xref: /openbmc/linux/net/core/net_namespace.c (revision 95f38411)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 static DEFINE_SPINLOCK(nsid_lock);
32 
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35 
36 struct net init_net = {
37 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
38 };
39 EXPORT_SYMBOL(init_net);
40 
41 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
42 
43 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
44 
45 static struct net_generic *net_alloc_generic(void)
46 {
47 	struct net_generic *ng;
48 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
49 
50 	ng = kzalloc(generic_size, GFP_KERNEL);
51 	if (ng)
52 		ng->len = max_gen_ptrs;
53 
54 	return ng;
55 }
56 
57 static int net_assign_generic(struct net *net, int id, void *data)
58 {
59 	struct net_generic *ng, *old_ng;
60 
61 	BUG_ON(!mutex_is_locked(&net_mutex));
62 	BUG_ON(id == 0);
63 
64 	old_ng = rcu_dereference_protected(net->gen,
65 					   lockdep_is_held(&net_mutex));
66 	ng = old_ng;
67 	if (old_ng->len >= id)
68 		goto assign;
69 
70 	ng = net_alloc_generic();
71 	if (ng == NULL)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Some synchronisation notes:
76 	 *
77 	 * The net_generic explores the net->gen array inside rcu
78 	 * read section. Besides once set the net->gen->ptr[x]
79 	 * pointer never changes (see rules in netns/generic.h).
80 	 *
81 	 * That said, we simply duplicate this array and schedule
82 	 * the old copy for kfree after a grace period.
83 	 */
84 
85 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
86 
87 	rcu_assign_pointer(net->gen, ng);
88 	kfree_rcu(old_ng, rcu);
89 assign:
90 	ng->ptr[id - 1] = data;
91 	return 0;
92 }
93 
94 static int ops_init(const struct pernet_operations *ops, struct net *net)
95 {
96 	int err = -ENOMEM;
97 	void *data = NULL;
98 
99 	if (ops->id && ops->size) {
100 		data = kzalloc(ops->size, GFP_KERNEL);
101 		if (!data)
102 			goto out;
103 
104 		err = net_assign_generic(net, *ops->id, data);
105 		if (err)
106 			goto cleanup;
107 	}
108 	err = 0;
109 	if (ops->init)
110 		err = ops->init(net);
111 	if (!err)
112 		return 0;
113 
114 cleanup:
115 	kfree(data);
116 
117 out:
118 	return err;
119 }
120 
121 static void ops_free(const struct pernet_operations *ops, struct net *net)
122 {
123 	if (ops->id && ops->size) {
124 		int id = *ops->id;
125 		kfree(net_generic(net, id));
126 	}
127 }
128 
129 static void ops_exit_list(const struct pernet_operations *ops,
130 			  struct list_head *net_exit_list)
131 {
132 	struct net *net;
133 	if (ops->exit) {
134 		list_for_each_entry(net, net_exit_list, exit_list)
135 			ops->exit(net);
136 	}
137 	if (ops->exit_batch)
138 		ops->exit_batch(net_exit_list);
139 }
140 
141 static void ops_free_list(const struct pernet_operations *ops,
142 			  struct list_head *net_exit_list)
143 {
144 	struct net *net;
145 	if (ops->size && ops->id) {
146 		list_for_each_entry(net, net_exit_list, exit_list)
147 			ops_free(ops, net);
148 	}
149 }
150 
151 /* should be called with nsid_lock held */
152 static int alloc_netid(struct net *net, struct net *peer, int reqid)
153 {
154 	int min = 0, max = 0;
155 
156 	if (reqid >= 0) {
157 		min = reqid;
158 		max = reqid + 1;
159 	}
160 
161 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
162 }
163 
164 /* This function is used by idr_for_each(). If net is equal to peer, the
165  * function returns the id so that idr_for_each() stops. Because we cannot
166  * returns the id 0 (idr_for_each() will not stop), we return the magic value
167  * NET_ID_ZERO (-1) for it.
168  */
169 #define NET_ID_ZERO -1
170 static int net_eq_idr(int id, void *net, void *peer)
171 {
172 	if (net_eq(net, peer))
173 		return id ? : NET_ID_ZERO;
174 	return 0;
175 }
176 
177 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
178  * is set to true, thus the caller knows that the new id must be notified via
179  * rtnl.
180  */
181 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
182 {
183 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
184 	bool alloc_it = *alloc;
185 
186 	*alloc = false;
187 
188 	/* Magic value for id 0. */
189 	if (id == NET_ID_ZERO)
190 		return 0;
191 	if (id > 0)
192 		return id;
193 
194 	if (alloc_it) {
195 		id = alloc_netid(net, peer, -1);
196 		*alloc = true;
197 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
198 	}
199 
200 	return NETNSA_NSID_NOT_ASSIGNED;
201 }
202 
203 /* should be called with nsid_lock held */
204 static int __peernet2id(struct net *net, struct net *peer)
205 {
206 	bool no = false;
207 
208 	return __peernet2id_alloc(net, peer, &no);
209 }
210 
211 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
212 /* This function returns the id of a peer netns. If no id is assigned, one will
213  * be allocated and returned.
214  */
215 int peernet2id_alloc(struct net *net, struct net *peer)
216 {
217 	unsigned long flags;
218 	bool alloc;
219 	int id;
220 
221 	spin_lock_irqsave(&nsid_lock, flags);
222 	alloc = atomic_read(&peer->count) == 0 ? false : true;
223 	id = __peernet2id_alloc(net, peer, &alloc);
224 	spin_unlock_irqrestore(&nsid_lock, flags);
225 	if (alloc && id >= 0)
226 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
227 	return id;
228 }
229 EXPORT_SYMBOL(peernet2id_alloc);
230 
231 /* This function returns, if assigned, the id of a peer netns. */
232 static int peernet2id(struct net *net, struct net *peer)
233 {
234 	unsigned long flags;
235 	int id;
236 
237 	spin_lock_irqsave(&nsid_lock, flags);
238 	id = __peernet2id(net, peer);
239 	spin_unlock_irqrestore(&nsid_lock, flags);
240 	return id;
241 }
242 
243 struct net *get_net_ns_by_id(struct net *net, int id)
244 {
245 	unsigned long flags;
246 	struct net *peer;
247 
248 	if (id < 0)
249 		return NULL;
250 
251 	rcu_read_lock();
252 	spin_lock_irqsave(&nsid_lock, flags);
253 	peer = idr_find(&net->netns_ids, id);
254 	if (peer)
255 		get_net(peer);
256 	spin_unlock_irqrestore(&nsid_lock, flags);
257 	rcu_read_unlock();
258 
259 	return peer;
260 }
261 
262 /*
263  * setup_net runs the initializers for the network namespace object.
264  */
265 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
266 {
267 	/* Must be called with net_mutex held */
268 	const struct pernet_operations *ops, *saved_ops;
269 	int error = 0;
270 	LIST_HEAD(net_exit_list);
271 
272 	atomic_set(&net->count, 1);
273 	atomic_set(&net->passive, 1);
274 	net->dev_base_seq = 1;
275 	net->user_ns = user_ns;
276 	idr_init(&net->netns_ids);
277 
278 	list_for_each_entry(ops, &pernet_list, list) {
279 		error = ops_init(ops, net);
280 		if (error < 0)
281 			goto out_undo;
282 	}
283 out:
284 	return error;
285 
286 out_undo:
287 	/* Walk through the list backwards calling the exit functions
288 	 * for the pernet modules whose init functions did not fail.
289 	 */
290 	list_add(&net->exit_list, &net_exit_list);
291 	saved_ops = ops;
292 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
293 		ops_exit_list(ops, &net_exit_list);
294 
295 	ops = saved_ops;
296 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
297 		ops_free_list(ops, &net_exit_list);
298 
299 	rcu_barrier();
300 	goto out;
301 }
302 
303 
304 #ifdef CONFIG_NET_NS
305 static struct kmem_cache *net_cachep;
306 static struct workqueue_struct *netns_wq;
307 
308 static struct net *net_alloc(void)
309 {
310 	struct net *net = NULL;
311 	struct net_generic *ng;
312 
313 	ng = net_alloc_generic();
314 	if (!ng)
315 		goto out;
316 
317 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
318 	if (!net)
319 		goto out_free;
320 
321 	rcu_assign_pointer(net->gen, ng);
322 out:
323 	return net;
324 
325 out_free:
326 	kfree(ng);
327 	goto out;
328 }
329 
330 static void net_free(struct net *net)
331 {
332 	kfree(rcu_access_pointer(net->gen));
333 	kmem_cache_free(net_cachep, net);
334 }
335 
336 void net_drop_ns(void *p)
337 {
338 	struct net *ns = p;
339 	if (ns && atomic_dec_and_test(&ns->passive))
340 		net_free(ns);
341 }
342 
343 struct net *copy_net_ns(unsigned long flags,
344 			struct user_namespace *user_ns, struct net *old_net)
345 {
346 	struct net *net;
347 	int rv;
348 
349 	if (!(flags & CLONE_NEWNET))
350 		return get_net(old_net);
351 
352 	net = net_alloc();
353 	if (!net)
354 		return ERR_PTR(-ENOMEM);
355 
356 	get_user_ns(user_ns);
357 
358 	mutex_lock(&net_mutex);
359 	rv = setup_net(net, user_ns);
360 	if (rv == 0) {
361 		rtnl_lock();
362 		list_add_tail_rcu(&net->list, &net_namespace_list);
363 		rtnl_unlock();
364 	}
365 	mutex_unlock(&net_mutex);
366 	if (rv < 0) {
367 		put_user_ns(user_ns);
368 		net_drop_ns(net);
369 		return ERR_PTR(rv);
370 	}
371 	return net;
372 }
373 
374 static DEFINE_SPINLOCK(cleanup_list_lock);
375 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
376 
377 static void cleanup_net(struct work_struct *work)
378 {
379 	const struct pernet_operations *ops;
380 	struct net *net, *tmp;
381 	struct list_head net_kill_list;
382 	LIST_HEAD(net_exit_list);
383 
384 	/* Atomically snapshot the list of namespaces to cleanup */
385 	spin_lock_irq(&cleanup_list_lock);
386 	list_replace_init(&cleanup_list, &net_kill_list);
387 	spin_unlock_irq(&cleanup_list_lock);
388 
389 	mutex_lock(&net_mutex);
390 
391 	/* Don't let anyone else find us. */
392 	rtnl_lock();
393 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
394 		list_del_rcu(&net->list);
395 		list_add_tail(&net->exit_list, &net_exit_list);
396 		for_each_net(tmp) {
397 			int id;
398 
399 			spin_lock_irq(&nsid_lock);
400 			id = __peernet2id(tmp, net);
401 			if (id >= 0)
402 				idr_remove(&tmp->netns_ids, id);
403 			spin_unlock_irq(&nsid_lock);
404 			if (id >= 0)
405 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
406 		}
407 		spin_lock_irq(&nsid_lock);
408 		idr_destroy(&net->netns_ids);
409 		spin_unlock_irq(&nsid_lock);
410 
411 	}
412 	rtnl_unlock();
413 
414 	/*
415 	 * Another CPU might be rcu-iterating the list, wait for it.
416 	 * This needs to be before calling the exit() notifiers, so
417 	 * the rcu_barrier() below isn't sufficient alone.
418 	 */
419 	synchronize_rcu();
420 
421 	/* Run all of the network namespace exit methods */
422 	list_for_each_entry_reverse(ops, &pernet_list, list)
423 		ops_exit_list(ops, &net_exit_list);
424 
425 	/* Free the net generic variables */
426 	list_for_each_entry_reverse(ops, &pernet_list, list)
427 		ops_free_list(ops, &net_exit_list);
428 
429 	mutex_unlock(&net_mutex);
430 
431 	/* Ensure there are no outstanding rcu callbacks using this
432 	 * network namespace.
433 	 */
434 	rcu_barrier();
435 
436 	/* Finally it is safe to free my network namespace structure */
437 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
438 		list_del_init(&net->exit_list);
439 		put_user_ns(net->user_ns);
440 		net_drop_ns(net);
441 	}
442 }
443 static DECLARE_WORK(net_cleanup_work, cleanup_net);
444 
445 void __put_net(struct net *net)
446 {
447 	/* Cleanup the network namespace in process context */
448 	unsigned long flags;
449 
450 	spin_lock_irqsave(&cleanup_list_lock, flags);
451 	list_add(&net->cleanup_list, &cleanup_list);
452 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
453 
454 	queue_work(netns_wq, &net_cleanup_work);
455 }
456 EXPORT_SYMBOL_GPL(__put_net);
457 
458 struct net *get_net_ns_by_fd(int fd)
459 {
460 	struct file *file;
461 	struct ns_common *ns;
462 	struct net *net;
463 
464 	file = proc_ns_fget(fd);
465 	if (IS_ERR(file))
466 		return ERR_CAST(file);
467 
468 	ns = get_proc_ns(file_inode(file));
469 	if (ns->ops == &netns_operations)
470 		net = get_net(container_of(ns, struct net, ns));
471 	else
472 		net = ERR_PTR(-EINVAL);
473 
474 	fput(file);
475 	return net;
476 }
477 
478 #else
479 struct net *get_net_ns_by_fd(int fd)
480 {
481 	return ERR_PTR(-EINVAL);
482 }
483 #endif
484 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
485 
486 struct net *get_net_ns_by_pid(pid_t pid)
487 {
488 	struct task_struct *tsk;
489 	struct net *net;
490 
491 	/* Lookup the network namespace */
492 	net = ERR_PTR(-ESRCH);
493 	rcu_read_lock();
494 	tsk = find_task_by_vpid(pid);
495 	if (tsk) {
496 		struct nsproxy *nsproxy;
497 		task_lock(tsk);
498 		nsproxy = tsk->nsproxy;
499 		if (nsproxy)
500 			net = get_net(nsproxy->net_ns);
501 		task_unlock(tsk);
502 	}
503 	rcu_read_unlock();
504 	return net;
505 }
506 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
507 
508 static __net_init int net_ns_net_init(struct net *net)
509 {
510 #ifdef CONFIG_NET_NS
511 	net->ns.ops = &netns_operations;
512 #endif
513 	return ns_alloc_inum(&net->ns);
514 }
515 
516 static __net_exit void net_ns_net_exit(struct net *net)
517 {
518 	ns_free_inum(&net->ns);
519 }
520 
521 static struct pernet_operations __net_initdata net_ns_ops = {
522 	.init = net_ns_net_init,
523 	.exit = net_ns_net_exit,
524 };
525 
526 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
527 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
528 	[NETNSA_NSID]		= { .type = NLA_S32 },
529 	[NETNSA_PID]		= { .type = NLA_U32 },
530 	[NETNSA_FD]		= { .type = NLA_U32 },
531 };
532 
533 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
534 {
535 	struct net *net = sock_net(skb->sk);
536 	struct nlattr *tb[NETNSA_MAX + 1];
537 	unsigned long flags;
538 	struct net *peer;
539 	int nsid, err;
540 
541 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
542 			  rtnl_net_policy);
543 	if (err < 0)
544 		return err;
545 	if (!tb[NETNSA_NSID])
546 		return -EINVAL;
547 	nsid = nla_get_s32(tb[NETNSA_NSID]);
548 
549 	if (tb[NETNSA_PID])
550 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
551 	else if (tb[NETNSA_FD])
552 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
553 	else
554 		return -EINVAL;
555 	if (IS_ERR(peer))
556 		return PTR_ERR(peer);
557 
558 	spin_lock_irqsave(&nsid_lock, flags);
559 	if (__peernet2id(net, peer) >= 0) {
560 		err = -EEXIST;
561 		goto out;
562 	}
563 
564 	err = alloc_netid(net, peer, nsid);
565 	spin_unlock_irqrestore(&nsid_lock, flags);
566 	if (err >= 0) {
567 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
568 		err = 0;
569 	}
570 out:
571 	put_net(peer);
572 	return err;
573 }
574 
575 static int rtnl_net_get_size(void)
576 {
577 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
578 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
579 	       ;
580 }
581 
582 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
583 			 int cmd, struct net *net, int nsid)
584 {
585 	struct nlmsghdr *nlh;
586 	struct rtgenmsg *rth;
587 
588 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
589 	if (!nlh)
590 		return -EMSGSIZE;
591 
592 	rth = nlmsg_data(nlh);
593 	rth->rtgen_family = AF_UNSPEC;
594 
595 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
596 		goto nla_put_failure;
597 
598 	nlmsg_end(skb, nlh);
599 	return 0;
600 
601 nla_put_failure:
602 	nlmsg_cancel(skb, nlh);
603 	return -EMSGSIZE;
604 }
605 
606 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
607 {
608 	struct net *net = sock_net(skb->sk);
609 	struct nlattr *tb[NETNSA_MAX + 1];
610 	struct sk_buff *msg;
611 	struct net *peer;
612 	int err, id;
613 
614 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
615 			  rtnl_net_policy);
616 	if (err < 0)
617 		return err;
618 	if (tb[NETNSA_PID])
619 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
620 	else if (tb[NETNSA_FD])
621 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
622 	else
623 		return -EINVAL;
624 
625 	if (IS_ERR(peer))
626 		return PTR_ERR(peer);
627 
628 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
629 	if (!msg) {
630 		err = -ENOMEM;
631 		goto out;
632 	}
633 
634 	id = peernet2id(net, peer);
635 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
636 			    RTM_GETNSID, net, id);
637 	if (err < 0)
638 		goto err_out;
639 
640 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
641 	goto out;
642 
643 err_out:
644 	nlmsg_free(msg);
645 out:
646 	put_net(peer);
647 	return err;
648 }
649 
650 struct rtnl_net_dump_cb {
651 	struct net *net;
652 	struct sk_buff *skb;
653 	struct netlink_callback *cb;
654 	int idx;
655 	int s_idx;
656 };
657 
658 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
659 {
660 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
661 	int ret;
662 
663 	if (net_cb->idx < net_cb->s_idx)
664 		goto cont;
665 
666 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
667 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
668 			    RTM_NEWNSID, net_cb->net, id);
669 	if (ret < 0)
670 		return ret;
671 
672 cont:
673 	net_cb->idx++;
674 	return 0;
675 }
676 
677 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
678 {
679 	struct net *net = sock_net(skb->sk);
680 	struct rtnl_net_dump_cb net_cb = {
681 		.net = net,
682 		.skb = skb,
683 		.cb = cb,
684 		.idx = 0,
685 		.s_idx = cb->args[0],
686 	};
687 	unsigned long flags;
688 
689 	spin_lock_irqsave(&nsid_lock, flags);
690 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
691 	spin_unlock_irqrestore(&nsid_lock, flags);
692 
693 	cb->args[0] = net_cb.idx;
694 	return skb->len;
695 }
696 
697 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
698 {
699 	struct sk_buff *msg;
700 	int err = -ENOMEM;
701 
702 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
703 	if (!msg)
704 		goto out;
705 
706 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
707 	if (err < 0)
708 		goto err_out;
709 
710 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
711 	return;
712 
713 err_out:
714 	nlmsg_free(msg);
715 out:
716 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
717 }
718 
719 static int __init net_ns_init(void)
720 {
721 	struct net_generic *ng;
722 
723 #ifdef CONFIG_NET_NS
724 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
725 					SMP_CACHE_BYTES,
726 					SLAB_PANIC, NULL);
727 
728 	/* Create workqueue for cleanup */
729 	netns_wq = create_singlethread_workqueue("netns");
730 	if (!netns_wq)
731 		panic("Could not create netns workq");
732 #endif
733 
734 	ng = net_alloc_generic();
735 	if (!ng)
736 		panic("Could not allocate generic netns");
737 
738 	rcu_assign_pointer(init_net.gen, ng);
739 
740 	mutex_lock(&net_mutex);
741 	if (setup_net(&init_net, &init_user_ns))
742 		panic("Could not setup the initial network namespace");
743 
744 	rtnl_lock();
745 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
746 	rtnl_unlock();
747 
748 	mutex_unlock(&net_mutex);
749 
750 	register_pernet_subsys(&net_ns_ops);
751 
752 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
753 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
754 		      NULL);
755 
756 	return 0;
757 }
758 
759 pure_initcall(net_ns_init);
760 
761 #ifdef CONFIG_NET_NS
762 static int __register_pernet_operations(struct list_head *list,
763 					struct pernet_operations *ops)
764 {
765 	struct net *net;
766 	int error;
767 	LIST_HEAD(net_exit_list);
768 
769 	list_add_tail(&ops->list, list);
770 	if (ops->init || (ops->id && ops->size)) {
771 		for_each_net(net) {
772 			error = ops_init(ops, net);
773 			if (error)
774 				goto out_undo;
775 			list_add_tail(&net->exit_list, &net_exit_list);
776 		}
777 	}
778 	return 0;
779 
780 out_undo:
781 	/* If I have an error cleanup all namespaces I initialized */
782 	list_del(&ops->list);
783 	ops_exit_list(ops, &net_exit_list);
784 	ops_free_list(ops, &net_exit_list);
785 	return error;
786 }
787 
788 static void __unregister_pernet_operations(struct pernet_operations *ops)
789 {
790 	struct net *net;
791 	LIST_HEAD(net_exit_list);
792 
793 	list_del(&ops->list);
794 	for_each_net(net)
795 		list_add_tail(&net->exit_list, &net_exit_list);
796 	ops_exit_list(ops, &net_exit_list);
797 	ops_free_list(ops, &net_exit_list);
798 }
799 
800 #else
801 
802 static int __register_pernet_operations(struct list_head *list,
803 					struct pernet_operations *ops)
804 {
805 	return ops_init(ops, &init_net);
806 }
807 
808 static void __unregister_pernet_operations(struct pernet_operations *ops)
809 {
810 	LIST_HEAD(net_exit_list);
811 	list_add(&init_net.exit_list, &net_exit_list);
812 	ops_exit_list(ops, &net_exit_list);
813 	ops_free_list(ops, &net_exit_list);
814 }
815 
816 #endif /* CONFIG_NET_NS */
817 
818 static DEFINE_IDA(net_generic_ids);
819 
820 static int register_pernet_operations(struct list_head *list,
821 				      struct pernet_operations *ops)
822 {
823 	int error;
824 
825 	if (ops->id) {
826 again:
827 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
828 		if (error < 0) {
829 			if (error == -EAGAIN) {
830 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
831 				goto again;
832 			}
833 			return error;
834 		}
835 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
836 	}
837 	error = __register_pernet_operations(list, ops);
838 	if (error) {
839 		rcu_barrier();
840 		if (ops->id)
841 			ida_remove(&net_generic_ids, *ops->id);
842 	}
843 
844 	return error;
845 }
846 
847 static void unregister_pernet_operations(struct pernet_operations *ops)
848 {
849 
850 	__unregister_pernet_operations(ops);
851 	rcu_barrier();
852 	if (ops->id)
853 		ida_remove(&net_generic_ids, *ops->id);
854 }
855 
856 /**
857  *      register_pernet_subsys - register a network namespace subsystem
858  *	@ops:  pernet operations structure for the subsystem
859  *
860  *	Register a subsystem which has init and exit functions
861  *	that are called when network namespaces are created and
862  *	destroyed respectively.
863  *
864  *	When registered all network namespace init functions are
865  *	called for every existing network namespace.  Allowing kernel
866  *	modules to have a race free view of the set of network namespaces.
867  *
868  *	When a new network namespace is created all of the init
869  *	methods are called in the order in which they were registered.
870  *
871  *	When a network namespace is destroyed all of the exit methods
872  *	are called in the reverse of the order with which they were
873  *	registered.
874  */
875 int register_pernet_subsys(struct pernet_operations *ops)
876 {
877 	int error;
878 	mutex_lock(&net_mutex);
879 	error =  register_pernet_operations(first_device, ops);
880 	mutex_unlock(&net_mutex);
881 	return error;
882 }
883 EXPORT_SYMBOL_GPL(register_pernet_subsys);
884 
885 /**
886  *      unregister_pernet_subsys - unregister a network namespace subsystem
887  *	@ops: pernet operations structure to manipulate
888  *
889  *	Remove the pernet operations structure from the list to be
890  *	used when network namespaces are created or destroyed.  In
891  *	addition run the exit method for all existing network
892  *	namespaces.
893  */
894 void unregister_pernet_subsys(struct pernet_operations *ops)
895 {
896 	mutex_lock(&net_mutex);
897 	unregister_pernet_operations(ops);
898 	mutex_unlock(&net_mutex);
899 }
900 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
901 
902 /**
903  *      register_pernet_device - register a network namespace device
904  *	@ops:  pernet operations structure for the subsystem
905  *
906  *	Register a device which has init and exit functions
907  *	that are called when network namespaces are created and
908  *	destroyed respectively.
909  *
910  *	When registered all network namespace init functions are
911  *	called for every existing network namespace.  Allowing kernel
912  *	modules to have a race free view of the set of network namespaces.
913  *
914  *	When a new network namespace is created all of the init
915  *	methods are called in the order in which they were registered.
916  *
917  *	When a network namespace is destroyed all of the exit methods
918  *	are called in the reverse of the order with which they were
919  *	registered.
920  */
921 int register_pernet_device(struct pernet_operations *ops)
922 {
923 	int error;
924 	mutex_lock(&net_mutex);
925 	error = register_pernet_operations(&pernet_list, ops);
926 	if (!error && (first_device == &pernet_list))
927 		first_device = &ops->list;
928 	mutex_unlock(&net_mutex);
929 	return error;
930 }
931 EXPORT_SYMBOL_GPL(register_pernet_device);
932 
933 /**
934  *      unregister_pernet_device - unregister a network namespace netdevice
935  *	@ops: pernet operations structure to manipulate
936  *
937  *	Remove the pernet operations structure from the list to be
938  *	used when network namespaces are created or destroyed.  In
939  *	addition run the exit method for all existing network
940  *	namespaces.
941  */
942 void unregister_pernet_device(struct pernet_operations *ops)
943 {
944 	mutex_lock(&net_mutex);
945 	if (&ops->list == first_device)
946 		first_device = first_device->next;
947 	unregister_pernet_operations(ops);
948 	mutex_unlock(&net_mutex);
949 }
950 EXPORT_SYMBOL_GPL(unregister_pernet_device);
951 
952 #ifdef CONFIG_NET_NS
953 static struct ns_common *netns_get(struct task_struct *task)
954 {
955 	struct net *net = NULL;
956 	struct nsproxy *nsproxy;
957 
958 	task_lock(task);
959 	nsproxy = task->nsproxy;
960 	if (nsproxy)
961 		net = get_net(nsproxy->net_ns);
962 	task_unlock(task);
963 
964 	return net ? &net->ns : NULL;
965 }
966 
967 static inline struct net *to_net_ns(struct ns_common *ns)
968 {
969 	return container_of(ns, struct net, ns);
970 }
971 
972 static void netns_put(struct ns_common *ns)
973 {
974 	put_net(to_net_ns(ns));
975 }
976 
977 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
978 {
979 	struct net *net = to_net_ns(ns);
980 
981 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
982 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
983 		return -EPERM;
984 
985 	put_net(nsproxy->net_ns);
986 	nsproxy->net_ns = get_net(net);
987 	return 0;
988 }
989 
990 const struct proc_ns_operations netns_operations = {
991 	.name		= "net",
992 	.type		= CLONE_NEWNET,
993 	.get		= netns_get,
994 	.put		= netns_put,
995 	.install	= netns_install,
996 };
997 #endif
998