xref: /openbmc/linux/net/core/net_namespace.c (revision 98f6c533)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 struct net init_net = {
38 	.count		= REFCOUNT_INIT(1),
39 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42 
43 static bool init_net_initialized;
44 
45 #define MIN_PERNET_OPS_ID	\
46 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47 
48 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
49 
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51 
52 static struct net_generic *net_alloc_generic(void)
53 {
54 	struct net_generic *ng;
55 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56 
57 	ng = kzalloc(generic_size, GFP_KERNEL);
58 	if (ng)
59 		ng->s.len = max_gen_ptrs;
60 
61 	return ng;
62 }
63 
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 	struct net_generic *ng, *old_ng;
67 
68 	BUG_ON(!mutex_is_locked(&net_mutex));
69 	BUG_ON(id < MIN_PERNET_OPS_ID);
70 
71 	old_ng = rcu_dereference_protected(net->gen,
72 					   lockdep_is_held(&net_mutex));
73 	if (old_ng->s.len > id) {
74 		old_ng->ptr[id] = data;
75 		return 0;
76 	}
77 
78 	ng = net_alloc_generic();
79 	if (ng == NULL)
80 		return -ENOMEM;
81 
82 	/*
83 	 * Some synchronisation notes:
84 	 *
85 	 * The net_generic explores the net->gen array inside rcu
86 	 * read section. Besides once set the net->gen->ptr[x]
87 	 * pointer never changes (see rules in netns/generic.h).
88 	 *
89 	 * That said, we simply duplicate this array and schedule
90 	 * the old copy for kfree after a grace period.
91 	 */
92 
93 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 	ng->ptr[id] = data;
96 
97 	rcu_assign_pointer(net->gen, ng);
98 	kfree_rcu(old_ng, s.rcu);
99 	return 0;
100 }
101 
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 	int err = -ENOMEM;
105 	void *data = NULL;
106 
107 	if (ops->id && ops->size) {
108 		data = kzalloc(ops->size, GFP_KERNEL);
109 		if (!data)
110 			goto out;
111 
112 		err = net_assign_generic(net, *ops->id, data);
113 		if (err)
114 			goto cleanup;
115 	}
116 	err = 0;
117 	if (ops->init)
118 		err = ops->init(net);
119 	if (!err)
120 		return 0;
121 
122 cleanup:
123 	kfree(data);
124 
125 out:
126 	return err;
127 }
128 
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 	if (ops->id && ops->size) {
132 		kfree(net_generic(net, *ops->id));
133 	}
134 }
135 
136 static void ops_exit_list(const struct pernet_operations *ops,
137 			  struct list_head *net_exit_list)
138 {
139 	struct net *net;
140 	if (ops->exit) {
141 		list_for_each_entry(net, net_exit_list, exit_list)
142 			ops->exit(net);
143 	}
144 	if (ops->exit_batch)
145 		ops->exit_batch(net_exit_list);
146 }
147 
148 static void ops_free_list(const struct pernet_operations *ops,
149 			  struct list_head *net_exit_list)
150 {
151 	struct net *net;
152 	if (ops->size && ops->id) {
153 		list_for_each_entry(net, net_exit_list, exit_list)
154 			ops_free(ops, net);
155 	}
156 }
157 
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 	int min = 0, max = 0;
162 
163 	if (reqid >= 0) {
164 		min = reqid;
165 		max = reqid + 1;
166 	}
167 
168 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170 
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172  * function returns the id so that idr_for_each() stops. Because we cannot
173  * returns the id 0 (idr_for_each() will not stop), we return the magic value
174  * NET_ID_ZERO (-1) for it.
175  */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 	if (net_eq(net, peer))
180 		return id ? : NET_ID_ZERO;
181 	return 0;
182 }
183 
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185  * is set to true, thus the caller knows that the new id must be notified via
186  * rtnl.
187  */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 	bool alloc_it = *alloc;
192 
193 	*alloc = false;
194 
195 	/* Magic value for id 0. */
196 	if (id == NET_ID_ZERO)
197 		return 0;
198 	if (id > 0)
199 		return id;
200 
201 	if (alloc_it) {
202 		id = alloc_netid(net, peer, -1);
203 		*alloc = true;
204 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 	}
206 
207 	return NETNSA_NSID_NOT_ASSIGNED;
208 }
209 
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 	bool no = false;
214 
215 	return __peernet2id_alloc(net, peer, &no);
216 }
217 
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220  * be allocated and returned.
221  */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 	bool alloc = false, alive = false;
225 	int id;
226 
227 	if (refcount_read(&net->count) == 0)
228 		return NETNSA_NSID_NOT_ASSIGNED;
229 	spin_lock_bh(&net->nsid_lock);
230 	/*
231 	 * When peer is obtained from RCU lists, we may race with
232 	 * its cleanup. Check whether it's alive, and this guarantees
233 	 * we never hash a peer back to net->netns_ids, after it has
234 	 * just been idr_remove()'d from there in cleanup_net().
235 	 */
236 	if (maybe_get_net(peer))
237 		alive = alloc = true;
238 	id = __peernet2id_alloc(net, peer, &alloc);
239 	spin_unlock_bh(&net->nsid_lock);
240 	if (alloc && id >= 0)
241 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
242 	if (alive)
243 		put_net(peer);
244 	return id;
245 }
246 EXPORT_SYMBOL_GPL(peernet2id_alloc);
247 
248 /* This function returns, if assigned, the id of a peer netns. */
249 int peernet2id(struct net *net, struct net *peer)
250 {
251 	int id;
252 
253 	spin_lock_bh(&net->nsid_lock);
254 	id = __peernet2id(net, peer);
255 	spin_unlock_bh(&net->nsid_lock);
256 	return id;
257 }
258 EXPORT_SYMBOL(peernet2id);
259 
260 /* This function returns true is the peer netns has an id assigned into the
261  * current netns.
262  */
263 bool peernet_has_id(struct net *net, struct net *peer)
264 {
265 	return peernet2id(net, peer) >= 0;
266 }
267 
268 struct net *get_net_ns_by_id(struct net *net, int id)
269 {
270 	struct net *peer;
271 
272 	if (id < 0)
273 		return NULL;
274 
275 	rcu_read_lock();
276 	peer = idr_find(&net->netns_ids, id);
277 	if (peer)
278 		peer = maybe_get_net(peer);
279 	rcu_read_unlock();
280 
281 	return peer;
282 }
283 
284 /*
285  * setup_net runs the initializers for the network namespace object.
286  */
287 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
288 {
289 	/* Must be called with net_mutex held */
290 	const struct pernet_operations *ops, *saved_ops;
291 	int error = 0;
292 	LIST_HEAD(net_exit_list);
293 
294 	refcount_set(&net->count, 1);
295 	refcount_set(&net->passive, 1);
296 	net->dev_base_seq = 1;
297 	net->user_ns = user_ns;
298 	idr_init(&net->netns_ids);
299 	spin_lock_init(&net->nsid_lock);
300 
301 	list_for_each_entry(ops, &pernet_list, list) {
302 		error = ops_init(ops, net);
303 		if (error < 0)
304 			goto out_undo;
305 	}
306 	rtnl_lock();
307 	list_add_tail_rcu(&net->list, &net_namespace_list);
308 	rtnl_unlock();
309 out:
310 	return error;
311 
312 out_undo:
313 	/* Walk through the list backwards calling the exit functions
314 	 * for the pernet modules whose init functions did not fail.
315 	 */
316 	list_add(&net->exit_list, &net_exit_list);
317 	saved_ops = ops;
318 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
319 		ops_exit_list(ops, &net_exit_list);
320 
321 	ops = saved_ops;
322 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
323 		ops_free_list(ops, &net_exit_list);
324 
325 	rcu_barrier();
326 	goto out;
327 }
328 
329 static int __net_init net_defaults_init_net(struct net *net)
330 {
331 	net->core.sysctl_somaxconn = SOMAXCONN;
332 	return 0;
333 }
334 
335 static struct pernet_operations net_defaults_ops = {
336 	.init = net_defaults_init_net,
337 };
338 
339 static __init int net_defaults_init(void)
340 {
341 	if (register_pernet_subsys(&net_defaults_ops))
342 		panic("Cannot initialize net default settings");
343 
344 	return 0;
345 }
346 
347 core_initcall(net_defaults_init);
348 
349 #ifdef CONFIG_NET_NS
350 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
351 {
352 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
353 }
354 
355 static void dec_net_namespaces(struct ucounts *ucounts)
356 {
357 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
358 }
359 
360 static struct kmem_cache *net_cachep;
361 static struct workqueue_struct *netns_wq;
362 
363 static struct net *net_alloc(void)
364 {
365 	struct net *net = NULL;
366 	struct net_generic *ng;
367 
368 	ng = net_alloc_generic();
369 	if (!ng)
370 		goto out;
371 
372 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
373 	if (!net)
374 		goto out_free;
375 
376 	rcu_assign_pointer(net->gen, ng);
377 out:
378 	return net;
379 
380 out_free:
381 	kfree(ng);
382 	goto out;
383 }
384 
385 static void net_free(struct net *net)
386 {
387 	kfree(rcu_access_pointer(net->gen));
388 	kmem_cache_free(net_cachep, net);
389 }
390 
391 void net_drop_ns(void *p)
392 {
393 	struct net *ns = p;
394 	if (ns && refcount_dec_and_test(&ns->passive))
395 		net_free(ns);
396 }
397 
398 struct net *copy_net_ns(unsigned long flags,
399 			struct user_namespace *user_ns, struct net *old_net)
400 {
401 	struct ucounts *ucounts;
402 	struct net *net;
403 	int rv;
404 
405 	if (!(flags & CLONE_NEWNET))
406 		return get_net(old_net);
407 
408 	ucounts = inc_net_namespaces(user_ns);
409 	if (!ucounts)
410 		return ERR_PTR(-ENOSPC);
411 
412 	net = net_alloc();
413 	if (!net) {
414 		dec_net_namespaces(ucounts);
415 		return ERR_PTR(-ENOMEM);
416 	}
417 
418 	get_user_ns(user_ns);
419 
420 	rv = mutex_lock_killable(&net_mutex);
421 	if (rv < 0) {
422 		net_free(net);
423 		dec_net_namespaces(ucounts);
424 		put_user_ns(user_ns);
425 		return ERR_PTR(rv);
426 	}
427 
428 	net->ucounts = ucounts;
429 	rv = setup_net(net, user_ns);
430 	mutex_unlock(&net_mutex);
431 	if (rv < 0) {
432 		dec_net_namespaces(ucounts);
433 		put_user_ns(user_ns);
434 		net_drop_ns(net);
435 		return ERR_PTR(rv);
436 	}
437 	return net;
438 }
439 
440 static void unhash_nsid(struct net *net, struct net *last)
441 {
442 	struct net *tmp;
443 	/* This function is only called from cleanup_net() work,
444 	 * and this work is the only process, that may delete
445 	 * a net from net_namespace_list. So, when the below
446 	 * is executing, the list may only grow. Thus, we do not
447 	 * use for_each_net_rcu() or rtnl_lock().
448 	 */
449 	for_each_net(tmp) {
450 		int id;
451 
452 		spin_lock_bh(&tmp->nsid_lock);
453 		id = __peernet2id(tmp, net);
454 		if (id >= 0)
455 			idr_remove(&tmp->netns_ids, id);
456 		spin_unlock_bh(&tmp->nsid_lock);
457 		if (id >= 0)
458 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
459 		if (tmp == last)
460 			break;
461 	}
462 	spin_lock_bh(&net->nsid_lock);
463 	idr_destroy(&net->netns_ids);
464 	spin_unlock_bh(&net->nsid_lock);
465 }
466 
467 static DEFINE_SPINLOCK(cleanup_list_lock);
468 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
469 
470 static void cleanup_net(struct work_struct *work)
471 {
472 	const struct pernet_operations *ops;
473 	struct net *net, *tmp, *last;
474 	struct list_head net_kill_list;
475 	LIST_HEAD(net_exit_list);
476 
477 	/* Atomically snapshot the list of namespaces to cleanup */
478 	spin_lock_irq(&cleanup_list_lock);
479 	list_replace_init(&cleanup_list, &net_kill_list);
480 	spin_unlock_irq(&cleanup_list_lock);
481 
482 	mutex_lock(&net_mutex);
483 
484 	/* Don't let anyone else find us. */
485 	rtnl_lock();
486 	list_for_each_entry(net, &net_kill_list, cleanup_list)
487 		list_del_rcu(&net->list);
488 	/* Cache last net. After we unlock rtnl, no one new net
489 	 * added to net_namespace_list can assign nsid pointer
490 	 * to a net from net_kill_list (see peernet2id_alloc()).
491 	 * So, we skip them in unhash_nsid().
492 	 *
493 	 * Note, that unhash_nsid() does not delete nsid links
494 	 * between net_kill_list's nets, as they've already
495 	 * deleted from net_namespace_list. But, this would be
496 	 * useless anyway, as netns_ids are destroyed there.
497 	 */
498 	last = list_last_entry(&net_namespace_list, struct net, list);
499 	rtnl_unlock();
500 
501 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
502 		unhash_nsid(net, last);
503 		list_add_tail(&net->exit_list, &net_exit_list);
504 	}
505 
506 	/*
507 	 * Another CPU might be rcu-iterating the list, wait for it.
508 	 * This needs to be before calling the exit() notifiers, so
509 	 * the rcu_barrier() below isn't sufficient alone.
510 	 */
511 	synchronize_rcu();
512 
513 	/* Run all of the network namespace exit methods */
514 	list_for_each_entry_reverse(ops, &pernet_list, list)
515 		ops_exit_list(ops, &net_exit_list);
516 
517 	/* Free the net generic variables */
518 	list_for_each_entry_reverse(ops, &pernet_list, list)
519 		ops_free_list(ops, &net_exit_list);
520 
521 	mutex_unlock(&net_mutex);
522 
523 	/* Ensure there are no outstanding rcu callbacks using this
524 	 * network namespace.
525 	 */
526 	rcu_barrier();
527 
528 	/* Finally it is safe to free my network namespace structure */
529 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
530 		list_del_init(&net->exit_list);
531 		dec_net_namespaces(net->ucounts);
532 		put_user_ns(net->user_ns);
533 		net_drop_ns(net);
534 	}
535 }
536 
537 /**
538  * net_ns_barrier - wait until concurrent net_cleanup_work is done
539  *
540  * cleanup_net runs from work queue and will first remove namespaces
541  * from the global list, then run net exit functions.
542  *
543  * Call this in module exit path to make sure that all netns
544  * ->exit ops have been invoked before the function is removed.
545  */
546 void net_ns_barrier(void)
547 {
548 	mutex_lock(&net_mutex);
549 	mutex_unlock(&net_mutex);
550 }
551 EXPORT_SYMBOL(net_ns_barrier);
552 
553 static DECLARE_WORK(net_cleanup_work, cleanup_net);
554 
555 void __put_net(struct net *net)
556 {
557 	/* Cleanup the network namespace in process context */
558 	unsigned long flags;
559 
560 	spin_lock_irqsave(&cleanup_list_lock, flags);
561 	list_add(&net->cleanup_list, &cleanup_list);
562 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
563 
564 	queue_work(netns_wq, &net_cleanup_work);
565 }
566 EXPORT_SYMBOL_GPL(__put_net);
567 
568 struct net *get_net_ns_by_fd(int fd)
569 {
570 	struct file *file;
571 	struct ns_common *ns;
572 	struct net *net;
573 
574 	file = proc_ns_fget(fd);
575 	if (IS_ERR(file))
576 		return ERR_CAST(file);
577 
578 	ns = get_proc_ns(file_inode(file));
579 	if (ns->ops == &netns_operations)
580 		net = get_net(container_of(ns, struct net, ns));
581 	else
582 		net = ERR_PTR(-EINVAL);
583 
584 	fput(file);
585 	return net;
586 }
587 
588 #else
589 struct net *get_net_ns_by_fd(int fd)
590 {
591 	return ERR_PTR(-EINVAL);
592 }
593 #endif
594 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
595 
596 struct net *get_net_ns_by_pid(pid_t pid)
597 {
598 	struct task_struct *tsk;
599 	struct net *net;
600 
601 	/* Lookup the network namespace */
602 	net = ERR_PTR(-ESRCH);
603 	rcu_read_lock();
604 	tsk = find_task_by_vpid(pid);
605 	if (tsk) {
606 		struct nsproxy *nsproxy;
607 		task_lock(tsk);
608 		nsproxy = tsk->nsproxy;
609 		if (nsproxy)
610 			net = get_net(nsproxy->net_ns);
611 		task_unlock(tsk);
612 	}
613 	rcu_read_unlock();
614 	return net;
615 }
616 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
617 
618 static __net_init int net_ns_net_init(struct net *net)
619 {
620 #ifdef CONFIG_NET_NS
621 	net->ns.ops = &netns_operations;
622 #endif
623 	return ns_alloc_inum(&net->ns);
624 }
625 
626 static __net_exit void net_ns_net_exit(struct net *net)
627 {
628 	ns_free_inum(&net->ns);
629 }
630 
631 static struct pernet_operations __net_initdata net_ns_ops = {
632 	.init = net_ns_net_init,
633 	.exit = net_ns_net_exit,
634 };
635 
636 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
637 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
638 	[NETNSA_NSID]		= { .type = NLA_S32 },
639 	[NETNSA_PID]		= { .type = NLA_U32 },
640 	[NETNSA_FD]		= { .type = NLA_U32 },
641 };
642 
643 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
644 			  struct netlink_ext_ack *extack)
645 {
646 	struct net *net = sock_net(skb->sk);
647 	struct nlattr *tb[NETNSA_MAX + 1];
648 	struct nlattr *nla;
649 	struct net *peer;
650 	int nsid, err;
651 
652 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
653 			  rtnl_net_policy, extack);
654 	if (err < 0)
655 		return err;
656 	if (!tb[NETNSA_NSID]) {
657 		NL_SET_ERR_MSG(extack, "nsid is missing");
658 		return -EINVAL;
659 	}
660 	nsid = nla_get_s32(tb[NETNSA_NSID]);
661 
662 	if (tb[NETNSA_PID]) {
663 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
664 		nla = tb[NETNSA_PID];
665 	} else if (tb[NETNSA_FD]) {
666 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
667 		nla = tb[NETNSA_FD];
668 	} else {
669 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
670 		return -EINVAL;
671 	}
672 	if (IS_ERR(peer)) {
673 		NL_SET_BAD_ATTR(extack, nla);
674 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
675 		return PTR_ERR(peer);
676 	}
677 
678 	spin_lock_bh(&net->nsid_lock);
679 	if (__peernet2id(net, peer) >= 0) {
680 		spin_unlock_bh(&net->nsid_lock);
681 		err = -EEXIST;
682 		NL_SET_BAD_ATTR(extack, nla);
683 		NL_SET_ERR_MSG(extack,
684 			       "Peer netns already has a nsid assigned");
685 		goto out;
686 	}
687 
688 	err = alloc_netid(net, peer, nsid);
689 	spin_unlock_bh(&net->nsid_lock);
690 	if (err >= 0) {
691 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
692 		err = 0;
693 	} else if (err == -ENOSPC && nsid >= 0) {
694 		err = -EEXIST;
695 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
696 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
697 	}
698 out:
699 	put_net(peer);
700 	return err;
701 }
702 
703 static int rtnl_net_get_size(void)
704 {
705 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
706 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
707 	       ;
708 }
709 
710 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
711 			 int cmd, struct net *net, int nsid)
712 {
713 	struct nlmsghdr *nlh;
714 	struct rtgenmsg *rth;
715 
716 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
717 	if (!nlh)
718 		return -EMSGSIZE;
719 
720 	rth = nlmsg_data(nlh);
721 	rth->rtgen_family = AF_UNSPEC;
722 
723 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
724 		goto nla_put_failure;
725 
726 	nlmsg_end(skb, nlh);
727 	return 0;
728 
729 nla_put_failure:
730 	nlmsg_cancel(skb, nlh);
731 	return -EMSGSIZE;
732 }
733 
734 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
735 			  struct netlink_ext_ack *extack)
736 {
737 	struct net *net = sock_net(skb->sk);
738 	struct nlattr *tb[NETNSA_MAX + 1];
739 	struct nlattr *nla;
740 	struct sk_buff *msg;
741 	struct net *peer;
742 	int err, id;
743 
744 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
745 			  rtnl_net_policy, extack);
746 	if (err < 0)
747 		return err;
748 	if (tb[NETNSA_PID]) {
749 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
750 		nla = tb[NETNSA_PID];
751 	} else if (tb[NETNSA_FD]) {
752 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
753 		nla = tb[NETNSA_FD];
754 	} else {
755 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
756 		return -EINVAL;
757 	}
758 
759 	if (IS_ERR(peer)) {
760 		NL_SET_BAD_ATTR(extack, nla);
761 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
762 		return PTR_ERR(peer);
763 	}
764 
765 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
766 	if (!msg) {
767 		err = -ENOMEM;
768 		goto out;
769 	}
770 
771 	id = peernet2id(net, peer);
772 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
773 			    RTM_NEWNSID, net, id);
774 	if (err < 0)
775 		goto err_out;
776 
777 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
778 	goto out;
779 
780 err_out:
781 	nlmsg_free(msg);
782 out:
783 	put_net(peer);
784 	return err;
785 }
786 
787 struct rtnl_net_dump_cb {
788 	struct net *net;
789 	struct sk_buff *skb;
790 	struct netlink_callback *cb;
791 	int idx;
792 	int s_idx;
793 };
794 
795 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
796 {
797 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
798 	int ret;
799 
800 	if (net_cb->idx < net_cb->s_idx)
801 		goto cont;
802 
803 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
804 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
805 			    RTM_NEWNSID, net_cb->net, id);
806 	if (ret < 0)
807 		return ret;
808 
809 cont:
810 	net_cb->idx++;
811 	return 0;
812 }
813 
814 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
815 {
816 	struct net *net = sock_net(skb->sk);
817 	struct rtnl_net_dump_cb net_cb = {
818 		.net = net,
819 		.skb = skb,
820 		.cb = cb,
821 		.idx = 0,
822 		.s_idx = cb->args[0],
823 	};
824 
825 	spin_lock_bh(&net->nsid_lock);
826 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
827 	spin_unlock_bh(&net->nsid_lock);
828 
829 	cb->args[0] = net_cb.idx;
830 	return skb->len;
831 }
832 
833 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
834 {
835 	struct sk_buff *msg;
836 	int err = -ENOMEM;
837 
838 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
839 	if (!msg)
840 		goto out;
841 
842 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
843 	if (err < 0)
844 		goto err_out;
845 
846 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
847 	return;
848 
849 err_out:
850 	nlmsg_free(msg);
851 out:
852 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
853 }
854 
855 static int __init net_ns_init(void)
856 {
857 	struct net_generic *ng;
858 
859 #ifdef CONFIG_NET_NS
860 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
861 					SMP_CACHE_BYTES,
862 					SLAB_PANIC, NULL);
863 
864 	/* Create workqueue for cleanup */
865 	netns_wq = create_singlethread_workqueue("netns");
866 	if (!netns_wq)
867 		panic("Could not create netns workq");
868 #endif
869 
870 	ng = net_alloc_generic();
871 	if (!ng)
872 		panic("Could not allocate generic netns");
873 
874 	rcu_assign_pointer(init_net.gen, ng);
875 
876 	mutex_lock(&net_mutex);
877 	if (setup_net(&init_net, &init_user_ns))
878 		panic("Could not setup the initial network namespace");
879 
880 	init_net_initialized = true;
881 	mutex_unlock(&net_mutex);
882 
883 	register_pernet_subsys(&net_ns_ops);
884 
885 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
886 		      RTNL_FLAG_DOIT_UNLOCKED);
887 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
888 		      RTNL_FLAG_DOIT_UNLOCKED);
889 
890 	return 0;
891 }
892 
893 pure_initcall(net_ns_init);
894 
895 #ifdef CONFIG_NET_NS
896 static int __register_pernet_operations(struct list_head *list,
897 					struct pernet_operations *ops)
898 {
899 	struct net *net;
900 	int error;
901 	LIST_HEAD(net_exit_list);
902 
903 	list_add_tail(&ops->list, list);
904 	if (ops->init || (ops->id && ops->size)) {
905 		for_each_net(net) {
906 			error = ops_init(ops, net);
907 			if (error)
908 				goto out_undo;
909 			list_add_tail(&net->exit_list, &net_exit_list);
910 		}
911 	}
912 	return 0;
913 
914 out_undo:
915 	/* If I have an error cleanup all namespaces I initialized */
916 	list_del(&ops->list);
917 	ops_exit_list(ops, &net_exit_list);
918 	ops_free_list(ops, &net_exit_list);
919 	return error;
920 }
921 
922 static void __unregister_pernet_operations(struct pernet_operations *ops)
923 {
924 	struct net *net;
925 	LIST_HEAD(net_exit_list);
926 
927 	list_del(&ops->list);
928 	for_each_net(net)
929 		list_add_tail(&net->exit_list, &net_exit_list);
930 	ops_exit_list(ops, &net_exit_list);
931 	ops_free_list(ops, &net_exit_list);
932 }
933 
934 #else
935 
936 static int __register_pernet_operations(struct list_head *list,
937 					struct pernet_operations *ops)
938 {
939 	if (!init_net_initialized) {
940 		list_add_tail(&ops->list, list);
941 		return 0;
942 	}
943 
944 	return ops_init(ops, &init_net);
945 }
946 
947 static void __unregister_pernet_operations(struct pernet_operations *ops)
948 {
949 	if (!init_net_initialized) {
950 		list_del(&ops->list);
951 	} else {
952 		LIST_HEAD(net_exit_list);
953 		list_add(&init_net.exit_list, &net_exit_list);
954 		ops_exit_list(ops, &net_exit_list);
955 		ops_free_list(ops, &net_exit_list);
956 	}
957 }
958 
959 #endif /* CONFIG_NET_NS */
960 
961 static DEFINE_IDA(net_generic_ids);
962 
963 static int register_pernet_operations(struct list_head *list,
964 				      struct pernet_operations *ops)
965 {
966 	int error;
967 
968 	if (ops->id) {
969 again:
970 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
971 		if (error < 0) {
972 			if (error == -EAGAIN) {
973 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
974 				goto again;
975 			}
976 			return error;
977 		}
978 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
979 	}
980 	error = __register_pernet_operations(list, ops);
981 	if (error) {
982 		rcu_barrier();
983 		if (ops->id)
984 			ida_remove(&net_generic_ids, *ops->id);
985 	}
986 
987 	return error;
988 }
989 
990 static void unregister_pernet_operations(struct pernet_operations *ops)
991 {
992 
993 	__unregister_pernet_operations(ops);
994 	rcu_barrier();
995 	if (ops->id)
996 		ida_remove(&net_generic_ids, *ops->id);
997 }
998 
999 /**
1000  *      register_pernet_subsys - register a network namespace subsystem
1001  *	@ops:  pernet operations structure for the subsystem
1002  *
1003  *	Register a subsystem which has init and exit functions
1004  *	that are called when network namespaces are created and
1005  *	destroyed respectively.
1006  *
1007  *	When registered all network namespace init functions are
1008  *	called for every existing network namespace.  Allowing kernel
1009  *	modules to have a race free view of the set of network namespaces.
1010  *
1011  *	When a new network namespace is created all of the init
1012  *	methods are called in the order in which they were registered.
1013  *
1014  *	When a network namespace is destroyed all of the exit methods
1015  *	are called in the reverse of the order with which they were
1016  *	registered.
1017  */
1018 int register_pernet_subsys(struct pernet_operations *ops)
1019 {
1020 	int error;
1021 	mutex_lock(&net_mutex);
1022 	error =  register_pernet_operations(first_device, ops);
1023 	mutex_unlock(&net_mutex);
1024 	return error;
1025 }
1026 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1027 
1028 /**
1029  *      unregister_pernet_subsys - unregister a network namespace subsystem
1030  *	@ops: pernet operations structure to manipulate
1031  *
1032  *	Remove the pernet operations structure from the list to be
1033  *	used when network namespaces are created or destroyed.  In
1034  *	addition run the exit method for all existing network
1035  *	namespaces.
1036  */
1037 void unregister_pernet_subsys(struct pernet_operations *ops)
1038 {
1039 	mutex_lock(&net_mutex);
1040 	unregister_pernet_operations(ops);
1041 	mutex_unlock(&net_mutex);
1042 }
1043 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1044 
1045 /**
1046  *      register_pernet_device - register a network namespace device
1047  *	@ops:  pernet operations structure for the subsystem
1048  *
1049  *	Register a device which has init and exit functions
1050  *	that are called when network namespaces are created and
1051  *	destroyed respectively.
1052  *
1053  *	When registered all network namespace init functions are
1054  *	called for every existing network namespace.  Allowing kernel
1055  *	modules to have a race free view of the set of network namespaces.
1056  *
1057  *	When a new network namespace is created all of the init
1058  *	methods are called in the order in which they were registered.
1059  *
1060  *	When a network namespace is destroyed all of the exit methods
1061  *	are called in the reverse of the order with which they were
1062  *	registered.
1063  */
1064 int register_pernet_device(struct pernet_operations *ops)
1065 {
1066 	int error;
1067 	mutex_lock(&net_mutex);
1068 	error = register_pernet_operations(&pernet_list, ops);
1069 	if (!error && (first_device == &pernet_list))
1070 		first_device = &ops->list;
1071 	mutex_unlock(&net_mutex);
1072 	return error;
1073 }
1074 EXPORT_SYMBOL_GPL(register_pernet_device);
1075 
1076 /**
1077  *      unregister_pernet_device - unregister a network namespace netdevice
1078  *	@ops: pernet operations structure to manipulate
1079  *
1080  *	Remove the pernet operations structure from the list to be
1081  *	used when network namespaces are created or destroyed.  In
1082  *	addition run the exit method for all existing network
1083  *	namespaces.
1084  */
1085 void unregister_pernet_device(struct pernet_operations *ops)
1086 {
1087 	mutex_lock(&net_mutex);
1088 	if (&ops->list == first_device)
1089 		first_device = first_device->next;
1090 	unregister_pernet_operations(ops);
1091 	mutex_unlock(&net_mutex);
1092 }
1093 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1094 
1095 #ifdef CONFIG_NET_NS
1096 static struct ns_common *netns_get(struct task_struct *task)
1097 {
1098 	struct net *net = NULL;
1099 	struct nsproxy *nsproxy;
1100 
1101 	task_lock(task);
1102 	nsproxy = task->nsproxy;
1103 	if (nsproxy)
1104 		net = get_net(nsproxy->net_ns);
1105 	task_unlock(task);
1106 
1107 	return net ? &net->ns : NULL;
1108 }
1109 
1110 static inline struct net *to_net_ns(struct ns_common *ns)
1111 {
1112 	return container_of(ns, struct net, ns);
1113 }
1114 
1115 static void netns_put(struct ns_common *ns)
1116 {
1117 	put_net(to_net_ns(ns));
1118 }
1119 
1120 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1121 {
1122 	struct net *net = to_net_ns(ns);
1123 
1124 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1125 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1126 		return -EPERM;
1127 
1128 	put_net(nsproxy->net_ns);
1129 	nsproxy->net_ns = get_net(net);
1130 	return 0;
1131 }
1132 
1133 static struct user_namespace *netns_owner(struct ns_common *ns)
1134 {
1135 	return to_net_ns(ns)->user_ns;
1136 }
1137 
1138 const struct proc_ns_operations netns_operations = {
1139 	.name		= "net",
1140 	.type		= CLONE_NEWNET,
1141 	.get		= netns_get,
1142 	.put		= netns_put,
1143 	.install	= netns_install,
1144 	.owner		= netns_owner,
1145 };
1146 #endif
1147