_operations *ops) 1324 { 1325 down_write(&pernet_ops_rwsem); 1326 if (&ops->list == first_device) 1327 first_device = first_device->next; 1328 unregister_pernet_operations(ops); 1329 up_write(&pernet_ops_rwsem); 1330 } 1331 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1332 1333 #ifdef CONFIG_NET_NS 1334 static struct ns_common *netns_get(struct task_struct *task) 1335 { 1336 struct net *net = NULL; 1337 struct nsproxy *nsproxy; 1338 1339 task_lock(task); 1340 nsproxy = task->nsproxy; 1341 if (nsproxy) 1342 net = get_net(nsproxy->net_ns); 1343 task_unlock(task); 1344 1345 return net ? &net->ns : NULL; 1346 } 1347 1348 static inline struct net *to_net_ns(struct ns_common *ns) 1349 { 1350 return container_of(ns, struct net, ns); 1351 } 1352 1353 static void netns_put(struct ns_common *ns) 1354 { 1355 put_net(to_net_ns(ns)); 1356 } 1357 1358 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1359 { 1360 struct net *net = to_net_ns(ns); 1361 1362 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1363 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1364 return -EPERM; 1365 1366 put_net(nsproxy->net_ns); 1367 nsproxy->net_ns = get_net(net); 1368 return 0; 1369 } 1370 1371 static struct user_namespace *netns_owner(struct ns_common *ns) 1372 { 1373 return to_net_ns(ns)->user_ns; 1374 } 1375 1376 const struct proc_ns_operations netns_operations = { 1377 .name = "net", 1378 .type = CLONE_NEWNET, 1379 .get = netns_get, 1380 .put = netns_put, 1381 .install = netns_install, 1382 .owner = netns_owner, 1383 }; 1384 #endif 1385