xref: /openbmc/linux/net/core/net_namespace.c (revision 9bfc7b99)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 static bool init_net_initialized;
41 
42 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
43 
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45 
46 static struct net_generic *net_alloc_generic(void)
47 {
48 	struct net_generic *ng;
49 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50 
51 	ng = kzalloc(generic_size, GFP_KERNEL);
52 	if (ng)
53 		ng->s.len = max_gen_ptrs;
54 
55 	return ng;
56 }
57 
58 static int net_assign_generic(struct net *net, unsigned int id, void *data)
59 {
60 	struct net_generic *ng, *old_ng;
61 
62 	BUG_ON(!mutex_is_locked(&net_mutex));
63 	BUG_ON(id == 0);
64 
65 	old_ng = rcu_dereference_protected(net->gen,
66 					   lockdep_is_held(&net_mutex));
67 	if (old_ng->s.len >= id) {
68 		old_ng->ptr[id - 1] = data;
69 		return 0;
70 	}
71 
72 	ng = net_alloc_generic();
73 	if (ng == NULL)
74 		return -ENOMEM;
75 
76 	/*
77 	 * Some synchronisation notes:
78 	 *
79 	 * The net_generic explores the net->gen array inside rcu
80 	 * read section. Besides once set the net->gen->ptr[x]
81 	 * pointer never changes (see rules in netns/generic.h).
82 	 *
83 	 * That said, we simply duplicate this array and schedule
84 	 * the old copy for kfree after a grace period.
85 	 */
86 
87 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->s.len * sizeof(void*));
88 	ng->ptr[id - 1] = data;
89 
90 	rcu_assign_pointer(net->gen, ng);
91 	kfree_rcu(old_ng, s.rcu);
92 	return 0;
93 }
94 
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 	int err = -ENOMEM;
98 	void *data = NULL;
99 
100 	if (ops->id && ops->size) {
101 		data = kzalloc(ops->size, GFP_KERNEL);
102 		if (!data)
103 			goto out;
104 
105 		err = net_assign_generic(net, *ops->id, data);
106 		if (err)
107 			goto cleanup;
108 	}
109 	err = 0;
110 	if (ops->init)
111 		err = ops->init(net);
112 	if (!err)
113 		return 0;
114 
115 cleanup:
116 	kfree(data);
117 
118 out:
119 	return err;
120 }
121 
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 	if (ops->id && ops->size) {
125 		kfree(net_generic(net, *ops->id));
126 	}
127 }
128 
129 static void ops_exit_list(const struct pernet_operations *ops,
130 			  struct list_head *net_exit_list)
131 {
132 	struct net *net;
133 	if (ops->exit) {
134 		list_for_each_entry(net, net_exit_list, exit_list)
135 			ops->exit(net);
136 	}
137 	if (ops->exit_batch)
138 		ops->exit_batch(net_exit_list);
139 }
140 
141 static void ops_free_list(const struct pernet_operations *ops,
142 			  struct list_head *net_exit_list)
143 {
144 	struct net *net;
145 	if (ops->size && ops->id) {
146 		list_for_each_entry(net, net_exit_list, exit_list)
147 			ops_free(ops, net);
148 	}
149 }
150 
151 /* should be called with nsid_lock held */
152 static int alloc_netid(struct net *net, struct net *peer, int reqid)
153 {
154 	int min = 0, max = 0;
155 
156 	if (reqid >= 0) {
157 		min = reqid;
158 		max = reqid + 1;
159 	}
160 
161 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
162 }
163 
164 /* This function is used by idr_for_each(). If net is equal to peer, the
165  * function returns the id so that idr_for_each() stops. Because we cannot
166  * returns the id 0 (idr_for_each() will not stop), we return the magic value
167  * NET_ID_ZERO (-1) for it.
168  */
169 #define NET_ID_ZERO -1
170 static int net_eq_idr(int id, void *net, void *peer)
171 {
172 	if (net_eq(net, peer))
173 		return id ? : NET_ID_ZERO;
174 	return 0;
175 }
176 
177 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
178  * is set to true, thus the caller knows that the new id must be notified via
179  * rtnl.
180  */
181 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
182 {
183 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
184 	bool alloc_it = *alloc;
185 
186 	*alloc = false;
187 
188 	/* Magic value for id 0. */
189 	if (id == NET_ID_ZERO)
190 		return 0;
191 	if (id > 0)
192 		return id;
193 
194 	if (alloc_it) {
195 		id = alloc_netid(net, peer, -1);
196 		*alloc = true;
197 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
198 	}
199 
200 	return NETNSA_NSID_NOT_ASSIGNED;
201 }
202 
203 /* should be called with nsid_lock held */
204 static int __peernet2id(struct net *net, struct net *peer)
205 {
206 	bool no = false;
207 
208 	return __peernet2id_alloc(net, peer, &no);
209 }
210 
211 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
212 /* This function returns the id of a peer netns. If no id is assigned, one will
213  * be allocated and returned.
214  */
215 int peernet2id_alloc(struct net *net, struct net *peer)
216 {
217 	unsigned long flags;
218 	bool alloc;
219 	int id;
220 
221 	if (atomic_read(&net->count) == 0)
222 		return NETNSA_NSID_NOT_ASSIGNED;
223 	spin_lock_irqsave(&net->nsid_lock, flags);
224 	alloc = atomic_read(&peer->count) == 0 ? false : true;
225 	id = __peernet2id_alloc(net, peer, &alloc);
226 	spin_unlock_irqrestore(&net->nsid_lock, flags);
227 	if (alloc && id >= 0)
228 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
229 	return id;
230 }
231 
232 /* This function returns, if assigned, the id of a peer netns. */
233 int peernet2id(struct net *net, struct net *peer)
234 {
235 	unsigned long flags;
236 	int id;
237 
238 	spin_lock_irqsave(&net->nsid_lock, flags);
239 	id = __peernet2id(net, peer);
240 	spin_unlock_irqrestore(&net->nsid_lock, flags);
241 	return id;
242 }
243 EXPORT_SYMBOL(peernet2id);
244 
245 /* This function returns true is the peer netns has an id assigned into the
246  * current netns.
247  */
248 bool peernet_has_id(struct net *net, struct net *peer)
249 {
250 	return peernet2id(net, peer) >= 0;
251 }
252 
253 struct net *get_net_ns_by_id(struct net *net, int id)
254 {
255 	unsigned long flags;
256 	struct net *peer;
257 
258 	if (id < 0)
259 		return NULL;
260 
261 	rcu_read_lock();
262 	spin_lock_irqsave(&net->nsid_lock, flags);
263 	peer = idr_find(&net->netns_ids, id);
264 	if (peer)
265 		get_net(peer);
266 	spin_unlock_irqrestore(&net->nsid_lock, flags);
267 	rcu_read_unlock();
268 
269 	return peer;
270 }
271 
272 /*
273  * setup_net runs the initializers for the network namespace object.
274  */
275 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
276 {
277 	/* Must be called with net_mutex held */
278 	const struct pernet_operations *ops, *saved_ops;
279 	int error = 0;
280 	LIST_HEAD(net_exit_list);
281 
282 	atomic_set(&net->count, 1);
283 	atomic_set(&net->passive, 1);
284 	net->dev_base_seq = 1;
285 	net->user_ns = user_ns;
286 	idr_init(&net->netns_ids);
287 	spin_lock_init(&net->nsid_lock);
288 
289 	list_for_each_entry(ops, &pernet_list, list) {
290 		error = ops_init(ops, net);
291 		if (error < 0)
292 			goto out_undo;
293 	}
294 out:
295 	return error;
296 
297 out_undo:
298 	/* Walk through the list backwards calling the exit functions
299 	 * for the pernet modules whose init functions did not fail.
300 	 */
301 	list_add(&net->exit_list, &net_exit_list);
302 	saved_ops = ops;
303 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
304 		ops_exit_list(ops, &net_exit_list);
305 
306 	ops = saved_ops;
307 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
308 		ops_free_list(ops, &net_exit_list);
309 
310 	rcu_barrier();
311 	goto out;
312 }
313 
314 
315 #ifdef CONFIG_NET_NS
316 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
317 {
318 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
319 }
320 
321 static void dec_net_namespaces(struct ucounts *ucounts)
322 {
323 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
324 }
325 
326 static struct kmem_cache *net_cachep;
327 static struct workqueue_struct *netns_wq;
328 
329 static struct net *net_alloc(void)
330 {
331 	struct net *net = NULL;
332 	struct net_generic *ng;
333 
334 	ng = net_alloc_generic();
335 	if (!ng)
336 		goto out;
337 
338 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
339 	if (!net)
340 		goto out_free;
341 
342 	rcu_assign_pointer(net->gen, ng);
343 out:
344 	return net;
345 
346 out_free:
347 	kfree(ng);
348 	goto out;
349 }
350 
351 static void net_free(struct net *net)
352 {
353 	kfree(rcu_access_pointer(net->gen));
354 	kmem_cache_free(net_cachep, net);
355 }
356 
357 void net_drop_ns(void *p)
358 {
359 	struct net *ns = p;
360 	if (ns && atomic_dec_and_test(&ns->passive))
361 		net_free(ns);
362 }
363 
364 struct net *copy_net_ns(unsigned long flags,
365 			struct user_namespace *user_ns, struct net *old_net)
366 {
367 	struct ucounts *ucounts;
368 	struct net *net;
369 	int rv;
370 
371 	if (!(flags & CLONE_NEWNET))
372 		return get_net(old_net);
373 
374 	ucounts = inc_net_namespaces(user_ns);
375 	if (!ucounts)
376 		return ERR_PTR(-ENOSPC);
377 
378 	net = net_alloc();
379 	if (!net) {
380 		dec_net_namespaces(ucounts);
381 		return ERR_PTR(-ENOMEM);
382 	}
383 
384 	get_user_ns(user_ns);
385 
386 	rv = mutex_lock_killable(&net_mutex);
387 	if (rv < 0) {
388 		net_free(net);
389 		dec_net_namespaces(ucounts);
390 		put_user_ns(user_ns);
391 		return ERR_PTR(rv);
392 	}
393 
394 	net->ucounts = ucounts;
395 	rv = setup_net(net, user_ns);
396 	if (rv == 0) {
397 		rtnl_lock();
398 		list_add_tail_rcu(&net->list, &net_namespace_list);
399 		rtnl_unlock();
400 	}
401 	mutex_unlock(&net_mutex);
402 	if (rv < 0) {
403 		dec_net_namespaces(ucounts);
404 		put_user_ns(user_ns);
405 		net_drop_ns(net);
406 		return ERR_PTR(rv);
407 	}
408 	return net;
409 }
410 
411 static DEFINE_SPINLOCK(cleanup_list_lock);
412 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
413 
414 static void cleanup_net(struct work_struct *work)
415 {
416 	const struct pernet_operations *ops;
417 	struct net *net, *tmp;
418 	struct list_head net_kill_list;
419 	LIST_HEAD(net_exit_list);
420 
421 	/* Atomically snapshot the list of namespaces to cleanup */
422 	spin_lock_irq(&cleanup_list_lock);
423 	list_replace_init(&cleanup_list, &net_kill_list);
424 	spin_unlock_irq(&cleanup_list_lock);
425 
426 	mutex_lock(&net_mutex);
427 
428 	/* Don't let anyone else find us. */
429 	rtnl_lock();
430 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
431 		list_del_rcu(&net->list);
432 		list_add_tail(&net->exit_list, &net_exit_list);
433 		for_each_net(tmp) {
434 			int id;
435 
436 			spin_lock_irq(&tmp->nsid_lock);
437 			id = __peernet2id(tmp, net);
438 			if (id >= 0)
439 				idr_remove(&tmp->netns_ids, id);
440 			spin_unlock_irq(&tmp->nsid_lock);
441 			if (id >= 0)
442 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
443 		}
444 		spin_lock_irq(&net->nsid_lock);
445 		idr_destroy(&net->netns_ids);
446 		spin_unlock_irq(&net->nsid_lock);
447 
448 	}
449 	rtnl_unlock();
450 
451 	/*
452 	 * Another CPU might be rcu-iterating the list, wait for it.
453 	 * This needs to be before calling the exit() notifiers, so
454 	 * the rcu_barrier() below isn't sufficient alone.
455 	 */
456 	synchronize_rcu();
457 
458 	/* Run all of the network namespace exit methods */
459 	list_for_each_entry_reverse(ops, &pernet_list, list)
460 		ops_exit_list(ops, &net_exit_list);
461 
462 	/* Free the net generic variables */
463 	list_for_each_entry_reverse(ops, &pernet_list, list)
464 		ops_free_list(ops, &net_exit_list);
465 
466 	mutex_unlock(&net_mutex);
467 
468 	/* Ensure there are no outstanding rcu callbacks using this
469 	 * network namespace.
470 	 */
471 	rcu_barrier();
472 
473 	/* Finally it is safe to free my network namespace structure */
474 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
475 		list_del_init(&net->exit_list);
476 		dec_net_namespaces(net->ucounts);
477 		put_user_ns(net->user_ns);
478 		net_drop_ns(net);
479 	}
480 }
481 static DECLARE_WORK(net_cleanup_work, cleanup_net);
482 
483 void __put_net(struct net *net)
484 {
485 	/* Cleanup the network namespace in process context */
486 	unsigned long flags;
487 
488 	spin_lock_irqsave(&cleanup_list_lock, flags);
489 	list_add(&net->cleanup_list, &cleanup_list);
490 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
491 
492 	queue_work(netns_wq, &net_cleanup_work);
493 }
494 EXPORT_SYMBOL_GPL(__put_net);
495 
496 struct net *get_net_ns_by_fd(int fd)
497 {
498 	struct file *file;
499 	struct ns_common *ns;
500 	struct net *net;
501 
502 	file = proc_ns_fget(fd);
503 	if (IS_ERR(file))
504 		return ERR_CAST(file);
505 
506 	ns = get_proc_ns(file_inode(file));
507 	if (ns->ops == &netns_operations)
508 		net = get_net(container_of(ns, struct net, ns));
509 	else
510 		net = ERR_PTR(-EINVAL);
511 
512 	fput(file);
513 	return net;
514 }
515 
516 #else
517 struct net *get_net_ns_by_fd(int fd)
518 {
519 	return ERR_PTR(-EINVAL);
520 }
521 #endif
522 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
523 
524 struct net *get_net_ns_by_pid(pid_t pid)
525 {
526 	struct task_struct *tsk;
527 	struct net *net;
528 
529 	/* Lookup the network namespace */
530 	net = ERR_PTR(-ESRCH);
531 	rcu_read_lock();
532 	tsk = find_task_by_vpid(pid);
533 	if (tsk) {
534 		struct nsproxy *nsproxy;
535 		task_lock(tsk);
536 		nsproxy = tsk->nsproxy;
537 		if (nsproxy)
538 			net = get_net(nsproxy->net_ns);
539 		task_unlock(tsk);
540 	}
541 	rcu_read_unlock();
542 	return net;
543 }
544 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
545 
546 static __net_init int net_ns_net_init(struct net *net)
547 {
548 #ifdef CONFIG_NET_NS
549 	net->ns.ops = &netns_operations;
550 #endif
551 	return ns_alloc_inum(&net->ns);
552 }
553 
554 static __net_exit void net_ns_net_exit(struct net *net)
555 {
556 	ns_free_inum(&net->ns);
557 }
558 
559 static struct pernet_operations __net_initdata net_ns_ops = {
560 	.init = net_ns_net_init,
561 	.exit = net_ns_net_exit,
562 };
563 
564 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
565 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
566 	[NETNSA_NSID]		= { .type = NLA_S32 },
567 	[NETNSA_PID]		= { .type = NLA_U32 },
568 	[NETNSA_FD]		= { .type = NLA_U32 },
569 };
570 
571 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
572 {
573 	struct net *net = sock_net(skb->sk);
574 	struct nlattr *tb[NETNSA_MAX + 1];
575 	unsigned long flags;
576 	struct net *peer;
577 	int nsid, err;
578 
579 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
580 			  rtnl_net_policy);
581 	if (err < 0)
582 		return err;
583 	if (!tb[NETNSA_NSID])
584 		return -EINVAL;
585 	nsid = nla_get_s32(tb[NETNSA_NSID]);
586 
587 	if (tb[NETNSA_PID])
588 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
589 	else if (tb[NETNSA_FD])
590 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
591 	else
592 		return -EINVAL;
593 	if (IS_ERR(peer))
594 		return PTR_ERR(peer);
595 
596 	spin_lock_irqsave(&net->nsid_lock, flags);
597 	if (__peernet2id(net, peer) >= 0) {
598 		spin_unlock_irqrestore(&net->nsid_lock, flags);
599 		err = -EEXIST;
600 		goto out;
601 	}
602 
603 	err = alloc_netid(net, peer, nsid);
604 	spin_unlock_irqrestore(&net->nsid_lock, flags);
605 	if (err >= 0) {
606 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
607 		err = 0;
608 	}
609 out:
610 	put_net(peer);
611 	return err;
612 }
613 
614 static int rtnl_net_get_size(void)
615 {
616 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
617 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
618 	       ;
619 }
620 
621 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
622 			 int cmd, struct net *net, int nsid)
623 {
624 	struct nlmsghdr *nlh;
625 	struct rtgenmsg *rth;
626 
627 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
628 	if (!nlh)
629 		return -EMSGSIZE;
630 
631 	rth = nlmsg_data(nlh);
632 	rth->rtgen_family = AF_UNSPEC;
633 
634 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
635 		goto nla_put_failure;
636 
637 	nlmsg_end(skb, nlh);
638 	return 0;
639 
640 nla_put_failure:
641 	nlmsg_cancel(skb, nlh);
642 	return -EMSGSIZE;
643 }
644 
645 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
646 {
647 	struct net *net = sock_net(skb->sk);
648 	struct nlattr *tb[NETNSA_MAX + 1];
649 	struct sk_buff *msg;
650 	struct net *peer;
651 	int err, id;
652 
653 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
654 			  rtnl_net_policy);
655 	if (err < 0)
656 		return err;
657 	if (tb[NETNSA_PID])
658 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
659 	else if (tb[NETNSA_FD])
660 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
661 	else
662 		return -EINVAL;
663 
664 	if (IS_ERR(peer))
665 		return PTR_ERR(peer);
666 
667 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
668 	if (!msg) {
669 		err = -ENOMEM;
670 		goto out;
671 	}
672 
673 	id = peernet2id(net, peer);
674 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
675 			    RTM_NEWNSID, net, id);
676 	if (err < 0)
677 		goto err_out;
678 
679 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
680 	goto out;
681 
682 err_out:
683 	nlmsg_free(msg);
684 out:
685 	put_net(peer);
686 	return err;
687 }
688 
689 struct rtnl_net_dump_cb {
690 	struct net *net;
691 	struct sk_buff *skb;
692 	struct netlink_callback *cb;
693 	int idx;
694 	int s_idx;
695 };
696 
697 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
698 {
699 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
700 	int ret;
701 
702 	if (net_cb->idx < net_cb->s_idx)
703 		goto cont;
704 
705 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
706 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
707 			    RTM_NEWNSID, net_cb->net, id);
708 	if (ret < 0)
709 		return ret;
710 
711 cont:
712 	net_cb->idx++;
713 	return 0;
714 }
715 
716 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
717 {
718 	struct net *net = sock_net(skb->sk);
719 	struct rtnl_net_dump_cb net_cb = {
720 		.net = net,
721 		.skb = skb,
722 		.cb = cb,
723 		.idx = 0,
724 		.s_idx = cb->args[0],
725 	};
726 	unsigned long flags;
727 
728 	spin_lock_irqsave(&net->nsid_lock, flags);
729 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
730 	spin_unlock_irqrestore(&net->nsid_lock, flags);
731 
732 	cb->args[0] = net_cb.idx;
733 	return skb->len;
734 }
735 
736 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
737 {
738 	struct sk_buff *msg;
739 	int err = -ENOMEM;
740 
741 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
742 	if (!msg)
743 		goto out;
744 
745 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
746 	if (err < 0)
747 		goto err_out;
748 
749 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
750 	return;
751 
752 err_out:
753 	nlmsg_free(msg);
754 out:
755 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
756 }
757 
758 static int __init net_ns_init(void)
759 {
760 	struct net_generic *ng;
761 
762 #ifdef CONFIG_NET_NS
763 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
764 					SMP_CACHE_BYTES,
765 					SLAB_PANIC, NULL);
766 
767 	/* Create workqueue for cleanup */
768 	netns_wq = create_singlethread_workqueue("netns");
769 	if (!netns_wq)
770 		panic("Could not create netns workq");
771 #endif
772 
773 	ng = net_alloc_generic();
774 	if (!ng)
775 		panic("Could not allocate generic netns");
776 
777 	rcu_assign_pointer(init_net.gen, ng);
778 
779 	mutex_lock(&net_mutex);
780 	if (setup_net(&init_net, &init_user_ns))
781 		panic("Could not setup the initial network namespace");
782 
783 	init_net_initialized = true;
784 
785 	rtnl_lock();
786 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
787 	rtnl_unlock();
788 
789 	mutex_unlock(&net_mutex);
790 
791 	register_pernet_subsys(&net_ns_ops);
792 
793 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
794 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
795 		      NULL);
796 
797 	return 0;
798 }
799 
800 pure_initcall(net_ns_init);
801 
802 #ifdef CONFIG_NET_NS
803 static int __register_pernet_operations(struct list_head *list,
804 					struct pernet_operations *ops)
805 {
806 	struct net *net;
807 	int error;
808 	LIST_HEAD(net_exit_list);
809 
810 	list_add_tail(&ops->list, list);
811 	if (ops->init || (ops->id && ops->size)) {
812 		for_each_net(net) {
813 			error = ops_init(ops, net);
814 			if (error)
815 				goto out_undo;
816 			list_add_tail(&net->exit_list, &net_exit_list);
817 		}
818 	}
819 	return 0;
820 
821 out_undo:
822 	/* If I have an error cleanup all namespaces I initialized */
823 	list_del(&ops->list);
824 	ops_exit_list(ops, &net_exit_list);
825 	ops_free_list(ops, &net_exit_list);
826 	return error;
827 }
828 
829 static void __unregister_pernet_operations(struct pernet_operations *ops)
830 {
831 	struct net *net;
832 	LIST_HEAD(net_exit_list);
833 
834 	list_del(&ops->list);
835 	for_each_net(net)
836 		list_add_tail(&net->exit_list, &net_exit_list);
837 	ops_exit_list(ops, &net_exit_list);
838 	ops_free_list(ops, &net_exit_list);
839 }
840 
841 #else
842 
843 static int __register_pernet_operations(struct list_head *list,
844 					struct pernet_operations *ops)
845 {
846 	if (!init_net_initialized) {
847 		list_add_tail(&ops->list, list);
848 		return 0;
849 	}
850 
851 	return ops_init(ops, &init_net);
852 }
853 
854 static void __unregister_pernet_operations(struct pernet_operations *ops)
855 {
856 	if (!init_net_initialized) {
857 		list_del(&ops->list);
858 	} else {
859 		LIST_HEAD(net_exit_list);
860 		list_add(&init_net.exit_list, &net_exit_list);
861 		ops_exit_list(ops, &net_exit_list);
862 		ops_free_list(ops, &net_exit_list);
863 	}
864 }
865 
866 #endif /* CONFIG_NET_NS */
867 
868 static DEFINE_IDA(net_generic_ids);
869 
870 static int register_pernet_operations(struct list_head *list,
871 				      struct pernet_operations *ops)
872 {
873 	int error;
874 
875 	if (ops->id) {
876 again:
877 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
878 		if (error < 0) {
879 			if (error == -EAGAIN) {
880 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
881 				goto again;
882 			}
883 			return error;
884 		}
885 		max_gen_ptrs = max(max_gen_ptrs, *ops->id);
886 	}
887 	error = __register_pernet_operations(list, ops);
888 	if (error) {
889 		rcu_barrier();
890 		if (ops->id)
891 			ida_remove(&net_generic_ids, *ops->id);
892 	}
893 
894 	return error;
895 }
896 
897 static void unregister_pernet_operations(struct pernet_operations *ops)
898 {
899 
900 	__unregister_pernet_operations(ops);
901 	rcu_barrier();
902 	if (ops->id)
903 		ida_remove(&net_generic_ids, *ops->id);
904 }
905 
906 /**
907  *      register_pernet_subsys - register a network namespace subsystem
908  *	@ops:  pernet operations structure for the subsystem
909  *
910  *	Register a subsystem which has init and exit functions
911  *	that are called when network namespaces are created and
912  *	destroyed respectively.
913  *
914  *	When registered all network namespace init functions are
915  *	called for every existing network namespace.  Allowing kernel
916  *	modules to have a race free view of the set of network namespaces.
917  *
918  *	When a new network namespace is created all of the init
919  *	methods are called in the order in which they were registered.
920  *
921  *	When a network namespace is destroyed all of the exit methods
922  *	are called in the reverse of the order with which they were
923  *	registered.
924  */
925 int register_pernet_subsys(struct pernet_operations *ops)
926 {
927 	int error;
928 	mutex_lock(&net_mutex);
929 	error =  register_pernet_operations(first_device, ops);
930 	mutex_unlock(&net_mutex);
931 	return error;
932 }
933 EXPORT_SYMBOL_GPL(register_pernet_subsys);
934 
935 /**
936  *      unregister_pernet_subsys - unregister a network namespace subsystem
937  *	@ops: pernet operations structure to manipulate
938  *
939  *	Remove the pernet operations structure from the list to be
940  *	used when network namespaces are created or destroyed.  In
941  *	addition run the exit method for all existing network
942  *	namespaces.
943  */
944 void unregister_pernet_subsys(struct pernet_operations *ops)
945 {
946 	mutex_lock(&net_mutex);
947 	unregister_pernet_operations(ops);
948 	mutex_unlock(&net_mutex);
949 }
950 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
951 
952 /**
953  *      register_pernet_device - register a network namespace device
954  *	@ops:  pernet operations structure for the subsystem
955  *
956  *	Register a device which has init and exit functions
957  *	that are called when network namespaces are created and
958  *	destroyed respectively.
959  *
960  *	When registered all network namespace init functions are
961  *	called for every existing network namespace.  Allowing kernel
962  *	modules to have a race free view of the set of network namespaces.
963  *
964  *	When a new network namespace is created all of the init
965  *	methods are called in the order in which they were registered.
966  *
967  *	When a network namespace is destroyed all of the exit methods
968  *	are called in the reverse of the order with which they were
969  *	registered.
970  */
971 int register_pernet_device(struct pernet_operations *ops)
972 {
973 	int error;
974 	mutex_lock(&net_mutex);
975 	error = register_pernet_operations(&pernet_list, ops);
976 	if (!error && (first_device == &pernet_list))
977 		first_device = &ops->list;
978 	mutex_unlock(&net_mutex);
979 	return error;
980 }
981 EXPORT_SYMBOL_GPL(register_pernet_device);
982 
983 /**
984  *      unregister_pernet_device - unregister a network namespace netdevice
985  *	@ops: pernet operations structure to manipulate
986  *
987  *	Remove the pernet operations structure from the list to be
988  *	used when network namespaces are created or destroyed.  In
989  *	addition run the exit method for all existing network
990  *	namespaces.
991  */
992 void unregister_pernet_device(struct pernet_operations *ops)
993 {
994 	mutex_lock(&net_mutex);
995 	if (&ops->list == first_device)
996 		first_device = first_device->next;
997 	unregister_pernet_operations(ops);
998 	mutex_unlock(&net_mutex);
999 }
1000 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1001 
1002 #ifdef CONFIG_NET_NS
1003 static struct ns_common *netns_get(struct task_struct *task)
1004 {
1005 	struct net *net = NULL;
1006 	struct nsproxy *nsproxy;
1007 
1008 	task_lock(task);
1009 	nsproxy = task->nsproxy;
1010 	if (nsproxy)
1011 		net = get_net(nsproxy->net_ns);
1012 	task_unlock(task);
1013 
1014 	return net ? &net->ns : NULL;
1015 }
1016 
1017 static inline struct net *to_net_ns(struct ns_common *ns)
1018 {
1019 	return container_of(ns, struct net, ns);
1020 }
1021 
1022 static void netns_put(struct ns_common *ns)
1023 {
1024 	put_net(to_net_ns(ns));
1025 }
1026 
1027 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1028 {
1029 	struct net *net = to_net_ns(ns);
1030 
1031 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1032 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1033 		return -EPERM;
1034 
1035 	put_net(nsproxy->net_ns);
1036 	nsproxy->net_ns = get_net(net);
1037 	return 0;
1038 }
1039 
1040 static struct user_namespace *netns_owner(struct ns_common *ns)
1041 {
1042 	return to_net_ns(ns)->user_ns;
1043 }
1044 
1045 const struct proc_ns_operations netns_operations = {
1046 	.name		= "net",
1047 	.type		= CLONE_NEWNET,
1048 	.get		= netns_get,
1049 	.put		= netns_put,
1050 	.install	= netns_install,
1051 	.owner		= netns_owner,
1052 };
1053 #endif
1054