xref: /openbmc/linux/net/core/net_namespace.c (revision 92a2c6b2)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/rtnetlink.h>
20 #include <net/sock.h>
21 #include <net/netlink.h>
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 
25 /*
26  *	Our network namespace constructor/destructor lists
27  */
28 
29 static LIST_HEAD(pernet_list);
30 static struct list_head *first_device = &pernet_list;
31 DEFINE_MUTEX(net_mutex);
32 
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35 
36 struct net init_net = {
37 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
38 };
39 EXPORT_SYMBOL(init_net);
40 
41 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
42 
43 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
44 
45 static struct net_generic *net_alloc_generic(void)
46 {
47 	struct net_generic *ng;
48 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
49 
50 	ng = kzalloc(generic_size, GFP_KERNEL);
51 	if (ng)
52 		ng->len = max_gen_ptrs;
53 
54 	return ng;
55 }
56 
57 static int net_assign_generic(struct net *net, int id, void *data)
58 {
59 	struct net_generic *ng, *old_ng;
60 
61 	BUG_ON(!mutex_is_locked(&net_mutex));
62 	BUG_ON(id == 0);
63 
64 	old_ng = rcu_dereference_protected(net->gen,
65 					   lockdep_is_held(&net_mutex));
66 	ng = old_ng;
67 	if (old_ng->len >= id)
68 		goto assign;
69 
70 	ng = net_alloc_generic();
71 	if (ng == NULL)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Some synchronisation notes:
76 	 *
77 	 * The net_generic explores the net->gen array inside rcu
78 	 * read section. Besides once set the net->gen->ptr[x]
79 	 * pointer never changes (see rules in netns/generic.h).
80 	 *
81 	 * That said, we simply duplicate this array and schedule
82 	 * the old copy for kfree after a grace period.
83 	 */
84 
85 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
86 
87 	rcu_assign_pointer(net->gen, ng);
88 	kfree_rcu(old_ng, rcu);
89 assign:
90 	ng->ptr[id - 1] = data;
91 	return 0;
92 }
93 
94 static int ops_init(const struct pernet_operations *ops, struct net *net)
95 {
96 	int err = -ENOMEM;
97 	void *data = NULL;
98 
99 	if (ops->id && ops->size) {
100 		data = kzalloc(ops->size, GFP_KERNEL);
101 		if (!data)
102 			goto out;
103 
104 		err = net_assign_generic(net, *ops->id, data);
105 		if (err)
106 			goto cleanup;
107 	}
108 	err = 0;
109 	if (ops->init)
110 		err = ops->init(net);
111 	if (!err)
112 		return 0;
113 
114 cleanup:
115 	kfree(data);
116 
117 out:
118 	return err;
119 }
120 
121 static void ops_free(const struct pernet_operations *ops, struct net *net)
122 {
123 	if (ops->id && ops->size) {
124 		int id = *ops->id;
125 		kfree(net_generic(net, id));
126 	}
127 }
128 
129 static void ops_exit_list(const struct pernet_operations *ops,
130 			  struct list_head *net_exit_list)
131 {
132 	struct net *net;
133 	if (ops->exit) {
134 		list_for_each_entry(net, net_exit_list, exit_list)
135 			ops->exit(net);
136 	}
137 	if (ops->exit_batch)
138 		ops->exit_batch(net_exit_list);
139 }
140 
141 static void ops_free_list(const struct pernet_operations *ops,
142 			  struct list_head *net_exit_list)
143 {
144 	struct net *net;
145 	if (ops->size && ops->id) {
146 		list_for_each_entry(net, net_exit_list, exit_list)
147 			ops_free(ops, net);
148 	}
149 }
150 
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 	int min = 0, max = 0;
154 
155 	ASSERT_RTNL();
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
163 }
164 
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166  * function returns the id so that idr_for_each() stops. Because we cannot
167  * returns the id 0 (idr_for_each() will not stop), we return the magic value
168  * NET_ID_ZERO (-1) for it.
169  */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 	if (net_eq(net, peer))
174 		return id ? : NET_ID_ZERO;
175 	return 0;
176 }
177 
178 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
179 {
180 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
181 
182 	ASSERT_RTNL();
183 
184 	/* Magic value for id 0. */
185 	if (id == NET_ID_ZERO)
186 		return 0;
187 	if (id > 0)
188 		return id;
189 
190 	if (alloc)
191 		return alloc_netid(net, peer, -1);
192 
193 	return -ENOENT;
194 }
195 
196 /* This function returns the id of a peer netns. If no id is assigned, one will
197  * be allocated and returned.
198  */
199 int peernet2id(struct net *net, struct net *peer)
200 {
201 	int id = __peernet2id(net, peer, true);
202 
203 	return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
204 }
205 EXPORT_SYMBOL(peernet2id);
206 
207 struct net *get_net_ns_by_id(struct net *net, int id)
208 {
209 	struct net *peer;
210 
211 	if (id < 0)
212 		return NULL;
213 
214 	rcu_read_lock();
215 	peer = idr_find(&net->netns_ids, id);
216 	if (peer)
217 		get_net(peer);
218 	rcu_read_unlock();
219 
220 	return peer;
221 }
222 
223 /*
224  * setup_net runs the initializers for the network namespace object.
225  */
226 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
227 {
228 	/* Must be called with net_mutex held */
229 	const struct pernet_operations *ops, *saved_ops;
230 	int error = 0;
231 	LIST_HEAD(net_exit_list);
232 
233 	atomic_set(&net->count, 1);
234 	atomic_set(&net->passive, 1);
235 	net->dev_base_seq = 1;
236 	net->user_ns = user_ns;
237 	idr_init(&net->netns_ids);
238 
239 #ifdef NETNS_REFCNT_DEBUG
240 	atomic_set(&net->use_count, 0);
241 #endif
242 
243 	list_for_each_entry(ops, &pernet_list, list) {
244 		error = ops_init(ops, net);
245 		if (error < 0)
246 			goto out_undo;
247 	}
248 out:
249 	return error;
250 
251 out_undo:
252 	/* Walk through the list backwards calling the exit functions
253 	 * for the pernet modules whose init functions did not fail.
254 	 */
255 	list_add(&net->exit_list, &net_exit_list);
256 	saved_ops = ops;
257 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
258 		ops_exit_list(ops, &net_exit_list);
259 
260 	ops = saved_ops;
261 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
262 		ops_free_list(ops, &net_exit_list);
263 
264 	rcu_barrier();
265 	goto out;
266 }
267 
268 
269 #ifdef CONFIG_NET_NS
270 static struct kmem_cache *net_cachep;
271 static struct workqueue_struct *netns_wq;
272 
273 static struct net *net_alloc(void)
274 {
275 	struct net *net = NULL;
276 	struct net_generic *ng;
277 
278 	ng = net_alloc_generic();
279 	if (!ng)
280 		goto out;
281 
282 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
283 	if (!net)
284 		goto out_free;
285 
286 	rcu_assign_pointer(net->gen, ng);
287 out:
288 	return net;
289 
290 out_free:
291 	kfree(ng);
292 	goto out;
293 }
294 
295 static void net_free(struct net *net)
296 {
297 #ifdef NETNS_REFCNT_DEBUG
298 	if (unlikely(atomic_read(&net->use_count) != 0)) {
299 		pr_emerg("network namespace not free! Usage: %d\n",
300 			 atomic_read(&net->use_count));
301 		return;
302 	}
303 #endif
304 	kfree(rcu_access_pointer(net->gen));
305 	kmem_cache_free(net_cachep, net);
306 }
307 
308 void net_drop_ns(void *p)
309 {
310 	struct net *ns = p;
311 	if (ns && atomic_dec_and_test(&ns->passive))
312 		net_free(ns);
313 }
314 
315 struct net *copy_net_ns(unsigned long flags,
316 			struct user_namespace *user_ns, struct net *old_net)
317 {
318 	struct net *net;
319 	int rv;
320 
321 	if (!(flags & CLONE_NEWNET))
322 		return get_net(old_net);
323 
324 	net = net_alloc();
325 	if (!net)
326 		return ERR_PTR(-ENOMEM);
327 
328 	get_user_ns(user_ns);
329 
330 	mutex_lock(&net_mutex);
331 	rv = setup_net(net, user_ns);
332 	if (rv == 0) {
333 		rtnl_lock();
334 		list_add_tail_rcu(&net->list, &net_namespace_list);
335 		rtnl_unlock();
336 	}
337 	mutex_unlock(&net_mutex);
338 	if (rv < 0) {
339 		put_user_ns(user_ns);
340 		net_drop_ns(net);
341 		return ERR_PTR(rv);
342 	}
343 	return net;
344 }
345 
346 static DEFINE_SPINLOCK(cleanup_list_lock);
347 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
348 
349 static void cleanup_net(struct work_struct *work)
350 {
351 	const struct pernet_operations *ops;
352 	struct net *net, *tmp;
353 	struct list_head net_kill_list;
354 	LIST_HEAD(net_exit_list);
355 
356 	/* Atomically snapshot the list of namespaces to cleanup */
357 	spin_lock_irq(&cleanup_list_lock);
358 	list_replace_init(&cleanup_list, &net_kill_list);
359 	spin_unlock_irq(&cleanup_list_lock);
360 
361 	mutex_lock(&net_mutex);
362 
363 	/* Don't let anyone else find us. */
364 	rtnl_lock();
365 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
366 		list_del_rcu(&net->list);
367 		list_add_tail(&net->exit_list, &net_exit_list);
368 		for_each_net(tmp) {
369 			int id = __peernet2id(tmp, net, false);
370 
371 			if (id >= 0)
372 				idr_remove(&tmp->netns_ids, id);
373 		}
374 		idr_destroy(&net->netns_ids);
375 
376 	}
377 	rtnl_unlock();
378 
379 	/*
380 	 * Another CPU might be rcu-iterating the list, wait for it.
381 	 * This needs to be before calling the exit() notifiers, so
382 	 * the rcu_barrier() below isn't sufficient alone.
383 	 */
384 	synchronize_rcu();
385 
386 	/* Run all of the network namespace exit methods */
387 	list_for_each_entry_reverse(ops, &pernet_list, list)
388 		ops_exit_list(ops, &net_exit_list);
389 
390 	/* Free the net generic variables */
391 	list_for_each_entry_reverse(ops, &pernet_list, list)
392 		ops_free_list(ops, &net_exit_list);
393 
394 	mutex_unlock(&net_mutex);
395 
396 	/* Ensure there are no outstanding rcu callbacks using this
397 	 * network namespace.
398 	 */
399 	rcu_barrier();
400 
401 	/* Finally it is safe to free my network namespace structure */
402 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
403 		list_del_init(&net->exit_list);
404 		put_user_ns(net->user_ns);
405 		net_drop_ns(net);
406 	}
407 }
408 static DECLARE_WORK(net_cleanup_work, cleanup_net);
409 
410 void __put_net(struct net *net)
411 {
412 	/* Cleanup the network namespace in process context */
413 	unsigned long flags;
414 
415 	spin_lock_irqsave(&cleanup_list_lock, flags);
416 	list_add(&net->cleanup_list, &cleanup_list);
417 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
418 
419 	queue_work(netns_wq, &net_cleanup_work);
420 }
421 EXPORT_SYMBOL_GPL(__put_net);
422 
423 struct net *get_net_ns_by_fd(int fd)
424 {
425 	struct file *file;
426 	struct ns_common *ns;
427 	struct net *net;
428 
429 	file = proc_ns_fget(fd);
430 	if (IS_ERR(file))
431 		return ERR_CAST(file);
432 
433 	ns = get_proc_ns(file_inode(file));
434 	if (ns->ops == &netns_operations)
435 		net = get_net(container_of(ns, struct net, ns));
436 	else
437 		net = ERR_PTR(-EINVAL);
438 
439 	fput(file);
440 	return net;
441 }
442 
443 #else
444 struct net *get_net_ns_by_fd(int fd)
445 {
446 	return ERR_PTR(-EINVAL);
447 }
448 #endif
449 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
450 
451 struct net *get_net_ns_by_pid(pid_t pid)
452 {
453 	struct task_struct *tsk;
454 	struct net *net;
455 
456 	/* Lookup the network namespace */
457 	net = ERR_PTR(-ESRCH);
458 	rcu_read_lock();
459 	tsk = find_task_by_vpid(pid);
460 	if (tsk) {
461 		struct nsproxy *nsproxy;
462 		task_lock(tsk);
463 		nsproxy = tsk->nsproxy;
464 		if (nsproxy)
465 			net = get_net(nsproxy->net_ns);
466 		task_unlock(tsk);
467 	}
468 	rcu_read_unlock();
469 	return net;
470 }
471 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
472 
473 static __net_init int net_ns_net_init(struct net *net)
474 {
475 #ifdef CONFIG_NET_NS
476 	net->ns.ops = &netns_operations;
477 #endif
478 	return ns_alloc_inum(&net->ns);
479 }
480 
481 static __net_exit void net_ns_net_exit(struct net *net)
482 {
483 	ns_free_inum(&net->ns);
484 }
485 
486 static struct pernet_operations __net_initdata net_ns_ops = {
487 	.init = net_ns_net_init,
488 	.exit = net_ns_net_exit,
489 };
490 
491 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
492 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
493 	[NETNSA_NSID]		= { .type = NLA_S32 },
494 	[NETNSA_PID]		= { .type = NLA_U32 },
495 	[NETNSA_FD]		= { .type = NLA_U32 },
496 };
497 
498 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
499 {
500 	struct net *net = sock_net(skb->sk);
501 	struct nlattr *tb[NETNSA_MAX + 1];
502 	struct net *peer;
503 	int nsid, err;
504 
505 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
506 			  rtnl_net_policy);
507 	if (err < 0)
508 		return err;
509 	if (!tb[NETNSA_NSID])
510 		return -EINVAL;
511 	nsid = nla_get_s32(tb[NETNSA_NSID]);
512 
513 	if (tb[NETNSA_PID])
514 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
515 	else if (tb[NETNSA_FD])
516 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
517 	else
518 		return -EINVAL;
519 	if (IS_ERR(peer))
520 		return PTR_ERR(peer);
521 
522 	if (__peernet2id(net, peer, false) >= 0) {
523 		err = -EEXIST;
524 		goto out;
525 	}
526 
527 	err = alloc_netid(net, peer, nsid);
528 	if (err > 0)
529 		err = 0;
530 out:
531 	put_net(peer);
532 	return err;
533 }
534 
535 static int rtnl_net_get_size(void)
536 {
537 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
538 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
539 	       ;
540 }
541 
542 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
543 			 int cmd, struct net *net, struct net *peer)
544 {
545 	struct nlmsghdr *nlh;
546 	struct rtgenmsg *rth;
547 	int id;
548 
549 	ASSERT_RTNL();
550 
551 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
552 	if (!nlh)
553 		return -EMSGSIZE;
554 
555 	rth = nlmsg_data(nlh);
556 	rth->rtgen_family = AF_UNSPEC;
557 
558 	id = __peernet2id(net, peer, false);
559 	if  (id < 0)
560 		id = NETNSA_NSID_NOT_ASSIGNED;
561 	if (nla_put_s32(skb, NETNSA_NSID, id))
562 		goto nla_put_failure;
563 
564 	nlmsg_end(skb, nlh);
565 	return 0;
566 
567 nla_put_failure:
568 	nlmsg_cancel(skb, nlh);
569 	return -EMSGSIZE;
570 }
571 
572 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
573 {
574 	struct net *net = sock_net(skb->sk);
575 	struct nlattr *tb[NETNSA_MAX + 1];
576 	struct sk_buff *msg;
577 	int err = -ENOBUFS;
578 	struct net *peer;
579 
580 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
581 			  rtnl_net_policy);
582 	if (err < 0)
583 		return err;
584 	if (tb[NETNSA_PID])
585 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
586 	else if (tb[NETNSA_FD])
587 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
588 	else
589 		return -EINVAL;
590 
591 	if (IS_ERR(peer))
592 		return PTR_ERR(peer);
593 
594 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
595 	if (!msg) {
596 		err = -ENOMEM;
597 		goto out;
598 	}
599 
600 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
601 			    RTM_GETNSID, net, peer);
602 	if (err < 0)
603 		goto err_out;
604 
605 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
606 	goto out;
607 
608 err_out:
609 	nlmsg_free(msg);
610 out:
611 	put_net(peer);
612 	return err;
613 }
614 
615 static int __init net_ns_init(void)
616 {
617 	struct net_generic *ng;
618 
619 #ifdef CONFIG_NET_NS
620 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
621 					SMP_CACHE_BYTES,
622 					SLAB_PANIC, NULL);
623 
624 	/* Create workqueue for cleanup */
625 	netns_wq = create_singlethread_workqueue("netns");
626 	if (!netns_wq)
627 		panic("Could not create netns workq");
628 #endif
629 
630 	ng = net_alloc_generic();
631 	if (!ng)
632 		panic("Could not allocate generic netns");
633 
634 	rcu_assign_pointer(init_net.gen, ng);
635 
636 	mutex_lock(&net_mutex);
637 	if (setup_net(&init_net, &init_user_ns))
638 		panic("Could not setup the initial network namespace");
639 
640 	rtnl_lock();
641 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
642 	rtnl_unlock();
643 
644 	mutex_unlock(&net_mutex);
645 
646 	register_pernet_subsys(&net_ns_ops);
647 
648 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
649 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, NULL, NULL);
650 
651 	return 0;
652 }
653 
654 pure_initcall(net_ns_init);
655 
656 #ifdef CONFIG_NET_NS
657 static int __register_pernet_operations(struct list_head *list,
658 					struct pernet_operations *ops)
659 {
660 	struct net *net;
661 	int error;
662 	LIST_HEAD(net_exit_list);
663 
664 	list_add_tail(&ops->list, list);
665 	if (ops->init || (ops->id && ops->size)) {
666 		for_each_net(net) {
667 			error = ops_init(ops, net);
668 			if (error)
669 				goto out_undo;
670 			list_add_tail(&net->exit_list, &net_exit_list);
671 		}
672 	}
673 	return 0;
674 
675 out_undo:
676 	/* If I have an error cleanup all namespaces I initialized */
677 	list_del(&ops->list);
678 	ops_exit_list(ops, &net_exit_list);
679 	ops_free_list(ops, &net_exit_list);
680 	return error;
681 }
682 
683 static void __unregister_pernet_operations(struct pernet_operations *ops)
684 {
685 	struct net *net;
686 	LIST_HEAD(net_exit_list);
687 
688 	list_del(&ops->list);
689 	for_each_net(net)
690 		list_add_tail(&net->exit_list, &net_exit_list);
691 	ops_exit_list(ops, &net_exit_list);
692 	ops_free_list(ops, &net_exit_list);
693 }
694 
695 #else
696 
697 static int __register_pernet_operations(struct list_head *list,
698 					struct pernet_operations *ops)
699 {
700 	return ops_init(ops, &init_net);
701 }
702 
703 static void __unregister_pernet_operations(struct pernet_operations *ops)
704 {
705 	LIST_HEAD(net_exit_list);
706 	list_add(&init_net.exit_list, &net_exit_list);
707 	ops_exit_list(ops, &net_exit_list);
708 	ops_free_list(ops, &net_exit_list);
709 }
710 
711 #endif /* CONFIG_NET_NS */
712 
713 static DEFINE_IDA(net_generic_ids);
714 
715 static int register_pernet_operations(struct list_head *list,
716 				      struct pernet_operations *ops)
717 {
718 	int error;
719 
720 	if (ops->id) {
721 again:
722 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
723 		if (error < 0) {
724 			if (error == -EAGAIN) {
725 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
726 				goto again;
727 			}
728 			return error;
729 		}
730 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
731 	}
732 	error = __register_pernet_operations(list, ops);
733 	if (error) {
734 		rcu_barrier();
735 		if (ops->id)
736 			ida_remove(&net_generic_ids, *ops->id);
737 	}
738 
739 	return error;
740 }
741 
742 static void unregister_pernet_operations(struct pernet_operations *ops)
743 {
744 
745 	__unregister_pernet_operations(ops);
746 	rcu_barrier();
747 	if (ops->id)
748 		ida_remove(&net_generic_ids, *ops->id);
749 }
750 
751 /**
752  *      register_pernet_subsys - register a network namespace subsystem
753  *	@ops:  pernet operations structure for the subsystem
754  *
755  *	Register a subsystem which has init and exit functions
756  *	that are called when network namespaces are created and
757  *	destroyed respectively.
758  *
759  *	When registered all network namespace init functions are
760  *	called for every existing network namespace.  Allowing kernel
761  *	modules to have a race free view of the set of network namespaces.
762  *
763  *	When a new network namespace is created all of the init
764  *	methods are called in the order in which they were registered.
765  *
766  *	When a network namespace is destroyed all of the exit methods
767  *	are called in the reverse of the order with which they were
768  *	registered.
769  */
770 int register_pernet_subsys(struct pernet_operations *ops)
771 {
772 	int error;
773 	mutex_lock(&net_mutex);
774 	error =  register_pernet_operations(first_device, ops);
775 	mutex_unlock(&net_mutex);
776 	return error;
777 }
778 EXPORT_SYMBOL_GPL(register_pernet_subsys);
779 
780 /**
781  *      unregister_pernet_subsys - unregister a network namespace subsystem
782  *	@ops: pernet operations structure to manipulate
783  *
784  *	Remove the pernet operations structure from the list to be
785  *	used when network namespaces are created or destroyed.  In
786  *	addition run the exit method for all existing network
787  *	namespaces.
788  */
789 void unregister_pernet_subsys(struct pernet_operations *ops)
790 {
791 	mutex_lock(&net_mutex);
792 	unregister_pernet_operations(ops);
793 	mutex_unlock(&net_mutex);
794 }
795 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
796 
797 /**
798  *      register_pernet_device - register a network namespace device
799  *	@ops:  pernet operations structure for the subsystem
800  *
801  *	Register a device which has init and exit functions
802  *	that are called when network namespaces are created and
803  *	destroyed respectively.
804  *
805  *	When registered all network namespace init functions are
806  *	called for every existing network namespace.  Allowing kernel
807  *	modules to have a race free view of the set of network namespaces.
808  *
809  *	When a new network namespace is created all of the init
810  *	methods are called in the order in which they were registered.
811  *
812  *	When a network namespace is destroyed all of the exit methods
813  *	are called in the reverse of the order with which they were
814  *	registered.
815  */
816 int register_pernet_device(struct pernet_operations *ops)
817 {
818 	int error;
819 	mutex_lock(&net_mutex);
820 	error = register_pernet_operations(&pernet_list, ops);
821 	if (!error && (first_device == &pernet_list))
822 		first_device = &ops->list;
823 	mutex_unlock(&net_mutex);
824 	return error;
825 }
826 EXPORT_SYMBOL_GPL(register_pernet_device);
827 
828 /**
829  *      unregister_pernet_device - unregister a network namespace netdevice
830  *	@ops: pernet operations structure to manipulate
831  *
832  *	Remove the pernet operations structure from the list to be
833  *	used when network namespaces are created or destroyed.  In
834  *	addition run the exit method for all existing network
835  *	namespaces.
836  */
837 void unregister_pernet_device(struct pernet_operations *ops)
838 {
839 	mutex_lock(&net_mutex);
840 	if (&ops->list == first_device)
841 		first_device = first_device->next;
842 	unregister_pernet_operations(ops);
843 	mutex_unlock(&net_mutex);
844 }
845 EXPORT_SYMBOL_GPL(unregister_pernet_device);
846 
847 #ifdef CONFIG_NET_NS
848 static struct ns_common *netns_get(struct task_struct *task)
849 {
850 	struct net *net = NULL;
851 	struct nsproxy *nsproxy;
852 
853 	task_lock(task);
854 	nsproxy = task->nsproxy;
855 	if (nsproxy)
856 		net = get_net(nsproxy->net_ns);
857 	task_unlock(task);
858 
859 	return net ? &net->ns : NULL;
860 }
861 
862 static inline struct net *to_net_ns(struct ns_common *ns)
863 {
864 	return container_of(ns, struct net, ns);
865 }
866 
867 static void netns_put(struct ns_common *ns)
868 {
869 	put_net(to_net_ns(ns));
870 }
871 
872 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
873 {
874 	struct net *net = to_net_ns(ns);
875 
876 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
877 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
878 		return -EPERM;
879 
880 	put_net(nsproxy->net_ns);
881 	nsproxy->net_ns = get_net(net);
882 	return 0;
883 }
884 
885 const struct proc_ns_operations netns_operations = {
886 	.name		= "net",
887 	.type		= CLONE_NEWNET,
888 	.get		= netns_get,
889 	.put		= netns_put,
890 	.install	= netns_install,
891 };
892 #endif
893