xref: /openbmc/linux/net/core/net_namespace.c (revision 8e7a49e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 
24 #include <net/sock.h>
25 #include <net/netlink.h>
26 #include <net/net_namespace.h>
27 #include <net/netns/generic.h>
28 
29 /*
30  *	Our network namespace constructor/destructor lists
31  */
32 
33 static LIST_HEAD(pernet_list);
34 static struct list_head *first_device = &pernet_list;
35 
36 LIST_HEAD(net_namespace_list);
37 EXPORT_SYMBOL_GPL(net_namespace_list);
38 
39 /* Protects net_namespace_list. Nests iside rtnl_lock() */
40 DECLARE_RWSEM(net_rwsem);
41 EXPORT_SYMBOL_GPL(net_rwsem);
42 
43 #ifdef CONFIG_KEYS
44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
45 #endif
46 
47 struct net init_net;
48 EXPORT_SYMBOL(init_net);
49 
50 static bool init_net_initialized;
51 /*
52  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
53  * init_net_initialized and first_device pointer.
54  * This is internal net namespace object. Please, don't use it
55  * outside.
56  */
57 DECLARE_RWSEM(pernet_ops_rwsem);
58 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
59 
60 #define MIN_PERNET_OPS_ID	\
61 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
62 
63 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
64 
65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
66 
67 DEFINE_COOKIE(net_cookie);
68 
69 static struct net_generic *net_alloc_generic(void)
70 {
71 	struct net_generic *ng;
72 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
73 
74 	ng = kzalloc(generic_size, GFP_KERNEL);
75 	if (ng)
76 		ng->s.len = max_gen_ptrs;
77 
78 	return ng;
79 }
80 
81 static int net_assign_generic(struct net *net, unsigned int id, void *data)
82 {
83 	struct net_generic *ng, *old_ng;
84 
85 	BUG_ON(id < MIN_PERNET_OPS_ID);
86 
87 	old_ng = rcu_dereference_protected(net->gen,
88 					   lockdep_is_held(&pernet_ops_rwsem));
89 	if (old_ng->s.len > id) {
90 		old_ng->ptr[id] = data;
91 		return 0;
92 	}
93 
94 	ng = net_alloc_generic();
95 	if (!ng)
96 		return -ENOMEM;
97 
98 	/*
99 	 * Some synchronisation notes:
100 	 *
101 	 * The net_generic explores the net->gen array inside rcu
102 	 * read section. Besides once set the net->gen->ptr[x]
103 	 * pointer never changes (see rules in netns/generic.h).
104 	 *
105 	 * That said, we simply duplicate this array and schedule
106 	 * the old copy for kfree after a grace period.
107 	 */
108 
109 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
110 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
111 	ng->ptr[id] = data;
112 
113 	rcu_assign_pointer(net->gen, ng);
114 	kfree_rcu(old_ng, s.rcu);
115 	return 0;
116 }
117 
118 static int ops_init(const struct pernet_operations *ops, struct net *net)
119 {
120 	struct net_generic *ng;
121 	int err = -ENOMEM;
122 	void *data = NULL;
123 
124 	if (ops->id && ops->size) {
125 		data = kzalloc(ops->size, GFP_KERNEL);
126 		if (!data)
127 			goto out;
128 
129 		err = net_assign_generic(net, *ops->id, data);
130 		if (err)
131 			goto cleanup;
132 	}
133 	err = 0;
134 	if (ops->init)
135 		err = ops->init(net);
136 	if (!err)
137 		return 0;
138 
139 	if (ops->id && ops->size) {
140 		ng = rcu_dereference_protected(net->gen,
141 					       lockdep_is_held(&pernet_ops_rwsem));
142 		ng->ptr[*ops->id] = NULL;
143 	}
144 
145 cleanup:
146 	kfree(data);
147 
148 out:
149 	return err;
150 }
151 
152 static void ops_pre_exit_list(const struct pernet_operations *ops,
153 			      struct list_head *net_exit_list)
154 {
155 	struct net *net;
156 
157 	if (ops->pre_exit) {
158 		list_for_each_entry(net, net_exit_list, exit_list)
159 			ops->pre_exit(net);
160 	}
161 }
162 
163 static void ops_exit_list(const struct pernet_operations *ops,
164 			  struct list_head *net_exit_list)
165 {
166 	struct net *net;
167 	if (ops->exit) {
168 		list_for_each_entry(net, net_exit_list, exit_list) {
169 			ops->exit(net);
170 			cond_resched();
171 		}
172 	}
173 	if (ops->exit_batch)
174 		ops->exit_batch(net_exit_list);
175 }
176 
177 static void ops_free_list(const struct pernet_operations *ops,
178 			  struct list_head *net_exit_list)
179 {
180 	struct net *net;
181 	if (ops->size && ops->id) {
182 		list_for_each_entry(net, net_exit_list, exit_list)
183 			kfree(net_generic(net, *ops->id));
184 	}
185 }
186 
187 /* should be called with nsid_lock held */
188 static int alloc_netid(struct net *net, struct net *peer, int reqid)
189 {
190 	int min = 0, max = 0;
191 
192 	if (reqid >= 0) {
193 		min = reqid;
194 		max = reqid + 1;
195 	}
196 
197 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
198 }
199 
200 /* This function is used by idr_for_each(). If net is equal to peer, the
201  * function returns the id so that idr_for_each() stops. Because we cannot
202  * returns the id 0 (idr_for_each() will not stop), we return the magic value
203  * NET_ID_ZERO (-1) for it.
204  */
205 #define NET_ID_ZERO -1
206 static int net_eq_idr(int id, void *net, void *peer)
207 {
208 	if (net_eq(net, peer))
209 		return id ? : NET_ID_ZERO;
210 	return 0;
211 }
212 
213 /* Must be called from RCU-critical section or with nsid_lock held */
214 static int __peernet2id(const struct net *net, struct net *peer)
215 {
216 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
217 
218 	/* Magic value for id 0. */
219 	if (id == NET_ID_ZERO)
220 		return 0;
221 	if (id > 0)
222 		return id;
223 
224 	return NETNSA_NSID_NOT_ASSIGNED;
225 }
226 
227 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
228 			      struct nlmsghdr *nlh, gfp_t gfp);
229 /* This function returns the id of a peer netns. If no id is assigned, one will
230  * be allocated and returned.
231  */
232 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
233 {
234 	int id;
235 
236 	if (refcount_read(&net->ns.count) == 0)
237 		return NETNSA_NSID_NOT_ASSIGNED;
238 
239 	spin_lock_bh(&net->nsid_lock);
240 	id = __peernet2id(net, peer);
241 	if (id >= 0) {
242 		spin_unlock_bh(&net->nsid_lock);
243 		return id;
244 	}
245 
246 	/* When peer is obtained from RCU lists, we may race with
247 	 * its cleanup. Check whether it's alive, and this guarantees
248 	 * we never hash a peer back to net->netns_ids, after it has
249 	 * just been idr_remove()'d from there in cleanup_net().
250 	 */
251 	if (!maybe_get_net(peer)) {
252 		spin_unlock_bh(&net->nsid_lock);
253 		return NETNSA_NSID_NOT_ASSIGNED;
254 	}
255 
256 	id = alloc_netid(net, peer, -1);
257 	spin_unlock_bh(&net->nsid_lock);
258 
259 	put_net(peer);
260 	if (id < 0)
261 		return NETNSA_NSID_NOT_ASSIGNED;
262 
263 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
264 
265 	return id;
266 }
267 EXPORT_SYMBOL_GPL(peernet2id_alloc);
268 
269 /* This function returns, if assigned, the id of a peer netns. */
270 int peernet2id(const struct net *net, struct net *peer)
271 {
272 	int id;
273 
274 	rcu_read_lock();
275 	id = __peernet2id(net, peer);
276 	rcu_read_unlock();
277 
278 	return id;
279 }
280 EXPORT_SYMBOL(peernet2id);
281 
282 /* This function returns true is the peer netns has an id assigned into the
283  * current netns.
284  */
285 bool peernet_has_id(const struct net *net, struct net *peer)
286 {
287 	return peernet2id(net, peer) >= 0;
288 }
289 
290 struct net *get_net_ns_by_id(const struct net *net, int id)
291 {
292 	struct net *peer;
293 
294 	if (id < 0)
295 		return NULL;
296 
297 	rcu_read_lock();
298 	peer = idr_find(&net->netns_ids, id);
299 	if (peer)
300 		peer = maybe_get_net(peer);
301 	rcu_read_unlock();
302 
303 	return peer;
304 }
305 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
306 
307 /* init code that must occur even if setup_net() is not called. */
308 static __net_init void preinit_net(struct net *net)
309 {
310 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128);
311 }
312 
313 /*
314  * setup_net runs the initializers for the network namespace object.
315  */
316 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
317 {
318 	/* Must be called with pernet_ops_rwsem held */
319 	const struct pernet_operations *ops, *saved_ops;
320 	int error = 0;
321 	LIST_HEAD(net_exit_list);
322 
323 	refcount_set(&net->ns.count, 1);
324 	ref_tracker_dir_init(&net->refcnt_tracker, 128);
325 
326 	refcount_set(&net->passive, 1);
327 	get_random_bytes(&net->hash_mix, sizeof(u32));
328 	preempt_disable();
329 	net->net_cookie = gen_cookie_next(&net_cookie);
330 	preempt_enable();
331 	net->dev_base_seq = 1;
332 	net->user_ns = user_ns;
333 	idr_init(&net->netns_ids);
334 	spin_lock_init(&net->nsid_lock);
335 	mutex_init(&net->ipv4.ra_mutex);
336 
337 	list_for_each_entry(ops, &pernet_list, list) {
338 		error = ops_init(ops, net);
339 		if (error < 0)
340 			goto out_undo;
341 	}
342 	down_write(&net_rwsem);
343 	list_add_tail_rcu(&net->list, &net_namespace_list);
344 	up_write(&net_rwsem);
345 out:
346 	return error;
347 
348 out_undo:
349 	/* Walk through the list backwards calling the exit functions
350 	 * for the pernet modules whose init functions did not fail.
351 	 */
352 	list_add(&net->exit_list, &net_exit_list);
353 	saved_ops = ops;
354 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
355 		ops_pre_exit_list(ops, &net_exit_list);
356 
357 	synchronize_rcu();
358 
359 	ops = saved_ops;
360 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
361 		ops_exit_list(ops, &net_exit_list);
362 
363 	ops = saved_ops;
364 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
365 		ops_free_list(ops, &net_exit_list);
366 
367 	rcu_barrier();
368 	goto out;
369 }
370 
371 static int __net_init net_defaults_init_net(struct net *net)
372 {
373 	net->core.sysctl_somaxconn = SOMAXCONN;
374 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
375 
376 	return 0;
377 }
378 
379 static struct pernet_operations net_defaults_ops = {
380 	.init = net_defaults_init_net,
381 };
382 
383 static __init int net_defaults_init(void)
384 {
385 	if (register_pernet_subsys(&net_defaults_ops))
386 		panic("Cannot initialize net default settings");
387 
388 	return 0;
389 }
390 
391 core_initcall(net_defaults_init);
392 
393 #ifdef CONFIG_NET_NS
394 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
395 {
396 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
397 }
398 
399 static void dec_net_namespaces(struct ucounts *ucounts)
400 {
401 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
402 }
403 
404 static struct kmem_cache *net_cachep __ro_after_init;
405 static struct workqueue_struct *netns_wq;
406 
407 static struct net *net_alloc(void)
408 {
409 	struct net *net = NULL;
410 	struct net_generic *ng;
411 
412 	ng = net_alloc_generic();
413 	if (!ng)
414 		goto out;
415 
416 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
417 	if (!net)
418 		goto out_free;
419 
420 #ifdef CONFIG_KEYS
421 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
422 	if (!net->key_domain)
423 		goto out_free_2;
424 	refcount_set(&net->key_domain->usage, 1);
425 #endif
426 
427 	rcu_assign_pointer(net->gen, ng);
428 out:
429 	return net;
430 
431 #ifdef CONFIG_KEYS
432 out_free_2:
433 	kmem_cache_free(net_cachep, net);
434 	net = NULL;
435 #endif
436 out_free:
437 	kfree(ng);
438 	goto out;
439 }
440 
441 static void net_free(struct net *net)
442 {
443 	if (refcount_dec_and_test(&net->passive)) {
444 		kfree(rcu_access_pointer(net->gen));
445 
446 		/* There should not be any trackers left there. */
447 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
448 
449 		kmem_cache_free(net_cachep, net);
450 	}
451 }
452 
453 void net_drop_ns(void *p)
454 {
455 	struct net *net = (struct net *)p;
456 
457 	if (net)
458 		net_free(net);
459 }
460 
461 struct net *copy_net_ns(unsigned long flags,
462 			struct user_namespace *user_ns, struct net *old_net)
463 {
464 	struct ucounts *ucounts;
465 	struct net *net;
466 	int rv;
467 
468 	if (!(flags & CLONE_NEWNET))
469 		return get_net(old_net);
470 
471 	ucounts = inc_net_namespaces(user_ns);
472 	if (!ucounts)
473 		return ERR_PTR(-ENOSPC);
474 
475 	net = net_alloc();
476 	if (!net) {
477 		rv = -ENOMEM;
478 		goto dec_ucounts;
479 	}
480 
481 	preinit_net(net);
482 	refcount_set(&net->passive, 1);
483 	net->ucounts = ucounts;
484 	get_user_ns(user_ns);
485 
486 	rv = down_read_killable(&pernet_ops_rwsem);
487 	if (rv < 0)
488 		goto put_userns;
489 
490 	rv = setup_net(net, user_ns);
491 
492 	up_read(&pernet_ops_rwsem);
493 
494 	if (rv < 0) {
495 put_userns:
496 #ifdef CONFIG_KEYS
497 		key_remove_domain(net->key_domain);
498 #endif
499 		put_user_ns(user_ns);
500 		net_free(net);
501 dec_ucounts:
502 		dec_net_namespaces(ucounts);
503 		return ERR_PTR(rv);
504 	}
505 	return net;
506 }
507 
508 /**
509  * net_ns_get_ownership - get sysfs ownership data for @net
510  * @net: network namespace in question (can be NULL)
511  * @uid: kernel user ID for sysfs objects
512  * @gid: kernel group ID for sysfs objects
513  *
514  * Returns the uid/gid pair of root in the user namespace associated with the
515  * given network namespace.
516  */
517 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
518 {
519 	if (net) {
520 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
521 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
522 
523 		if (uid_valid(ns_root_uid))
524 			*uid = ns_root_uid;
525 
526 		if (gid_valid(ns_root_gid))
527 			*gid = ns_root_gid;
528 	} else {
529 		*uid = GLOBAL_ROOT_UID;
530 		*gid = GLOBAL_ROOT_GID;
531 	}
532 }
533 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
534 
535 static void unhash_nsid(struct net *net, struct net *last)
536 {
537 	struct net *tmp;
538 	/* This function is only called from cleanup_net() work,
539 	 * and this work is the only process, that may delete
540 	 * a net from net_namespace_list. So, when the below
541 	 * is executing, the list may only grow. Thus, we do not
542 	 * use for_each_net_rcu() or net_rwsem.
543 	 */
544 	for_each_net(tmp) {
545 		int id;
546 
547 		spin_lock_bh(&tmp->nsid_lock);
548 		id = __peernet2id(tmp, net);
549 		if (id >= 0)
550 			idr_remove(&tmp->netns_ids, id);
551 		spin_unlock_bh(&tmp->nsid_lock);
552 		if (id >= 0)
553 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
554 					  GFP_KERNEL);
555 		if (tmp == last)
556 			break;
557 	}
558 	spin_lock_bh(&net->nsid_lock);
559 	idr_destroy(&net->netns_ids);
560 	spin_unlock_bh(&net->nsid_lock);
561 }
562 
563 static LLIST_HEAD(cleanup_list);
564 
565 static void cleanup_net(struct work_struct *work)
566 {
567 	const struct pernet_operations *ops;
568 	struct net *net, *tmp, *last;
569 	struct llist_node *net_kill_list;
570 	LIST_HEAD(net_exit_list);
571 
572 	/* Atomically snapshot the list of namespaces to cleanup */
573 	net_kill_list = llist_del_all(&cleanup_list);
574 
575 	down_read(&pernet_ops_rwsem);
576 
577 	/* Don't let anyone else find us. */
578 	down_write(&net_rwsem);
579 	llist_for_each_entry(net, net_kill_list, cleanup_list)
580 		list_del_rcu(&net->list);
581 	/* Cache last net. After we unlock rtnl, no one new net
582 	 * added to net_namespace_list can assign nsid pointer
583 	 * to a net from net_kill_list (see peernet2id_alloc()).
584 	 * So, we skip them in unhash_nsid().
585 	 *
586 	 * Note, that unhash_nsid() does not delete nsid links
587 	 * between net_kill_list's nets, as they've already
588 	 * deleted from net_namespace_list. But, this would be
589 	 * useless anyway, as netns_ids are destroyed there.
590 	 */
591 	last = list_last_entry(&net_namespace_list, struct net, list);
592 	up_write(&net_rwsem);
593 
594 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
595 		unhash_nsid(net, last);
596 		list_add_tail(&net->exit_list, &net_exit_list);
597 	}
598 
599 	/* Run all of the network namespace pre_exit methods */
600 	list_for_each_entry_reverse(ops, &pernet_list, list)
601 		ops_pre_exit_list(ops, &net_exit_list);
602 
603 	/*
604 	 * Another CPU might be rcu-iterating the list, wait for it.
605 	 * This needs to be before calling the exit() notifiers, so
606 	 * the rcu_barrier() below isn't sufficient alone.
607 	 * Also the pre_exit() and exit() methods need this barrier.
608 	 */
609 	synchronize_rcu();
610 
611 	/* Run all of the network namespace exit methods */
612 	list_for_each_entry_reverse(ops, &pernet_list, list)
613 		ops_exit_list(ops, &net_exit_list);
614 
615 	/* Free the net generic variables */
616 	list_for_each_entry_reverse(ops, &pernet_list, list)
617 		ops_free_list(ops, &net_exit_list);
618 
619 	up_read(&pernet_ops_rwsem);
620 
621 	/* Ensure there are no outstanding rcu callbacks using this
622 	 * network namespace.
623 	 */
624 	rcu_barrier();
625 
626 	/* Finally it is safe to free my network namespace structure */
627 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
628 		list_del_init(&net->exit_list);
629 		dec_net_namespaces(net->ucounts);
630 #ifdef CONFIG_KEYS
631 		key_remove_domain(net->key_domain);
632 #endif
633 		put_user_ns(net->user_ns);
634 		net_free(net);
635 	}
636 }
637 
638 /**
639  * net_ns_barrier - wait until concurrent net_cleanup_work is done
640  *
641  * cleanup_net runs from work queue and will first remove namespaces
642  * from the global list, then run net exit functions.
643  *
644  * Call this in module exit path to make sure that all netns
645  * ->exit ops have been invoked before the function is removed.
646  */
647 void net_ns_barrier(void)
648 {
649 	down_write(&pernet_ops_rwsem);
650 	up_write(&pernet_ops_rwsem);
651 }
652 EXPORT_SYMBOL(net_ns_barrier);
653 
654 static DECLARE_WORK(net_cleanup_work, cleanup_net);
655 
656 void __put_net(struct net *net)
657 {
658 	ref_tracker_dir_exit(&net->refcnt_tracker);
659 	/* Cleanup the network namespace in process context */
660 	if (llist_add(&net->cleanup_list, &cleanup_list))
661 		queue_work(netns_wq, &net_cleanup_work);
662 }
663 EXPORT_SYMBOL_GPL(__put_net);
664 
665 /**
666  * get_net_ns - increment the refcount of the network namespace
667  * @ns: common namespace (net)
668  *
669  * Returns the net's common namespace.
670  */
671 struct ns_common *get_net_ns(struct ns_common *ns)
672 {
673 	return &get_net(container_of(ns, struct net, ns))->ns;
674 }
675 EXPORT_SYMBOL_GPL(get_net_ns);
676 
677 struct net *get_net_ns_by_fd(int fd)
678 {
679 	struct file *file;
680 	struct ns_common *ns;
681 	struct net *net;
682 
683 	file = proc_ns_fget(fd);
684 	if (IS_ERR(file))
685 		return ERR_CAST(file);
686 
687 	ns = get_proc_ns(file_inode(file));
688 	if (ns->ops == &netns_operations)
689 		net = get_net(container_of(ns, struct net, ns));
690 	else
691 		net = ERR_PTR(-EINVAL);
692 
693 	fput(file);
694 	return net;
695 }
696 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
697 #endif
698 
699 struct net *get_net_ns_by_pid(pid_t pid)
700 {
701 	struct task_struct *tsk;
702 	struct net *net;
703 
704 	/* Lookup the network namespace */
705 	net = ERR_PTR(-ESRCH);
706 	rcu_read_lock();
707 	tsk = find_task_by_vpid(pid);
708 	if (tsk) {
709 		struct nsproxy *nsproxy;
710 		task_lock(tsk);
711 		nsproxy = tsk->nsproxy;
712 		if (nsproxy)
713 			net = get_net(nsproxy->net_ns);
714 		task_unlock(tsk);
715 	}
716 	rcu_read_unlock();
717 	return net;
718 }
719 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
720 
721 static __net_init int net_ns_net_init(struct net *net)
722 {
723 #ifdef CONFIG_NET_NS
724 	net->ns.ops = &netns_operations;
725 #endif
726 	return ns_alloc_inum(&net->ns);
727 }
728 
729 static __net_exit void net_ns_net_exit(struct net *net)
730 {
731 	ns_free_inum(&net->ns);
732 }
733 
734 static struct pernet_operations __net_initdata net_ns_ops = {
735 	.init = net_ns_net_init,
736 	.exit = net_ns_net_exit,
737 };
738 
739 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
740 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
741 	[NETNSA_NSID]		= { .type = NLA_S32 },
742 	[NETNSA_PID]		= { .type = NLA_U32 },
743 	[NETNSA_FD]		= { .type = NLA_U32 },
744 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
745 };
746 
747 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
748 			  struct netlink_ext_ack *extack)
749 {
750 	struct net *net = sock_net(skb->sk);
751 	struct nlattr *tb[NETNSA_MAX + 1];
752 	struct nlattr *nla;
753 	struct net *peer;
754 	int nsid, err;
755 
756 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
757 				     NETNSA_MAX, rtnl_net_policy, extack);
758 	if (err < 0)
759 		return err;
760 	if (!tb[NETNSA_NSID]) {
761 		NL_SET_ERR_MSG(extack, "nsid is missing");
762 		return -EINVAL;
763 	}
764 	nsid = nla_get_s32(tb[NETNSA_NSID]);
765 
766 	if (tb[NETNSA_PID]) {
767 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
768 		nla = tb[NETNSA_PID];
769 	} else if (tb[NETNSA_FD]) {
770 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
771 		nla = tb[NETNSA_FD];
772 	} else {
773 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
774 		return -EINVAL;
775 	}
776 	if (IS_ERR(peer)) {
777 		NL_SET_BAD_ATTR(extack, nla);
778 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
779 		return PTR_ERR(peer);
780 	}
781 
782 	spin_lock_bh(&net->nsid_lock);
783 	if (__peernet2id(net, peer) >= 0) {
784 		spin_unlock_bh(&net->nsid_lock);
785 		err = -EEXIST;
786 		NL_SET_BAD_ATTR(extack, nla);
787 		NL_SET_ERR_MSG(extack,
788 			       "Peer netns already has a nsid assigned");
789 		goto out;
790 	}
791 
792 	err = alloc_netid(net, peer, nsid);
793 	spin_unlock_bh(&net->nsid_lock);
794 	if (err >= 0) {
795 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
796 				  nlh, GFP_KERNEL);
797 		err = 0;
798 	} else if (err == -ENOSPC && nsid >= 0) {
799 		err = -EEXIST;
800 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
801 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
802 	}
803 out:
804 	put_net(peer);
805 	return err;
806 }
807 
808 static int rtnl_net_get_size(void)
809 {
810 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
811 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
812 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
813 	       ;
814 }
815 
816 struct net_fill_args {
817 	u32 portid;
818 	u32 seq;
819 	int flags;
820 	int cmd;
821 	int nsid;
822 	bool add_ref;
823 	int ref_nsid;
824 };
825 
826 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
827 {
828 	struct nlmsghdr *nlh;
829 	struct rtgenmsg *rth;
830 
831 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
832 			args->flags);
833 	if (!nlh)
834 		return -EMSGSIZE;
835 
836 	rth = nlmsg_data(nlh);
837 	rth->rtgen_family = AF_UNSPEC;
838 
839 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
840 		goto nla_put_failure;
841 
842 	if (args->add_ref &&
843 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
844 		goto nla_put_failure;
845 
846 	nlmsg_end(skb, nlh);
847 	return 0;
848 
849 nla_put_failure:
850 	nlmsg_cancel(skb, nlh);
851 	return -EMSGSIZE;
852 }
853 
854 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
855 				    const struct nlmsghdr *nlh,
856 				    struct nlattr **tb,
857 				    struct netlink_ext_ack *extack)
858 {
859 	int i, err;
860 
861 	if (!netlink_strict_get_check(skb))
862 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
863 					      tb, NETNSA_MAX, rtnl_net_policy,
864 					      extack);
865 
866 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
867 					    NETNSA_MAX, rtnl_net_policy,
868 					    extack);
869 	if (err)
870 		return err;
871 
872 	for (i = 0; i <= NETNSA_MAX; i++) {
873 		if (!tb[i])
874 			continue;
875 
876 		switch (i) {
877 		case NETNSA_PID:
878 		case NETNSA_FD:
879 		case NETNSA_NSID:
880 		case NETNSA_TARGET_NSID:
881 			break;
882 		default:
883 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
884 			return -EINVAL;
885 		}
886 	}
887 
888 	return 0;
889 }
890 
891 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
892 			  struct netlink_ext_ack *extack)
893 {
894 	struct net *net = sock_net(skb->sk);
895 	struct nlattr *tb[NETNSA_MAX + 1];
896 	struct net_fill_args fillargs = {
897 		.portid = NETLINK_CB(skb).portid,
898 		.seq = nlh->nlmsg_seq,
899 		.cmd = RTM_NEWNSID,
900 	};
901 	struct net *peer, *target = net;
902 	struct nlattr *nla;
903 	struct sk_buff *msg;
904 	int err;
905 
906 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
907 	if (err < 0)
908 		return err;
909 	if (tb[NETNSA_PID]) {
910 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
911 		nla = tb[NETNSA_PID];
912 	} else if (tb[NETNSA_FD]) {
913 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
914 		nla = tb[NETNSA_FD];
915 	} else if (tb[NETNSA_NSID]) {
916 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
917 		if (!peer)
918 			peer = ERR_PTR(-ENOENT);
919 		nla = tb[NETNSA_NSID];
920 	} else {
921 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
922 		return -EINVAL;
923 	}
924 
925 	if (IS_ERR(peer)) {
926 		NL_SET_BAD_ATTR(extack, nla);
927 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
928 		return PTR_ERR(peer);
929 	}
930 
931 	if (tb[NETNSA_TARGET_NSID]) {
932 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
933 
934 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
935 		if (IS_ERR(target)) {
936 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
937 			NL_SET_ERR_MSG(extack,
938 				       "Target netns reference is invalid");
939 			err = PTR_ERR(target);
940 			goto out;
941 		}
942 		fillargs.add_ref = true;
943 		fillargs.ref_nsid = peernet2id(net, peer);
944 	}
945 
946 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
947 	if (!msg) {
948 		err = -ENOMEM;
949 		goto out;
950 	}
951 
952 	fillargs.nsid = peernet2id(target, peer);
953 	err = rtnl_net_fill(msg, &fillargs);
954 	if (err < 0)
955 		goto err_out;
956 
957 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
958 	goto out;
959 
960 err_out:
961 	nlmsg_free(msg);
962 out:
963 	if (fillargs.add_ref)
964 		put_net(target);
965 	put_net(peer);
966 	return err;
967 }
968 
969 struct rtnl_net_dump_cb {
970 	struct net *tgt_net;
971 	struct net *ref_net;
972 	struct sk_buff *skb;
973 	struct net_fill_args fillargs;
974 	int idx;
975 	int s_idx;
976 };
977 
978 /* Runs in RCU-critical section. */
979 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
980 {
981 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
982 	int ret;
983 
984 	if (net_cb->idx < net_cb->s_idx)
985 		goto cont;
986 
987 	net_cb->fillargs.nsid = id;
988 	if (net_cb->fillargs.add_ref)
989 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
990 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
991 	if (ret < 0)
992 		return ret;
993 
994 cont:
995 	net_cb->idx++;
996 	return 0;
997 }
998 
999 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1000 				   struct rtnl_net_dump_cb *net_cb,
1001 				   struct netlink_callback *cb)
1002 {
1003 	struct netlink_ext_ack *extack = cb->extack;
1004 	struct nlattr *tb[NETNSA_MAX + 1];
1005 	int err, i;
1006 
1007 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1008 					    NETNSA_MAX, rtnl_net_policy,
1009 					    extack);
1010 	if (err < 0)
1011 		return err;
1012 
1013 	for (i = 0; i <= NETNSA_MAX; i++) {
1014 		if (!tb[i])
1015 			continue;
1016 
1017 		if (i == NETNSA_TARGET_NSID) {
1018 			struct net *net;
1019 
1020 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1021 			if (IS_ERR(net)) {
1022 				NL_SET_BAD_ATTR(extack, tb[i]);
1023 				NL_SET_ERR_MSG(extack,
1024 					       "Invalid target network namespace id");
1025 				return PTR_ERR(net);
1026 			}
1027 			net_cb->fillargs.add_ref = true;
1028 			net_cb->ref_net = net_cb->tgt_net;
1029 			net_cb->tgt_net = net;
1030 		} else {
1031 			NL_SET_BAD_ATTR(extack, tb[i]);
1032 			NL_SET_ERR_MSG(extack,
1033 				       "Unsupported attribute in dump request");
1034 			return -EINVAL;
1035 		}
1036 	}
1037 
1038 	return 0;
1039 }
1040 
1041 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1042 {
1043 	struct rtnl_net_dump_cb net_cb = {
1044 		.tgt_net = sock_net(skb->sk),
1045 		.skb = skb,
1046 		.fillargs = {
1047 			.portid = NETLINK_CB(cb->skb).portid,
1048 			.seq = cb->nlh->nlmsg_seq,
1049 			.flags = NLM_F_MULTI,
1050 			.cmd = RTM_NEWNSID,
1051 		},
1052 		.idx = 0,
1053 		.s_idx = cb->args[0],
1054 	};
1055 	int err = 0;
1056 
1057 	if (cb->strict_check) {
1058 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1059 		if (err < 0)
1060 			goto end;
1061 	}
1062 
1063 	rcu_read_lock();
1064 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1065 	rcu_read_unlock();
1066 
1067 	cb->args[0] = net_cb.idx;
1068 end:
1069 	if (net_cb.fillargs.add_ref)
1070 		put_net(net_cb.tgt_net);
1071 	return err < 0 ? err : skb->len;
1072 }
1073 
1074 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1075 			      struct nlmsghdr *nlh, gfp_t gfp)
1076 {
1077 	struct net_fill_args fillargs = {
1078 		.portid = portid,
1079 		.seq = nlh ? nlh->nlmsg_seq : 0,
1080 		.cmd = cmd,
1081 		.nsid = id,
1082 	};
1083 	struct sk_buff *msg;
1084 	int err = -ENOMEM;
1085 
1086 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1087 	if (!msg)
1088 		goto out;
1089 
1090 	err = rtnl_net_fill(msg, &fillargs);
1091 	if (err < 0)
1092 		goto err_out;
1093 
1094 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1095 	return;
1096 
1097 err_out:
1098 	nlmsg_free(msg);
1099 out:
1100 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1101 }
1102 
1103 void __init net_ns_init(void)
1104 {
1105 	struct net_generic *ng;
1106 
1107 #ifdef CONFIG_NET_NS
1108 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1109 					SMP_CACHE_BYTES,
1110 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1111 
1112 	/* Create workqueue for cleanup */
1113 	netns_wq = create_singlethread_workqueue("netns");
1114 	if (!netns_wq)
1115 		panic("Could not create netns workq");
1116 #endif
1117 
1118 	ng = net_alloc_generic();
1119 	if (!ng)
1120 		panic("Could not allocate generic netns");
1121 
1122 	rcu_assign_pointer(init_net.gen, ng);
1123 
1124 #ifdef CONFIG_KEYS
1125 	init_net.key_domain = &init_net_key_domain;
1126 #endif
1127 	down_write(&pernet_ops_rwsem);
1128 	preinit_net(&init_net);
1129 	if (setup_net(&init_net, &init_user_ns))
1130 		panic("Could not setup the initial network namespace");
1131 
1132 	init_net_initialized = true;
1133 	up_write(&pernet_ops_rwsem);
1134 
1135 	if (register_pernet_subsys(&net_ns_ops))
1136 		panic("Could not register network namespace subsystems");
1137 
1138 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1139 		      RTNL_FLAG_DOIT_UNLOCKED);
1140 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1141 		      RTNL_FLAG_DOIT_UNLOCKED);
1142 }
1143 
1144 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1145 {
1146 	ops_pre_exit_list(ops, net_exit_list);
1147 	synchronize_rcu();
1148 	ops_exit_list(ops, net_exit_list);
1149 	ops_free_list(ops, net_exit_list);
1150 }
1151 
1152 #ifdef CONFIG_NET_NS
1153 static int __register_pernet_operations(struct list_head *list,
1154 					struct pernet_operations *ops)
1155 {
1156 	struct net *net;
1157 	int error;
1158 	LIST_HEAD(net_exit_list);
1159 
1160 	list_add_tail(&ops->list, list);
1161 	if (ops->init || (ops->id && ops->size)) {
1162 		/* We held write locked pernet_ops_rwsem, and parallel
1163 		 * setup_net() and cleanup_net() are not possible.
1164 		 */
1165 		for_each_net(net) {
1166 			error = ops_init(ops, net);
1167 			if (error)
1168 				goto out_undo;
1169 			list_add_tail(&net->exit_list, &net_exit_list);
1170 		}
1171 	}
1172 	return 0;
1173 
1174 out_undo:
1175 	/* If I have an error cleanup all namespaces I initialized */
1176 	list_del(&ops->list);
1177 	free_exit_list(ops, &net_exit_list);
1178 	return error;
1179 }
1180 
1181 static void __unregister_pernet_operations(struct pernet_operations *ops)
1182 {
1183 	struct net *net;
1184 	LIST_HEAD(net_exit_list);
1185 
1186 	list_del(&ops->list);
1187 	/* See comment in __register_pernet_operations() */
1188 	for_each_net(net)
1189 		list_add_tail(&net->exit_list, &net_exit_list);
1190 
1191 	free_exit_list(ops, &net_exit_list);
1192 }
1193 
1194 #else
1195 
1196 static int __register_pernet_operations(struct list_head *list,
1197 					struct pernet_operations *ops)
1198 {
1199 	if (!init_net_initialized) {
1200 		list_add_tail(&ops->list, list);
1201 		return 0;
1202 	}
1203 
1204 	return ops_init(ops, &init_net);
1205 }
1206 
1207 static void __unregister_pernet_operations(struct pernet_operations *ops)
1208 {
1209 	if (!init_net_initialized) {
1210 		list_del(&ops->list);
1211 	} else {
1212 		LIST_HEAD(net_exit_list);
1213 		list_add(&init_net.exit_list, &net_exit_list);
1214 		free_exit_list(ops, &net_exit_list);
1215 	}
1216 }
1217 
1218 #endif /* CONFIG_NET_NS */
1219 
1220 static DEFINE_IDA(net_generic_ids);
1221 
1222 static int register_pernet_operations(struct list_head *list,
1223 				      struct pernet_operations *ops)
1224 {
1225 	int error;
1226 
1227 	if (ops->id) {
1228 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1229 				GFP_KERNEL);
1230 		if (error < 0)
1231 			return error;
1232 		*ops->id = error;
1233 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1234 	}
1235 	error = __register_pernet_operations(list, ops);
1236 	if (error) {
1237 		rcu_barrier();
1238 		if (ops->id)
1239 			ida_free(&net_generic_ids, *ops->id);
1240 	}
1241 
1242 	return error;
1243 }
1244 
1245 static void unregister_pernet_operations(struct pernet_operations *ops)
1246 {
1247 	__unregister_pernet_operations(ops);
1248 	rcu_barrier();
1249 	if (ops->id)
1250 		ida_free(&net_generic_ids, *ops->id);
1251 }
1252 
1253 /**
1254  *      register_pernet_subsys - register a network namespace subsystem
1255  *	@ops:  pernet operations structure for the subsystem
1256  *
1257  *	Register a subsystem which has init and exit functions
1258  *	that are called when network namespaces are created and
1259  *	destroyed respectively.
1260  *
1261  *	When registered all network namespace init functions are
1262  *	called for every existing network namespace.  Allowing kernel
1263  *	modules to have a race free view of the set of network namespaces.
1264  *
1265  *	When a new network namespace is created all of the init
1266  *	methods are called in the order in which they were registered.
1267  *
1268  *	When a network namespace is destroyed all of the exit methods
1269  *	are called in the reverse of the order with which they were
1270  *	registered.
1271  */
1272 int register_pernet_subsys(struct pernet_operations *ops)
1273 {
1274 	int error;
1275 	down_write(&pernet_ops_rwsem);
1276 	error =  register_pernet_operations(first_device, ops);
1277 	up_write(&pernet_ops_rwsem);
1278 	return error;
1279 }
1280 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1281 
1282 /**
1283  *      unregister_pernet_subsys - unregister a network namespace subsystem
1284  *	@ops: pernet operations structure to manipulate
1285  *
1286  *	Remove the pernet operations structure from the list to be
1287  *	used when network namespaces are created or destroyed.  In
1288  *	addition run the exit method for all existing network
1289  *	namespaces.
1290  */
1291 void unregister_pernet_subsys(struct pernet_operations *ops)
1292 {
1293 	down_write(&pernet_ops_rwsem);
1294 	unregister_pernet_operations(ops);
1295 	up_write(&pernet_ops_rwsem);
1296 }
1297 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1298 
1299 /**
1300  *      register_pernet_device - register a network namespace device
1301  *	@ops:  pernet operations structure for the subsystem
1302  *
1303  *	Register a device which has init and exit functions
1304  *	that are called when network namespaces are created and
1305  *	destroyed respectively.
1306  *
1307  *	When registered all network namespace init functions are
1308  *	called for every existing network namespace.  Allowing kernel
1309  *	modules to have a race free view of the set of network namespaces.
1310  *
1311  *	When a new network namespace is created all of the init
1312  *	methods are called in the order in which they were registered.
1313  *
1314  *	When a network namespace is destroyed all of the exit methods
1315  *	are called in the reverse of the order with which they were
1316  *	registered.
1317  */
1318 int register_pernet_device(struct pernet_operations *ops)
1319 {
1320 	int error;
1321 	down_write(&pernet_ops_rwsem);
1322 	error = register_pernet_operations(&pernet_list, ops);
1323 	if (!error && (first_device == &pernet_list))
1324 		first_device = &ops->list;
1325 	up_write(&pernet_ops_rwsem);
1326 	return error;
1327 }
1328 EXPORT_SYMBOL_GPL(register_pernet_device);
1329 
1330 /**
1331  *      unregister_pernet_device - unregister a network namespace netdevice
1332  *	@ops: pernet operations structure to manipulate
1333  *
1334  *	Remove the pernet operations structure from the list to be
1335  *	used when network namespaces are created or destroyed.  In
1336  *	addition run the exit method for all existing network
1337  *	namespaces.
1338  */
1339 void unregister_pernet_device(struct pernet_operations *ops)
1340 {
1341 	down_write(&pernet_ops_rwsem);
1342 	if (&ops->list == first_device)
1343 		first_device = first_device->next;
1344 	unregister_pernet_operations(ops);
1345 	up_write(&pernet_ops_rwsem);
1346 }
1347 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1348 
1349 #ifdef CONFIG_NET_NS
1350 static struct ns_common *netns_get(struct task_struct *task)
1351 {
1352 	struct net *net = NULL;
1353 	struct nsproxy *nsproxy;
1354 
1355 	task_lock(task);
1356 	nsproxy = task->nsproxy;
1357 	if (nsproxy)
1358 		net = get_net(nsproxy->net_ns);
1359 	task_unlock(task);
1360 
1361 	return net ? &net->ns : NULL;
1362 }
1363 
1364 static inline struct net *to_net_ns(struct ns_common *ns)
1365 {
1366 	return container_of(ns, struct net, ns);
1367 }
1368 
1369 static void netns_put(struct ns_common *ns)
1370 {
1371 	put_net(to_net_ns(ns));
1372 }
1373 
1374 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1375 {
1376 	struct nsproxy *nsproxy = nsset->nsproxy;
1377 	struct net *net = to_net_ns(ns);
1378 
1379 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1380 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1381 		return -EPERM;
1382 
1383 	put_net(nsproxy->net_ns);
1384 	nsproxy->net_ns = get_net(net);
1385 	return 0;
1386 }
1387 
1388 static struct user_namespace *netns_owner(struct ns_common *ns)
1389 {
1390 	return to_net_ns(ns)->user_ns;
1391 }
1392 
1393 const struct proc_ns_operations netns_operations = {
1394 	.name		= "net",
1395 	.type		= CLONE_NEWNET,
1396 	.get		= netns_get,
1397 	.put		= netns_put,
1398 	.install	= netns_install,
1399 	.owner		= netns_owner,
1400 };
1401 #endif
1402