xref: /openbmc/linux/net/core/net_namespace.c (revision a77e393c)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 static bool init_net_initialized;
41 
42 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
43 
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45 
46 static struct net_generic *net_alloc_generic(void)
47 {
48 	struct net_generic *ng;
49 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50 
51 	ng = kzalloc(generic_size, GFP_KERNEL);
52 	if (ng)
53 		ng->len = max_gen_ptrs;
54 
55 	return ng;
56 }
57 
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 	struct net_generic *ng, *old_ng;
61 
62 	BUG_ON(!mutex_is_locked(&net_mutex));
63 	BUG_ON(id == 0);
64 
65 	old_ng = rcu_dereference_protected(net->gen,
66 					   lockdep_is_held(&net_mutex));
67 	ng = old_ng;
68 	if (old_ng->len >= id)
69 		goto assign;
70 
71 	ng = net_alloc_generic();
72 	if (ng == NULL)
73 		return -ENOMEM;
74 
75 	/*
76 	 * Some synchronisation notes:
77 	 *
78 	 * The net_generic explores the net->gen array inside rcu
79 	 * read section. Besides once set the net->gen->ptr[x]
80 	 * pointer never changes (see rules in netns/generic.h).
81 	 *
82 	 * That said, we simply duplicate this array and schedule
83 	 * the old copy for kfree after a grace period.
84 	 */
85 
86 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87 
88 	rcu_assign_pointer(net->gen, ng);
89 	kfree_rcu(old_ng, rcu);
90 assign:
91 	ng->ptr[id - 1] = data;
92 	return 0;
93 }
94 
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 	int err = -ENOMEM;
98 	void *data = NULL;
99 
100 	if (ops->id && ops->size) {
101 		data = kzalloc(ops->size, GFP_KERNEL);
102 		if (!data)
103 			goto out;
104 
105 		err = net_assign_generic(net, *ops->id, data);
106 		if (err)
107 			goto cleanup;
108 	}
109 	err = 0;
110 	if (ops->init)
111 		err = ops->init(net);
112 	if (!err)
113 		return 0;
114 
115 cleanup:
116 	kfree(data);
117 
118 out:
119 	return err;
120 }
121 
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 	if (ops->id && ops->size) {
125 		int id = *ops->id;
126 		kfree(net_generic(net, id));
127 	}
128 }
129 
130 static void ops_exit_list(const struct pernet_operations *ops,
131 			  struct list_head *net_exit_list)
132 {
133 	struct net *net;
134 	if (ops->exit) {
135 		list_for_each_entry(net, net_exit_list, exit_list)
136 			ops->exit(net);
137 	}
138 	if (ops->exit_batch)
139 		ops->exit_batch(net_exit_list);
140 }
141 
142 static void ops_free_list(const struct pernet_operations *ops,
143 			  struct list_head *net_exit_list)
144 {
145 	struct net *net;
146 	if (ops->size && ops->id) {
147 		list_for_each_entry(net, net_exit_list, exit_list)
148 			ops_free(ops, net);
149 	}
150 }
151 
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 	int min = 0, max = 0;
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164 
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166  * function returns the id so that idr_for_each() stops. Because we cannot
167  * returns the id 0 (idr_for_each() will not stop), we return the magic value
168  * NET_ID_ZERO (-1) for it.
169  */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 	if (net_eq(net, peer))
174 		return id ? : NET_ID_ZERO;
175 	return 0;
176 }
177 
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179  * is set to true, thus the caller knows that the new id must be notified via
180  * rtnl.
181  */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 	bool alloc_it = *alloc;
186 
187 	*alloc = false;
188 
189 	/* Magic value for id 0. */
190 	if (id == NET_ID_ZERO)
191 		return 0;
192 	if (id > 0)
193 		return id;
194 
195 	if (alloc_it) {
196 		id = alloc_netid(net, peer, -1);
197 		*alloc = true;
198 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 	}
200 
201 	return NETNSA_NSID_NOT_ASSIGNED;
202 }
203 
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 	bool no = false;
208 
209 	return __peernet2id_alloc(net, peer, &no);
210 }
211 
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214  * be allocated and returned.
215  */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 	bool alloc;
219 	int id;
220 
221 	spin_lock_bh(&net->nsid_lock);
222 	alloc = atomic_read(&peer->count) == 0 ? false : true;
223 	id = __peernet2id_alloc(net, peer, &alloc);
224 	spin_unlock_bh(&net->nsid_lock);
225 	if (alloc && id >= 0)
226 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
227 	return id;
228 }
229 
230 /* This function returns, if assigned, the id of a peer netns. */
231 int peernet2id(struct net *net, struct net *peer)
232 {
233 	int id;
234 
235 	spin_lock_bh(&net->nsid_lock);
236 	id = __peernet2id(net, peer);
237 	spin_unlock_bh(&net->nsid_lock);
238 	return id;
239 }
240 EXPORT_SYMBOL(peernet2id);
241 
242 /* This function returns true is the peer netns has an id assigned into the
243  * current netns.
244  */
245 bool peernet_has_id(struct net *net, struct net *peer)
246 {
247 	return peernet2id(net, peer) >= 0;
248 }
249 
250 struct net *get_net_ns_by_id(struct net *net, int id)
251 {
252 	struct net *peer;
253 
254 	if (id < 0)
255 		return NULL;
256 
257 	rcu_read_lock();
258 	spin_lock_bh(&net->nsid_lock);
259 	peer = idr_find(&net->netns_ids, id);
260 	if (peer)
261 		get_net(peer);
262 	spin_unlock_bh(&net->nsid_lock);
263 	rcu_read_unlock();
264 
265 	return peer;
266 }
267 
268 /*
269  * setup_net runs the initializers for the network namespace object.
270  */
271 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
272 {
273 	/* Must be called with net_mutex held */
274 	const struct pernet_operations *ops, *saved_ops;
275 	int error = 0;
276 	LIST_HEAD(net_exit_list);
277 
278 	atomic_set(&net->count, 1);
279 	atomic_set(&net->passive, 1);
280 	net->dev_base_seq = 1;
281 	net->user_ns = user_ns;
282 	idr_init(&net->netns_ids);
283 	spin_lock_init(&net->nsid_lock);
284 
285 	list_for_each_entry(ops, &pernet_list, list) {
286 		error = ops_init(ops, net);
287 		if (error < 0)
288 			goto out_undo;
289 	}
290 out:
291 	return error;
292 
293 out_undo:
294 	/* Walk through the list backwards calling the exit functions
295 	 * for the pernet modules whose init functions did not fail.
296 	 */
297 	list_add(&net->exit_list, &net_exit_list);
298 	saved_ops = ops;
299 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
300 		ops_exit_list(ops, &net_exit_list);
301 
302 	ops = saved_ops;
303 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
304 		ops_free_list(ops, &net_exit_list);
305 
306 	rcu_barrier();
307 	goto out;
308 }
309 
310 
311 #ifdef CONFIG_NET_NS
312 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
313 {
314 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
315 }
316 
317 static void dec_net_namespaces(struct ucounts *ucounts)
318 {
319 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
320 }
321 
322 static struct kmem_cache *net_cachep;
323 static struct workqueue_struct *netns_wq;
324 
325 static struct net *net_alloc(void)
326 {
327 	struct net *net = NULL;
328 	struct net_generic *ng;
329 
330 	ng = net_alloc_generic();
331 	if (!ng)
332 		goto out;
333 
334 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
335 	if (!net)
336 		goto out_free;
337 
338 	rcu_assign_pointer(net->gen, ng);
339 out:
340 	return net;
341 
342 out_free:
343 	kfree(ng);
344 	goto out;
345 }
346 
347 static void net_free(struct net *net)
348 {
349 	kfree(rcu_access_pointer(net->gen));
350 	kmem_cache_free(net_cachep, net);
351 }
352 
353 void net_drop_ns(void *p)
354 {
355 	struct net *ns = p;
356 	if (ns && atomic_dec_and_test(&ns->passive))
357 		net_free(ns);
358 }
359 
360 struct net *copy_net_ns(unsigned long flags,
361 			struct user_namespace *user_ns, struct net *old_net)
362 {
363 	struct ucounts *ucounts;
364 	struct net *net;
365 	int rv;
366 
367 	if (!(flags & CLONE_NEWNET))
368 		return get_net(old_net);
369 
370 	ucounts = inc_net_namespaces(user_ns);
371 	if (!ucounts)
372 		return ERR_PTR(-ENOSPC);
373 
374 	net = net_alloc();
375 	if (!net) {
376 		dec_net_namespaces(ucounts);
377 		return ERR_PTR(-ENOMEM);
378 	}
379 
380 	get_user_ns(user_ns);
381 
382 	mutex_lock(&net_mutex);
383 	net->ucounts = ucounts;
384 	rv = setup_net(net, user_ns);
385 	if (rv == 0) {
386 		rtnl_lock();
387 		list_add_tail_rcu(&net->list, &net_namespace_list);
388 		rtnl_unlock();
389 	}
390 	mutex_unlock(&net_mutex);
391 	if (rv < 0) {
392 		dec_net_namespaces(ucounts);
393 		put_user_ns(user_ns);
394 		net_drop_ns(net);
395 		return ERR_PTR(rv);
396 	}
397 	return net;
398 }
399 
400 static DEFINE_SPINLOCK(cleanup_list_lock);
401 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
402 
403 static void cleanup_net(struct work_struct *work)
404 {
405 	const struct pernet_operations *ops;
406 	struct net *net, *tmp;
407 	struct list_head net_kill_list;
408 	LIST_HEAD(net_exit_list);
409 
410 	/* Atomically snapshot the list of namespaces to cleanup */
411 	spin_lock_irq(&cleanup_list_lock);
412 	list_replace_init(&cleanup_list, &net_kill_list);
413 	spin_unlock_irq(&cleanup_list_lock);
414 
415 	mutex_lock(&net_mutex);
416 
417 	/* Don't let anyone else find us. */
418 	rtnl_lock();
419 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
420 		list_del_rcu(&net->list);
421 		list_add_tail(&net->exit_list, &net_exit_list);
422 		for_each_net(tmp) {
423 			int id;
424 
425 			spin_lock_bh(&tmp->nsid_lock);
426 			id = __peernet2id(tmp, net);
427 			if (id >= 0)
428 				idr_remove(&tmp->netns_ids, id);
429 			spin_unlock_bh(&tmp->nsid_lock);
430 			if (id >= 0)
431 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
432 		}
433 		spin_lock_bh(&net->nsid_lock);
434 		idr_destroy(&net->netns_ids);
435 		spin_unlock_bh(&net->nsid_lock);
436 
437 	}
438 	rtnl_unlock();
439 
440 	/*
441 	 * Another CPU might be rcu-iterating the list, wait for it.
442 	 * This needs to be before calling the exit() notifiers, so
443 	 * the rcu_barrier() below isn't sufficient alone.
444 	 */
445 	synchronize_rcu();
446 
447 	/* Run all of the network namespace exit methods */
448 	list_for_each_entry_reverse(ops, &pernet_list, list)
449 		ops_exit_list(ops, &net_exit_list);
450 
451 	/* Free the net generic variables */
452 	list_for_each_entry_reverse(ops, &pernet_list, list)
453 		ops_free_list(ops, &net_exit_list);
454 
455 	mutex_unlock(&net_mutex);
456 
457 	/* Ensure there are no outstanding rcu callbacks using this
458 	 * network namespace.
459 	 */
460 	rcu_barrier();
461 
462 	/* Finally it is safe to free my network namespace structure */
463 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
464 		list_del_init(&net->exit_list);
465 		dec_net_namespaces(net->ucounts);
466 		put_user_ns(net->user_ns);
467 		net_drop_ns(net);
468 	}
469 }
470 static DECLARE_WORK(net_cleanup_work, cleanup_net);
471 
472 void __put_net(struct net *net)
473 {
474 	/* Cleanup the network namespace in process context */
475 	unsigned long flags;
476 
477 	spin_lock_irqsave(&cleanup_list_lock, flags);
478 	list_add(&net->cleanup_list, &cleanup_list);
479 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
480 
481 	queue_work(netns_wq, &net_cleanup_work);
482 }
483 EXPORT_SYMBOL_GPL(__put_net);
484 
485 struct net *get_net_ns_by_fd(int fd)
486 {
487 	struct file *file;
488 	struct ns_common *ns;
489 	struct net *net;
490 
491 	file = proc_ns_fget(fd);
492 	if (IS_ERR(file))
493 		return ERR_CAST(file);
494 
495 	ns = get_proc_ns(file_inode(file));
496 	if (ns->ops == &netns_operations)
497 		net = get_net(container_of(ns, struct net, ns));
498 	else
499 		net = ERR_PTR(-EINVAL);
500 
501 	fput(file);
502 	return net;
503 }
504 
505 #else
506 struct net *get_net_ns_by_fd(int fd)
507 {
508 	return ERR_PTR(-EINVAL);
509 }
510 #endif
511 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
512 
513 struct net *get_net_ns_by_pid(pid_t pid)
514 {
515 	struct task_struct *tsk;
516 	struct net *net;
517 
518 	/* Lookup the network namespace */
519 	net = ERR_PTR(-ESRCH);
520 	rcu_read_lock();
521 	tsk = find_task_by_vpid(pid);
522 	if (tsk) {
523 		struct nsproxy *nsproxy;
524 		task_lock(tsk);
525 		nsproxy = tsk->nsproxy;
526 		if (nsproxy)
527 			net = get_net(nsproxy->net_ns);
528 		task_unlock(tsk);
529 	}
530 	rcu_read_unlock();
531 	return net;
532 }
533 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
534 
535 static __net_init int net_ns_net_init(struct net *net)
536 {
537 #ifdef CONFIG_NET_NS
538 	net->ns.ops = &netns_operations;
539 #endif
540 	return ns_alloc_inum(&net->ns);
541 }
542 
543 static __net_exit void net_ns_net_exit(struct net *net)
544 {
545 	ns_free_inum(&net->ns);
546 }
547 
548 static struct pernet_operations __net_initdata net_ns_ops = {
549 	.init = net_ns_net_init,
550 	.exit = net_ns_net_exit,
551 };
552 
553 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
554 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
555 	[NETNSA_NSID]		= { .type = NLA_S32 },
556 	[NETNSA_PID]		= { .type = NLA_U32 },
557 	[NETNSA_FD]		= { .type = NLA_U32 },
558 };
559 
560 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
561 {
562 	struct net *net = sock_net(skb->sk);
563 	struct nlattr *tb[NETNSA_MAX + 1];
564 	struct net *peer;
565 	int nsid, err;
566 
567 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
568 			  rtnl_net_policy);
569 	if (err < 0)
570 		return err;
571 	if (!tb[NETNSA_NSID])
572 		return -EINVAL;
573 	nsid = nla_get_s32(tb[NETNSA_NSID]);
574 
575 	if (tb[NETNSA_PID])
576 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
577 	else if (tb[NETNSA_FD])
578 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
579 	else
580 		return -EINVAL;
581 	if (IS_ERR(peer))
582 		return PTR_ERR(peer);
583 
584 	spin_lock_bh(&net->nsid_lock);
585 	if (__peernet2id(net, peer) >= 0) {
586 		spin_unlock_bh(&net->nsid_lock);
587 		err = -EEXIST;
588 		goto out;
589 	}
590 
591 	err = alloc_netid(net, peer, nsid);
592 	spin_unlock_bh(&net->nsid_lock);
593 	if (err >= 0) {
594 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
595 		err = 0;
596 	}
597 out:
598 	put_net(peer);
599 	return err;
600 }
601 
602 static int rtnl_net_get_size(void)
603 {
604 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
605 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
606 	       ;
607 }
608 
609 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
610 			 int cmd, struct net *net, int nsid)
611 {
612 	struct nlmsghdr *nlh;
613 	struct rtgenmsg *rth;
614 
615 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
616 	if (!nlh)
617 		return -EMSGSIZE;
618 
619 	rth = nlmsg_data(nlh);
620 	rth->rtgen_family = AF_UNSPEC;
621 
622 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
623 		goto nla_put_failure;
624 
625 	nlmsg_end(skb, nlh);
626 	return 0;
627 
628 nla_put_failure:
629 	nlmsg_cancel(skb, nlh);
630 	return -EMSGSIZE;
631 }
632 
633 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
634 {
635 	struct net *net = sock_net(skb->sk);
636 	struct nlattr *tb[NETNSA_MAX + 1];
637 	struct sk_buff *msg;
638 	struct net *peer;
639 	int err, id;
640 
641 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
642 			  rtnl_net_policy);
643 	if (err < 0)
644 		return err;
645 	if (tb[NETNSA_PID])
646 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
647 	else if (tb[NETNSA_FD])
648 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
649 	else
650 		return -EINVAL;
651 
652 	if (IS_ERR(peer))
653 		return PTR_ERR(peer);
654 
655 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
656 	if (!msg) {
657 		err = -ENOMEM;
658 		goto out;
659 	}
660 
661 	id = peernet2id(net, peer);
662 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
663 			    RTM_NEWNSID, net, id);
664 	if (err < 0)
665 		goto err_out;
666 
667 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
668 	goto out;
669 
670 err_out:
671 	nlmsg_free(msg);
672 out:
673 	put_net(peer);
674 	return err;
675 }
676 
677 struct rtnl_net_dump_cb {
678 	struct net *net;
679 	struct sk_buff *skb;
680 	struct netlink_callback *cb;
681 	int idx;
682 	int s_idx;
683 };
684 
685 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
686 {
687 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
688 	int ret;
689 
690 	if (net_cb->idx < net_cb->s_idx)
691 		goto cont;
692 
693 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
694 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
695 			    RTM_NEWNSID, net_cb->net, id);
696 	if (ret < 0)
697 		return ret;
698 
699 cont:
700 	net_cb->idx++;
701 	return 0;
702 }
703 
704 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
705 {
706 	struct net *net = sock_net(skb->sk);
707 	struct rtnl_net_dump_cb net_cb = {
708 		.net = net,
709 		.skb = skb,
710 		.cb = cb,
711 		.idx = 0,
712 		.s_idx = cb->args[0],
713 	};
714 
715 	spin_lock_bh(&net->nsid_lock);
716 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
717 	spin_unlock_bh(&net->nsid_lock);
718 
719 	cb->args[0] = net_cb.idx;
720 	return skb->len;
721 }
722 
723 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
724 {
725 	struct sk_buff *msg;
726 	int err = -ENOMEM;
727 
728 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
729 	if (!msg)
730 		goto out;
731 
732 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
733 	if (err < 0)
734 		goto err_out;
735 
736 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
737 	return;
738 
739 err_out:
740 	nlmsg_free(msg);
741 out:
742 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
743 }
744 
745 static int __init net_ns_init(void)
746 {
747 	struct net_generic *ng;
748 
749 #ifdef CONFIG_NET_NS
750 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
751 					SMP_CACHE_BYTES,
752 					SLAB_PANIC, NULL);
753 
754 	/* Create workqueue for cleanup */
755 	netns_wq = create_singlethread_workqueue("netns");
756 	if (!netns_wq)
757 		panic("Could not create netns workq");
758 #endif
759 
760 	ng = net_alloc_generic();
761 	if (!ng)
762 		panic("Could not allocate generic netns");
763 
764 	rcu_assign_pointer(init_net.gen, ng);
765 
766 	mutex_lock(&net_mutex);
767 	if (setup_net(&init_net, &init_user_ns))
768 		panic("Could not setup the initial network namespace");
769 
770 	init_net_initialized = true;
771 
772 	rtnl_lock();
773 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
774 	rtnl_unlock();
775 
776 	mutex_unlock(&net_mutex);
777 
778 	register_pernet_subsys(&net_ns_ops);
779 
780 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
781 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
782 		      NULL);
783 
784 	return 0;
785 }
786 
787 pure_initcall(net_ns_init);
788 
789 #ifdef CONFIG_NET_NS
790 static int __register_pernet_operations(struct list_head *list,
791 					struct pernet_operations *ops)
792 {
793 	struct net *net;
794 	int error;
795 	LIST_HEAD(net_exit_list);
796 
797 	list_add_tail(&ops->list, list);
798 	if (ops->init || (ops->id && ops->size)) {
799 		for_each_net(net) {
800 			error = ops_init(ops, net);
801 			if (error)
802 				goto out_undo;
803 			list_add_tail(&net->exit_list, &net_exit_list);
804 		}
805 	}
806 	return 0;
807 
808 out_undo:
809 	/* If I have an error cleanup all namespaces I initialized */
810 	list_del(&ops->list);
811 	ops_exit_list(ops, &net_exit_list);
812 	ops_free_list(ops, &net_exit_list);
813 	return error;
814 }
815 
816 static void __unregister_pernet_operations(struct pernet_operations *ops)
817 {
818 	struct net *net;
819 	LIST_HEAD(net_exit_list);
820 
821 	list_del(&ops->list);
822 	for_each_net(net)
823 		list_add_tail(&net->exit_list, &net_exit_list);
824 	ops_exit_list(ops, &net_exit_list);
825 	ops_free_list(ops, &net_exit_list);
826 }
827 
828 #else
829 
830 static int __register_pernet_operations(struct list_head *list,
831 					struct pernet_operations *ops)
832 {
833 	if (!init_net_initialized) {
834 		list_add_tail(&ops->list, list);
835 		return 0;
836 	}
837 
838 	return ops_init(ops, &init_net);
839 }
840 
841 static void __unregister_pernet_operations(struct pernet_operations *ops)
842 {
843 	if (!init_net_initialized) {
844 		list_del(&ops->list);
845 	} else {
846 		LIST_HEAD(net_exit_list);
847 		list_add(&init_net.exit_list, &net_exit_list);
848 		ops_exit_list(ops, &net_exit_list);
849 		ops_free_list(ops, &net_exit_list);
850 	}
851 }
852 
853 #endif /* CONFIG_NET_NS */
854 
855 static DEFINE_IDA(net_generic_ids);
856 
857 static int register_pernet_operations(struct list_head *list,
858 				      struct pernet_operations *ops)
859 {
860 	int error;
861 
862 	if (ops->id) {
863 again:
864 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
865 		if (error < 0) {
866 			if (error == -EAGAIN) {
867 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
868 				goto again;
869 			}
870 			return error;
871 		}
872 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
873 	}
874 	error = __register_pernet_operations(list, ops);
875 	if (error) {
876 		rcu_barrier();
877 		if (ops->id)
878 			ida_remove(&net_generic_ids, *ops->id);
879 	}
880 
881 	return error;
882 }
883 
884 static void unregister_pernet_operations(struct pernet_operations *ops)
885 {
886 
887 	__unregister_pernet_operations(ops);
888 	rcu_barrier();
889 	if (ops->id)
890 		ida_remove(&net_generic_ids, *ops->id);
891 }
892 
893 /**
894  *      register_pernet_subsys - register a network namespace subsystem
895  *	@ops:  pernet operations structure for the subsystem
896  *
897  *	Register a subsystem which has init and exit functions
898  *	that are called when network namespaces are created and
899  *	destroyed respectively.
900  *
901  *	When registered all network namespace init functions are
902  *	called for every existing network namespace.  Allowing kernel
903  *	modules to have a race free view of the set of network namespaces.
904  *
905  *	When a new network namespace is created all of the init
906  *	methods are called in the order in which they were registered.
907  *
908  *	When a network namespace is destroyed all of the exit methods
909  *	are called in the reverse of the order with which they were
910  *	registered.
911  */
912 int register_pernet_subsys(struct pernet_operations *ops)
913 {
914 	int error;
915 	mutex_lock(&net_mutex);
916 	error =  register_pernet_operations(first_device, ops);
917 	mutex_unlock(&net_mutex);
918 	return error;
919 }
920 EXPORT_SYMBOL_GPL(register_pernet_subsys);
921 
922 /**
923  *      unregister_pernet_subsys - unregister a network namespace subsystem
924  *	@ops: pernet operations structure to manipulate
925  *
926  *	Remove the pernet operations structure from the list to be
927  *	used when network namespaces are created or destroyed.  In
928  *	addition run the exit method for all existing network
929  *	namespaces.
930  */
931 void unregister_pernet_subsys(struct pernet_operations *ops)
932 {
933 	mutex_lock(&net_mutex);
934 	unregister_pernet_operations(ops);
935 	mutex_unlock(&net_mutex);
936 }
937 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
938 
939 /**
940  *      register_pernet_device - register a network namespace device
941  *	@ops:  pernet operations structure for the subsystem
942  *
943  *	Register a device which has init and exit functions
944  *	that are called when network namespaces are created and
945  *	destroyed respectively.
946  *
947  *	When registered all network namespace init functions are
948  *	called for every existing network namespace.  Allowing kernel
949  *	modules to have a race free view of the set of network namespaces.
950  *
951  *	When a new network namespace is created all of the init
952  *	methods are called in the order in which they were registered.
953  *
954  *	When a network namespace is destroyed all of the exit methods
955  *	are called in the reverse of the order with which they were
956  *	registered.
957  */
958 int register_pernet_device(struct pernet_operations *ops)
959 {
960 	int error;
961 	mutex_lock(&net_mutex);
962 	error = register_pernet_operations(&pernet_list, ops);
963 	if (!error && (first_device == &pernet_list))
964 		first_device = &ops->list;
965 	mutex_unlock(&net_mutex);
966 	return error;
967 }
968 EXPORT_SYMBOL_GPL(register_pernet_device);
969 
970 /**
971  *      unregister_pernet_device - unregister a network namespace netdevice
972  *	@ops: pernet operations structure to manipulate
973  *
974  *	Remove the pernet operations structure from the list to be
975  *	used when network namespaces are created or destroyed.  In
976  *	addition run the exit method for all existing network
977  *	namespaces.
978  */
979 void unregister_pernet_device(struct pernet_operations *ops)
980 {
981 	mutex_lock(&net_mutex);
982 	if (&ops->list == first_device)
983 		first_device = first_device->next;
984 	unregister_pernet_operations(ops);
985 	mutex_unlock(&net_mutex);
986 }
987 EXPORT_SYMBOL_GPL(unregister_pernet_device);
988 
989 #ifdef CONFIG_NET_NS
990 static struct ns_common *netns_get(struct task_struct *task)
991 {
992 	struct net *net = NULL;
993 	struct nsproxy *nsproxy;
994 
995 	task_lock(task);
996 	nsproxy = task->nsproxy;
997 	if (nsproxy)
998 		net = get_net(nsproxy->net_ns);
999 	task_unlock(task);
1000 
1001 	return net ? &net->ns : NULL;
1002 }
1003 
1004 static inline struct net *to_net_ns(struct ns_common *ns)
1005 {
1006 	return container_of(ns, struct net, ns);
1007 }
1008 
1009 static void netns_put(struct ns_common *ns)
1010 {
1011 	put_net(to_net_ns(ns));
1012 }
1013 
1014 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1015 {
1016 	struct net *net = to_net_ns(ns);
1017 
1018 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1019 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1020 		return -EPERM;
1021 
1022 	put_net(nsproxy->net_ns);
1023 	nsproxy->net_ns = get_net(net);
1024 	return 0;
1025 }
1026 
1027 static struct user_namespace *netns_owner(struct ns_common *ns)
1028 {
1029 	return to_net_ns(ns)->user_ns;
1030 }
1031 
1032 const struct proc_ns_operations netns_operations = {
1033 	.name		= "net",
1034 	.type		= CLONE_NEWNET,
1035 	.get		= netns_get,
1036 	.put		= netns_put,
1037 	.install	= netns_install,
1038 	.owner		= netns_owner,
1039 };
1040 #endif
1041