xref: /openbmc/linux/net/core/net_namespace.c (revision 8b8f3e66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 
23 #include <net/sock.h>
24 #include <net/netlink.h>
25 #include <net/net_namespace.h>
26 #include <net/netns/generic.h>
27 
28 /*
29  *	Our network namespace constructor/destructor lists
30  */
31 
32 static LIST_HEAD(pernet_list);
33 static struct list_head *first_device = &pernet_list;
34 
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37 
38 /* Protects net_namespace_list. Nests iside rtnl_lock() */
39 DECLARE_RWSEM(net_rwsem);
40 EXPORT_SYMBOL_GPL(net_rwsem);
41 
42 #ifdef CONFIG_KEYS
43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
44 #endif
45 
46 struct net init_net = {
47 	.ns.count	= REFCOUNT_INIT(1),
48 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
49 #ifdef CONFIG_KEYS
50 	.key_domain	= &init_net_key_domain,
51 #endif
52 };
53 EXPORT_SYMBOL(init_net);
54 
55 static bool init_net_initialized;
56 /*
57  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
58  * init_net_initialized and first_device pointer.
59  * This is internal net namespace object. Please, don't use it
60  * outside.
61  */
62 DECLARE_RWSEM(pernet_ops_rwsem);
63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
64 
65 #define MIN_PERNET_OPS_ID	\
66 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
67 
68 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
69 
70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
71 
72 static atomic64_t cookie_gen;
73 
74 u64 net_gen_cookie(struct net *net)
75 {
76 	while (1) {
77 		u64 res = atomic64_read(&net->net_cookie);
78 
79 		if (res)
80 			return res;
81 		res = atomic64_inc_return(&cookie_gen);
82 		atomic64_cmpxchg(&net->net_cookie, 0, res);
83 	}
84 }
85 
86 static struct net_generic *net_alloc_generic(void)
87 {
88 	struct net_generic *ng;
89 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
90 
91 	ng = kzalloc(generic_size, GFP_KERNEL);
92 	if (ng)
93 		ng->s.len = max_gen_ptrs;
94 
95 	return ng;
96 }
97 
98 static int net_assign_generic(struct net *net, unsigned int id, void *data)
99 {
100 	struct net_generic *ng, *old_ng;
101 
102 	BUG_ON(id < MIN_PERNET_OPS_ID);
103 
104 	old_ng = rcu_dereference_protected(net->gen,
105 					   lockdep_is_held(&pernet_ops_rwsem));
106 	if (old_ng->s.len > id) {
107 		old_ng->ptr[id] = data;
108 		return 0;
109 	}
110 
111 	ng = net_alloc_generic();
112 	if (ng == NULL)
113 		return -ENOMEM;
114 
115 	/*
116 	 * Some synchronisation notes:
117 	 *
118 	 * The net_generic explores the net->gen array inside rcu
119 	 * read section. Besides once set the net->gen->ptr[x]
120 	 * pointer never changes (see rules in netns/generic.h).
121 	 *
122 	 * That said, we simply duplicate this array and schedule
123 	 * the old copy for kfree after a grace period.
124 	 */
125 
126 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
127 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
128 	ng->ptr[id] = data;
129 
130 	rcu_assign_pointer(net->gen, ng);
131 	kfree_rcu(old_ng, s.rcu);
132 	return 0;
133 }
134 
135 static int ops_init(const struct pernet_operations *ops, struct net *net)
136 {
137 	int err = -ENOMEM;
138 	void *data = NULL;
139 
140 	if (ops->id && ops->size) {
141 		data = kzalloc(ops->size, GFP_KERNEL);
142 		if (!data)
143 			goto out;
144 
145 		err = net_assign_generic(net, *ops->id, data);
146 		if (err)
147 			goto cleanup;
148 	}
149 	err = 0;
150 	if (ops->init)
151 		err = ops->init(net);
152 	if (!err)
153 		return 0;
154 
155 cleanup:
156 	kfree(data);
157 
158 out:
159 	return err;
160 }
161 
162 static void ops_free(const struct pernet_operations *ops, struct net *net)
163 {
164 	if (ops->id && ops->size) {
165 		kfree(net_generic(net, *ops->id));
166 	}
167 }
168 
169 static void ops_pre_exit_list(const struct pernet_operations *ops,
170 			      struct list_head *net_exit_list)
171 {
172 	struct net *net;
173 
174 	if (ops->pre_exit) {
175 		list_for_each_entry(net, net_exit_list, exit_list)
176 			ops->pre_exit(net);
177 	}
178 }
179 
180 static void ops_exit_list(const struct pernet_operations *ops,
181 			  struct list_head *net_exit_list)
182 {
183 	struct net *net;
184 	if (ops->exit) {
185 		list_for_each_entry(net, net_exit_list, exit_list)
186 			ops->exit(net);
187 	}
188 	if (ops->exit_batch)
189 		ops->exit_batch(net_exit_list);
190 }
191 
192 static void ops_free_list(const struct pernet_operations *ops,
193 			  struct list_head *net_exit_list)
194 {
195 	struct net *net;
196 	if (ops->size && ops->id) {
197 		list_for_each_entry(net, net_exit_list, exit_list)
198 			ops_free(ops, net);
199 	}
200 }
201 
202 /* should be called with nsid_lock held */
203 static int alloc_netid(struct net *net, struct net *peer, int reqid)
204 {
205 	int min = 0, max = 0;
206 
207 	if (reqid >= 0) {
208 		min = reqid;
209 		max = reqid + 1;
210 	}
211 
212 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
213 }
214 
215 /* This function is used by idr_for_each(). If net is equal to peer, the
216  * function returns the id so that idr_for_each() stops. Because we cannot
217  * returns the id 0 (idr_for_each() will not stop), we return the magic value
218  * NET_ID_ZERO (-1) for it.
219  */
220 #define NET_ID_ZERO -1
221 static int net_eq_idr(int id, void *net, void *peer)
222 {
223 	if (net_eq(net, peer))
224 		return id ? : NET_ID_ZERO;
225 	return 0;
226 }
227 
228 /* Must be called from RCU-critical section or with nsid_lock held */
229 static int __peernet2id(const struct net *net, struct net *peer)
230 {
231 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
232 
233 	/* Magic value for id 0. */
234 	if (id == NET_ID_ZERO)
235 		return 0;
236 	if (id > 0)
237 		return id;
238 
239 	return NETNSA_NSID_NOT_ASSIGNED;
240 }
241 
242 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
243 			      struct nlmsghdr *nlh, gfp_t gfp);
244 /* This function returns the id of a peer netns. If no id is assigned, one will
245  * be allocated and returned.
246  */
247 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
248 {
249 	int id;
250 
251 	if (refcount_read(&net->ns.count) == 0)
252 		return NETNSA_NSID_NOT_ASSIGNED;
253 
254 	spin_lock(&net->nsid_lock);
255 	id = __peernet2id(net, peer);
256 	if (id >= 0) {
257 		spin_unlock(&net->nsid_lock);
258 		return id;
259 	}
260 
261 	/* When peer is obtained from RCU lists, we may race with
262 	 * its cleanup. Check whether it's alive, and this guarantees
263 	 * we never hash a peer back to net->netns_ids, after it has
264 	 * just been idr_remove()'d from there in cleanup_net().
265 	 */
266 	if (!maybe_get_net(peer)) {
267 		spin_unlock(&net->nsid_lock);
268 		return NETNSA_NSID_NOT_ASSIGNED;
269 	}
270 
271 	id = alloc_netid(net, peer, -1);
272 	spin_unlock(&net->nsid_lock);
273 
274 	put_net(peer);
275 	if (id < 0)
276 		return NETNSA_NSID_NOT_ASSIGNED;
277 
278 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
279 
280 	return id;
281 }
282 EXPORT_SYMBOL_GPL(peernet2id_alloc);
283 
284 /* This function returns, if assigned, the id of a peer netns. */
285 int peernet2id(const struct net *net, struct net *peer)
286 {
287 	int id;
288 
289 	rcu_read_lock();
290 	id = __peernet2id(net, peer);
291 	rcu_read_unlock();
292 
293 	return id;
294 }
295 EXPORT_SYMBOL(peernet2id);
296 
297 /* This function returns true is the peer netns has an id assigned into the
298  * current netns.
299  */
300 bool peernet_has_id(const struct net *net, struct net *peer)
301 {
302 	return peernet2id(net, peer) >= 0;
303 }
304 
305 struct net *get_net_ns_by_id(const struct net *net, int id)
306 {
307 	struct net *peer;
308 
309 	if (id < 0)
310 		return NULL;
311 
312 	rcu_read_lock();
313 	peer = idr_find(&net->netns_ids, id);
314 	if (peer)
315 		peer = maybe_get_net(peer);
316 	rcu_read_unlock();
317 
318 	return peer;
319 }
320 
321 /*
322  * setup_net runs the initializers for the network namespace object.
323  */
324 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
325 {
326 	/* Must be called with pernet_ops_rwsem held */
327 	const struct pernet_operations *ops, *saved_ops;
328 	int error = 0;
329 	LIST_HEAD(net_exit_list);
330 
331 	refcount_set(&net->ns.count, 1);
332 	refcount_set(&net->passive, 1);
333 	get_random_bytes(&net->hash_mix, sizeof(u32));
334 	net->dev_base_seq = 1;
335 	net->user_ns = user_ns;
336 	idr_init(&net->netns_ids);
337 	spin_lock_init(&net->nsid_lock);
338 	mutex_init(&net->ipv4.ra_mutex);
339 
340 	list_for_each_entry(ops, &pernet_list, list) {
341 		error = ops_init(ops, net);
342 		if (error < 0)
343 			goto out_undo;
344 	}
345 	down_write(&net_rwsem);
346 	list_add_tail_rcu(&net->list, &net_namespace_list);
347 	up_write(&net_rwsem);
348 out:
349 	return error;
350 
351 out_undo:
352 	/* Walk through the list backwards calling the exit functions
353 	 * for the pernet modules whose init functions did not fail.
354 	 */
355 	list_add(&net->exit_list, &net_exit_list);
356 	saved_ops = ops;
357 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
358 		ops_pre_exit_list(ops, &net_exit_list);
359 
360 	synchronize_rcu();
361 
362 	ops = saved_ops;
363 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
364 		ops_exit_list(ops, &net_exit_list);
365 
366 	ops = saved_ops;
367 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
368 		ops_free_list(ops, &net_exit_list);
369 
370 	rcu_barrier();
371 	goto out;
372 }
373 
374 static int __net_init net_defaults_init_net(struct net *net)
375 {
376 	net->core.sysctl_somaxconn = SOMAXCONN;
377 	return 0;
378 }
379 
380 static struct pernet_operations net_defaults_ops = {
381 	.init = net_defaults_init_net,
382 };
383 
384 static __init int net_defaults_init(void)
385 {
386 	if (register_pernet_subsys(&net_defaults_ops))
387 		panic("Cannot initialize net default settings");
388 
389 	return 0;
390 }
391 
392 core_initcall(net_defaults_init);
393 
394 #ifdef CONFIG_NET_NS
395 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
396 {
397 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
398 }
399 
400 static void dec_net_namespaces(struct ucounts *ucounts)
401 {
402 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
403 }
404 
405 static struct kmem_cache *net_cachep __ro_after_init;
406 static struct workqueue_struct *netns_wq;
407 
408 static struct net *net_alloc(void)
409 {
410 	struct net *net = NULL;
411 	struct net_generic *ng;
412 
413 	ng = net_alloc_generic();
414 	if (!ng)
415 		goto out;
416 
417 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
418 	if (!net)
419 		goto out_free;
420 
421 #ifdef CONFIG_KEYS
422 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
423 	if (!net->key_domain)
424 		goto out_free_2;
425 	refcount_set(&net->key_domain->usage, 1);
426 #endif
427 
428 	rcu_assign_pointer(net->gen, ng);
429 out:
430 	return net;
431 
432 #ifdef CONFIG_KEYS
433 out_free_2:
434 	kmem_cache_free(net_cachep, net);
435 	net = NULL;
436 #endif
437 out_free:
438 	kfree(ng);
439 	goto out;
440 }
441 
442 static void net_free(struct net *net)
443 {
444 	kfree(rcu_access_pointer(net->gen));
445 	kmem_cache_free(net_cachep, net);
446 }
447 
448 void net_drop_ns(void *p)
449 {
450 	struct net *ns = p;
451 	if (ns && refcount_dec_and_test(&ns->passive))
452 		net_free(ns);
453 }
454 
455 struct net *copy_net_ns(unsigned long flags,
456 			struct user_namespace *user_ns, struct net *old_net)
457 {
458 	struct ucounts *ucounts;
459 	struct net *net;
460 	int rv;
461 
462 	if (!(flags & CLONE_NEWNET))
463 		return get_net(old_net);
464 
465 	ucounts = inc_net_namespaces(user_ns);
466 	if (!ucounts)
467 		return ERR_PTR(-ENOSPC);
468 
469 	net = net_alloc();
470 	if (!net) {
471 		rv = -ENOMEM;
472 		goto dec_ucounts;
473 	}
474 	refcount_set(&net->passive, 1);
475 	net->ucounts = ucounts;
476 	get_user_ns(user_ns);
477 
478 	rv = down_read_killable(&pernet_ops_rwsem);
479 	if (rv < 0)
480 		goto put_userns;
481 
482 	rv = setup_net(net, user_ns);
483 
484 	up_read(&pernet_ops_rwsem);
485 
486 	if (rv < 0) {
487 put_userns:
488 		key_remove_domain(net->key_domain);
489 		put_user_ns(user_ns);
490 		net_drop_ns(net);
491 dec_ucounts:
492 		dec_net_namespaces(ucounts);
493 		return ERR_PTR(rv);
494 	}
495 	return net;
496 }
497 
498 /**
499  * net_ns_get_ownership - get sysfs ownership data for @net
500  * @net: network namespace in question (can be NULL)
501  * @uid: kernel user ID for sysfs objects
502  * @gid: kernel group ID for sysfs objects
503  *
504  * Returns the uid/gid pair of root in the user namespace associated with the
505  * given network namespace.
506  */
507 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
508 {
509 	if (net) {
510 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
511 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
512 
513 		if (uid_valid(ns_root_uid))
514 			*uid = ns_root_uid;
515 
516 		if (gid_valid(ns_root_gid))
517 			*gid = ns_root_gid;
518 	} else {
519 		*uid = GLOBAL_ROOT_UID;
520 		*gid = GLOBAL_ROOT_GID;
521 	}
522 }
523 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
524 
525 static void unhash_nsid(struct net *net, struct net *last)
526 {
527 	struct net *tmp;
528 	/* This function is only called from cleanup_net() work,
529 	 * and this work is the only process, that may delete
530 	 * a net from net_namespace_list. So, when the below
531 	 * is executing, the list may only grow. Thus, we do not
532 	 * use for_each_net_rcu() or net_rwsem.
533 	 */
534 	for_each_net(tmp) {
535 		int id;
536 
537 		spin_lock(&tmp->nsid_lock);
538 		id = __peernet2id(tmp, net);
539 		if (id >= 0)
540 			idr_remove(&tmp->netns_ids, id);
541 		spin_unlock(&tmp->nsid_lock);
542 		if (id >= 0)
543 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
544 					  GFP_KERNEL);
545 		if (tmp == last)
546 			break;
547 	}
548 	spin_lock(&net->nsid_lock);
549 	idr_destroy(&net->netns_ids);
550 	spin_unlock(&net->nsid_lock);
551 }
552 
553 static LLIST_HEAD(cleanup_list);
554 
555 static void cleanup_net(struct work_struct *work)
556 {
557 	const struct pernet_operations *ops;
558 	struct net *net, *tmp, *last;
559 	struct llist_node *net_kill_list;
560 	LIST_HEAD(net_exit_list);
561 
562 	/* Atomically snapshot the list of namespaces to cleanup */
563 	net_kill_list = llist_del_all(&cleanup_list);
564 
565 	down_read(&pernet_ops_rwsem);
566 
567 	/* Don't let anyone else find us. */
568 	down_write(&net_rwsem);
569 	llist_for_each_entry(net, net_kill_list, cleanup_list)
570 		list_del_rcu(&net->list);
571 	/* Cache last net. After we unlock rtnl, no one new net
572 	 * added to net_namespace_list can assign nsid pointer
573 	 * to a net from net_kill_list (see peernet2id_alloc()).
574 	 * So, we skip them in unhash_nsid().
575 	 *
576 	 * Note, that unhash_nsid() does not delete nsid links
577 	 * between net_kill_list's nets, as they've already
578 	 * deleted from net_namespace_list. But, this would be
579 	 * useless anyway, as netns_ids are destroyed there.
580 	 */
581 	last = list_last_entry(&net_namespace_list, struct net, list);
582 	up_write(&net_rwsem);
583 
584 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
585 		unhash_nsid(net, last);
586 		list_add_tail(&net->exit_list, &net_exit_list);
587 	}
588 
589 	/* Run all of the network namespace pre_exit methods */
590 	list_for_each_entry_reverse(ops, &pernet_list, list)
591 		ops_pre_exit_list(ops, &net_exit_list);
592 
593 	/*
594 	 * Another CPU might be rcu-iterating the list, wait for it.
595 	 * This needs to be before calling the exit() notifiers, so
596 	 * the rcu_barrier() below isn't sufficient alone.
597 	 * Also the pre_exit() and exit() methods need this barrier.
598 	 */
599 	synchronize_rcu();
600 
601 	/* Run all of the network namespace exit methods */
602 	list_for_each_entry_reverse(ops, &pernet_list, list)
603 		ops_exit_list(ops, &net_exit_list);
604 
605 	/* Free the net generic variables */
606 	list_for_each_entry_reverse(ops, &pernet_list, list)
607 		ops_free_list(ops, &net_exit_list);
608 
609 	up_read(&pernet_ops_rwsem);
610 
611 	/* Ensure there are no outstanding rcu callbacks using this
612 	 * network namespace.
613 	 */
614 	rcu_barrier();
615 
616 	/* Finally it is safe to free my network namespace structure */
617 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
618 		list_del_init(&net->exit_list);
619 		dec_net_namespaces(net->ucounts);
620 		key_remove_domain(net->key_domain);
621 		put_user_ns(net->user_ns);
622 		net_drop_ns(net);
623 	}
624 }
625 
626 /**
627  * net_ns_barrier - wait until concurrent net_cleanup_work is done
628  *
629  * cleanup_net runs from work queue and will first remove namespaces
630  * from the global list, then run net exit functions.
631  *
632  * Call this in module exit path to make sure that all netns
633  * ->exit ops have been invoked before the function is removed.
634  */
635 void net_ns_barrier(void)
636 {
637 	down_write(&pernet_ops_rwsem);
638 	up_write(&pernet_ops_rwsem);
639 }
640 EXPORT_SYMBOL(net_ns_barrier);
641 
642 static DECLARE_WORK(net_cleanup_work, cleanup_net);
643 
644 void __put_net(struct net *net)
645 {
646 	/* Cleanup the network namespace in process context */
647 	if (llist_add(&net->cleanup_list, &cleanup_list))
648 		queue_work(netns_wq, &net_cleanup_work);
649 }
650 EXPORT_SYMBOL_GPL(__put_net);
651 
652 struct net *get_net_ns_by_fd(int fd)
653 {
654 	struct file *file;
655 	struct ns_common *ns;
656 	struct net *net;
657 
658 	file = proc_ns_fget(fd);
659 	if (IS_ERR(file))
660 		return ERR_CAST(file);
661 
662 	ns = get_proc_ns(file_inode(file));
663 	if (ns->ops == &netns_operations)
664 		net = get_net(container_of(ns, struct net, ns));
665 	else
666 		net = ERR_PTR(-EINVAL);
667 
668 	fput(file);
669 	return net;
670 }
671 
672 #else
673 struct net *get_net_ns_by_fd(int fd)
674 {
675 	return ERR_PTR(-EINVAL);
676 }
677 #endif
678 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
679 
680 struct net *get_net_ns_by_pid(pid_t pid)
681 {
682 	struct task_struct *tsk;
683 	struct net *net;
684 
685 	/* Lookup the network namespace */
686 	net = ERR_PTR(-ESRCH);
687 	rcu_read_lock();
688 	tsk = find_task_by_vpid(pid);
689 	if (tsk) {
690 		struct nsproxy *nsproxy;
691 		task_lock(tsk);
692 		nsproxy = tsk->nsproxy;
693 		if (nsproxy)
694 			net = get_net(nsproxy->net_ns);
695 		task_unlock(tsk);
696 	}
697 	rcu_read_unlock();
698 	return net;
699 }
700 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
701 
702 static __net_init int net_ns_net_init(struct net *net)
703 {
704 #ifdef CONFIG_NET_NS
705 	net->ns.ops = &netns_operations;
706 #endif
707 	return ns_alloc_inum(&net->ns);
708 }
709 
710 static __net_exit void net_ns_net_exit(struct net *net)
711 {
712 	ns_free_inum(&net->ns);
713 }
714 
715 static struct pernet_operations __net_initdata net_ns_ops = {
716 	.init = net_ns_net_init,
717 	.exit = net_ns_net_exit,
718 };
719 
720 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
721 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
722 	[NETNSA_NSID]		= { .type = NLA_S32 },
723 	[NETNSA_PID]		= { .type = NLA_U32 },
724 	[NETNSA_FD]		= { .type = NLA_U32 },
725 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
726 };
727 
728 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
729 			  struct netlink_ext_ack *extack)
730 {
731 	struct net *net = sock_net(skb->sk);
732 	struct nlattr *tb[NETNSA_MAX + 1];
733 	struct nlattr *nla;
734 	struct net *peer;
735 	int nsid, err;
736 
737 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
738 				     NETNSA_MAX, rtnl_net_policy, extack);
739 	if (err < 0)
740 		return err;
741 	if (!tb[NETNSA_NSID]) {
742 		NL_SET_ERR_MSG(extack, "nsid is missing");
743 		return -EINVAL;
744 	}
745 	nsid = nla_get_s32(tb[NETNSA_NSID]);
746 
747 	if (tb[NETNSA_PID]) {
748 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
749 		nla = tb[NETNSA_PID];
750 	} else if (tb[NETNSA_FD]) {
751 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
752 		nla = tb[NETNSA_FD];
753 	} else {
754 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
755 		return -EINVAL;
756 	}
757 	if (IS_ERR(peer)) {
758 		NL_SET_BAD_ATTR(extack, nla);
759 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
760 		return PTR_ERR(peer);
761 	}
762 
763 	spin_lock(&net->nsid_lock);
764 	if (__peernet2id(net, peer) >= 0) {
765 		spin_unlock(&net->nsid_lock);
766 		err = -EEXIST;
767 		NL_SET_BAD_ATTR(extack, nla);
768 		NL_SET_ERR_MSG(extack,
769 			       "Peer netns already has a nsid assigned");
770 		goto out;
771 	}
772 
773 	err = alloc_netid(net, peer, nsid);
774 	spin_unlock(&net->nsid_lock);
775 	if (err >= 0) {
776 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
777 				  nlh, GFP_KERNEL);
778 		err = 0;
779 	} else if (err == -ENOSPC && nsid >= 0) {
780 		err = -EEXIST;
781 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
782 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
783 	}
784 out:
785 	put_net(peer);
786 	return err;
787 }
788 
789 static int rtnl_net_get_size(void)
790 {
791 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
792 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
793 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
794 	       ;
795 }
796 
797 struct net_fill_args {
798 	u32 portid;
799 	u32 seq;
800 	int flags;
801 	int cmd;
802 	int nsid;
803 	bool add_ref;
804 	int ref_nsid;
805 };
806 
807 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
808 {
809 	struct nlmsghdr *nlh;
810 	struct rtgenmsg *rth;
811 
812 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
813 			args->flags);
814 	if (!nlh)
815 		return -EMSGSIZE;
816 
817 	rth = nlmsg_data(nlh);
818 	rth->rtgen_family = AF_UNSPEC;
819 
820 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
821 		goto nla_put_failure;
822 
823 	if (args->add_ref &&
824 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
825 		goto nla_put_failure;
826 
827 	nlmsg_end(skb, nlh);
828 	return 0;
829 
830 nla_put_failure:
831 	nlmsg_cancel(skb, nlh);
832 	return -EMSGSIZE;
833 }
834 
835 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
836 				    const struct nlmsghdr *nlh,
837 				    struct nlattr **tb,
838 				    struct netlink_ext_ack *extack)
839 {
840 	int i, err;
841 
842 	if (!netlink_strict_get_check(skb))
843 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
844 					      tb, NETNSA_MAX, rtnl_net_policy,
845 					      extack);
846 
847 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
848 					    NETNSA_MAX, rtnl_net_policy,
849 					    extack);
850 	if (err)
851 		return err;
852 
853 	for (i = 0; i <= NETNSA_MAX; i++) {
854 		if (!tb[i])
855 			continue;
856 
857 		switch (i) {
858 		case NETNSA_PID:
859 		case NETNSA_FD:
860 		case NETNSA_NSID:
861 		case NETNSA_TARGET_NSID:
862 			break;
863 		default:
864 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
865 			return -EINVAL;
866 		}
867 	}
868 
869 	return 0;
870 }
871 
872 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
873 			  struct netlink_ext_ack *extack)
874 {
875 	struct net *net = sock_net(skb->sk);
876 	struct nlattr *tb[NETNSA_MAX + 1];
877 	struct net_fill_args fillargs = {
878 		.portid = NETLINK_CB(skb).portid,
879 		.seq = nlh->nlmsg_seq,
880 		.cmd = RTM_NEWNSID,
881 	};
882 	struct net *peer, *target = net;
883 	struct nlattr *nla;
884 	struct sk_buff *msg;
885 	int err;
886 
887 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
888 	if (err < 0)
889 		return err;
890 	if (tb[NETNSA_PID]) {
891 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
892 		nla = tb[NETNSA_PID];
893 	} else if (tb[NETNSA_FD]) {
894 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
895 		nla = tb[NETNSA_FD];
896 	} else if (tb[NETNSA_NSID]) {
897 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
898 		if (!peer)
899 			peer = ERR_PTR(-ENOENT);
900 		nla = tb[NETNSA_NSID];
901 	} else {
902 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
903 		return -EINVAL;
904 	}
905 
906 	if (IS_ERR(peer)) {
907 		NL_SET_BAD_ATTR(extack, nla);
908 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
909 		return PTR_ERR(peer);
910 	}
911 
912 	if (tb[NETNSA_TARGET_NSID]) {
913 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
914 
915 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
916 		if (IS_ERR(target)) {
917 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
918 			NL_SET_ERR_MSG(extack,
919 				       "Target netns reference is invalid");
920 			err = PTR_ERR(target);
921 			goto out;
922 		}
923 		fillargs.add_ref = true;
924 		fillargs.ref_nsid = peernet2id(net, peer);
925 	}
926 
927 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
928 	if (!msg) {
929 		err = -ENOMEM;
930 		goto out;
931 	}
932 
933 	fillargs.nsid = peernet2id(target, peer);
934 	err = rtnl_net_fill(msg, &fillargs);
935 	if (err < 0)
936 		goto err_out;
937 
938 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
939 	goto out;
940 
941 err_out:
942 	nlmsg_free(msg);
943 out:
944 	if (fillargs.add_ref)
945 		put_net(target);
946 	put_net(peer);
947 	return err;
948 }
949 
950 struct rtnl_net_dump_cb {
951 	struct net *tgt_net;
952 	struct net *ref_net;
953 	struct sk_buff *skb;
954 	struct net_fill_args fillargs;
955 	int idx;
956 	int s_idx;
957 };
958 
959 /* Runs in RCU-critical section. */
960 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
961 {
962 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
963 	int ret;
964 
965 	if (net_cb->idx < net_cb->s_idx)
966 		goto cont;
967 
968 	net_cb->fillargs.nsid = id;
969 	if (net_cb->fillargs.add_ref)
970 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
971 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
972 	if (ret < 0)
973 		return ret;
974 
975 cont:
976 	net_cb->idx++;
977 	return 0;
978 }
979 
980 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
981 				   struct rtnl_net_dump_cb *net_cb,
982 				   struct netlink_callback *cb)
983 {
984 	struct netlink_ext_ack *extack = cb->extack;
985 	struct nlattr *tb[NETNSA_MAX + 1];
986 	int err, i;
987 
988 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
989 					    NETNSA_MAX, rtnl_net_policy,
990 					    extack);
991 	if (err < 0)
992 		return err;
993 
994 	for (i = 0; i <= NETNSA_MAX; i++) {
995 		if (!tb[i])
996 			continue;
997 
998 		if (i == NETNSA_TARGET_NSID) {
999 			struct net *net;
1000 
1001 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1002 			if (IS_ERR(net)) {
1003 				NL_SET_BAD_ATTR(extack, tb[i]);
1004 				NL_SET_ERR_MSG(extack,
1005 					       "Invalid target network namespace id");
1006 				return PTR_ERR(net);
1007 			}
1008 			net_cb->fillargs.add_ref = true;
1009 			net_cb->ref_net = net_cb->tgt_net;
1010 			net_cb->tgt_net = net;
1011 		} else {
1012 			NL_SET_BAD_ATTR(extack, tb[i]);
1013 			NL_SET_ERR_MSG(extack,
1014 				       "Unsupported attribute in dump request");
1015 			return -EINVAL;
1016 		}
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1023 {
1024 	struct rtnl_net_dump_cb net_cb = {
1025 		.tgt_net = sock_net(skb->sk),
1026 		.skb = skb,
1027 		.fillargs = {
1028 			.portid = NETLINK_CB(cb->skb).portid,
1029 			.seq = cb->nlh->nlmsg_seq,
1030 			.flags = NLM_F_MULTI,
1031 			.cmd = RTM_NEWNSID,
1032 		},
1033 		.idx = 0,
1034 		.s_idx = cb->args[0],
1035 	};
1036 	int err = 0;
1037 
1038 	if (cb->strict_check) {
1039 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1040 		if (err < 0)
1041 			goto end;
1042 	}
1043 
1044 	rcu_read_lock();
1045 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1046 	rcu_read_unlock();
1047 
1048 	cb->args[0] = net_cb.idx;
1049 end:
1050 	if (net_cb.fillargs.add_ref)
1051 		put_net(net_cb.tgt_net);
1052 	return err < 0 ? err : skb->len;
1053 }
1054 
1055 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1056 			      struct nlmsghdr *nlh, gfp_t gfp)
1057 {
1058 	struct net_fill_args fillargs = {
1059 		.portid = portid,
1060 		.seq = nlh ? nlh->nlmsg_seq : 0,
1061 		.cmd = cmd,
1062 		.nsid = id,
1063 	};
1064 	struct sk_buff *msg;
1065 	int err = -ENOMEM;
1066 
1067 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1068 	if (!msg)
1069 		goto out;
1070 
1071 	err = rtnl_net_fill(msg, &fillargs);
1072 	if (err < 0)
1073 		goto err_out;
1074 
1075 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1076 	return;
1077 
1078 err_out:
1079 	nlmsg_free(msg);
1080 out:
1081 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1082 }
1083 
1084 static int __init net_ns_init(void)
1085 {
1086 	struct net_generic *ng;
1087 
1088 #ifdef CONFIG_NET_NS
1089 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1090 					SMP_CACHE_BYTES,
1091 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1092 
1093 	/* Create workqueue for cleanup */
1094 	netns_wq = create_singlethread_workqueue("netns");
1095 	if (!netns_wq)
1096 		panic("Could not create netns workq");
1097 #endif
1098 
1099 	ng = net_alloc_generic();
1100 	if (!ng)
1101 		panic("Could not allocate generic netns");
1102 
1103 	rcu_assign_pointer(init_net.gen, ng);
1104 	net_gen_cookie(&init_net);
1105 
1106 	down_write(&pernet_ops_rwsem);
1107 	if (setup_net(&init_net, &init_user_ns))
1108 		panic("Could not setup the initial network namespace");
1109 
1110 	init_net_initialized = true;
1111 	up_write(&pernet_ops_rwsem);
1112 
1113 	if (register_pernet_subsys(&net_ns_ops))
1114 		panic("Could not register network namespace subsystems");
1115 
1116 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1117 		      RTNL_FLAG_DOIT_UNLOCKED);
1118 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1119 		      RTNL_FLAG_DOIT_UNLOCKED);
1120 
1121 	return 0;
1122 }
1123 
1124 pure_initcall(net_ns_init);
1125 
1126 #ifdef CONFIG_NET_NS
1127 static int __register_pernet_operations(struct list_head *list,
1128 					struct pernet_operations *ops)
1129 {
1130 	struct net *net;
1131 	int error;
1132 	LIST_HEAD(net_exit_list);
1133 
1134 	list_add_tail(&ops->list, list);
1135 	if (ops->init || (ops->id && ops->size)) {
1136 		/* We held write locked pernet_ops_rwsem, and parallel
1137 		 * setup_net() and cleanup_net() are not possible.
1138 		 */
1139 		for_each_net(net) {
1140 			error = ops_init(ops, net);
1141 			if (error)
1142 				goto out_undo;
1143 			list_add_tail(&net->exit_list, &net_exit_list);
1144 		}
1145 	}
1146 	return 0;
1147 
1148 out_undo:
1149 	/* If I have an error cleanup all namespaces I initialized */
1150 	list_del(&ops->list);
1151 	ops_pre_exit_list(ops, &net_exit_list);
1152 	synchronize_rcu();
1153 	ops_exit_list(ops, &net_exit_list);
1154 	ops_free_list(ops, &net_exit_list);
1155 	return error;
1156 }
1157 
1158 static void __unregister_pernet_operations(struct pernet_operations *ops)
1159 {
1160 	struct net *net;
1161 	LIST_HEAD(net_exit_list);
1162 
1163 	list_del(&ops->list);
1164 	/* See comment in __register_pernet_operations() */
1165 	for_each_net(net)
1166 		list_add_tail(&net->exit_list, &net_exit_list);
1167 	ops_pre_exit_list(ops, &net_exit_list);
1168 	synchronize_rcu();
1169 	ops_exit_list(ops, &net_exit_list);
1170 	ops_free_list(ops, &net_exit_list);
1171 }
1172 
1173 #else
1174 
1175 static int __register_pernet_operations(struct list_head *list,
1176 					struct pernet_operations *ops)
1177 {
1178 	if (!init_net_initialized) {
1179 		list_add_tail(&ops->list, list);
1180 		return 0;
1181 	}
1182 
1183 	return ops_init(ops, &init_net);
1184 }
1185 
1186 static void __unregister_pernet_operations(struct pernet_operations *ops)
1187 {
1188 	if (!init_net_initialized) {
1189 		list_del(&ops->list);
1190 	} else {
1191 		LIST_HEAD(net_exit_list);
1192 		list_add(&init_net.exit_list, &net_exit_list);
1193 		ops_pre_exit_list(ops, &net_exit_list);
1194 		synchronize_rcu();
1195 		ops_exit_list(ops, &net_exit_list);
1196 		ops_free_list(ops, &net_exit_list);
1197 	}
1198 }
1199 
1200 #endif /* CONFIG_NET_NS */
1201 
1202 static DEFINE_IDA(net_generic_ids);
1203 
1204 static int register_pernet_operations(struct list_head *list,
1205 				      struct pernet_operations *ops)
1206 {
1207 	int error;
1208 
1209 	if (ops->id) {
1210 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1211 				GFP_KERNEL);
1212 		if (error < 0)
1213 			return error;
1214 		*ops->id = error;
1215 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1216 	}
1217 	error = __register_pernet_operations(list, ops);
1218 	if (error) {
1219 		rcu_barrier();
1220 		if (ops->id)
1221 			ida_free(&net_generic_ids, *ops->id);
1222 	}
1223 
1224 	return error;
1225 }
1226 
1227 static void unregister_pernet_operations(struct pernet_operations *ops)
1228 {
1229 	__unregister_pernet_operations(ops);
1230 	rcu_barrier();
1231 	if (ops->id)
1232 		ida_free(&net_generic_ids, *ops->id);
1233 }
1234 
1235 /**
1236  *      register_pernet_subsys - register a network namespace subsystem
1237  *	@ops:  pernet operations structure for the subsystem
1238  *
1239  *	Register a subsystem which has init and exit functions
1240  *	that are called when network namespaces are created and
1241  *	destroyed respectively.
1242  *
1243  *	When registered all network namespace init functions are
1244  *	called for every existing network namespace.  Allowing kernel
1245  *	modules to have a race free view of the set of network namespaces.
1246  *
1247  *	When a new network namespace is created all of the init
1248  *	methods are called in the order in which they were registered.
1249  *
1250  *	When a network namespace is destroyed all of the exit methods
1251  *	are called in the reverse of the order with which they were
1252  *	registered.
1253  */
1254 int register_pernet_subsys(struct pernet_operations *ops)
1255 {
1256 	int error;
1257 	down_write(&pernet_ops_rwsem);
1258 	error =  register_pernet_operations(first_device, ops);
1259 	up_write(&pernet_ops_rwsem);
1260 	return error;
1261 }
1262 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1263 
1264 /**
1265  *      unregister_pernet_subsys - unregister a network namespace subsystem
1266  *	@ops: pernet operations structure to manipulate
1267  *
1268  *	Remove the pernet operations structure from the list to be
1269  *	used when network namespaces are created or destroyed.  In
1270  *	addition run the exit method for all existing network
1271  *	namespaces.
1272  */
1273 void unregister_pernet_subsys(struct pernet_operations *ops)
1274 {
1275 	down_write(&pernet_ops_rwsem);
1276 	unregister_pernet_operations(ops);
1277 	up_write(&pernet_ops_rwsem);
1278 }
1279 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1280 
1281 /**
1282  *      register_pernet_device - register a network namespace device
1283  *	@ops:  pernet operations structure for the subsystem
1284  *
1285  *	Register a device which has init and exit functions
1286  *	that are called when network namespaces are created and
1287  *	destroyed respectively.
1288  *
1289  *	When registered all network namespace init functions are
1290  *	called for every existing network namespace.  Allowing kernel
1291  *	modules to have a race free view of the set of network namespaces.
1292  *
1293  *	When a new network namespace is created all of the init
1294  *	methods are called in the order in which they were registered.
1295  *
1296  *	When a network namespace is destroyed all of the exit methods
1297  *	are called in the reverse of the order with which they were
1298  *	registered.
1299  */
1300 int register_pernet_device(struct pernet_operations *ops)
1301 {
1302 	int error;
1303 	down_write(&pernet_ops_rwsem);
1304 	error = register_pernet_operations(&pernet_list, ops);
1305 	if (!error && (first_device == &pernet_list))
1306 		first_device = &ops->list;
1307 	up_write(&pernet_ops_rwsem);
1308 	return error;
1309 }
1310 EXPORT_SYMBOL_GPL(register_pernet_device);
1311 
1312 /**
1313  *      unregister_pernet_device - unregister a network namespace netdevice
1314  *	@ops: pernet operations structure to manipulate
1315  *
1316  *	Remove the pernet operations structure from the list to be
1317  *	used when network namespaces are created or destroyed.  In
1318  *	addition run the exit method for all existing network
1319  *	namespaces.
1320  */
1321 void unregister_pernet_device(struct pernet_operations *ops)
1322 {
1323 	down_write(&pernet_ops_rwsem);
1324 	if (&ops->list == first_device)
1325 		first_device = first_device->next;
1326 	unregister_pernet_operations(ops);
1327 	up_write(&pernet_ops_rwsem);
1328 }
1329 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1330 
1331 #ifdef CONFIG_NET_NS
1332 static struct ns_common *netns_get(struct task_struct *task)
1333 {
1334 	struct net *net = NULL;
1335 	struct nsproxy *nsproxy;
1336 
1337 	task_lock(task);
1338 	nsproxy = task->nsproxy;
1339 	if (nsproxy)
1340 		net = get_net(nsproxy->net_ns);
1341 	task_unlock(task);
1342 
1343 	return net ? &net->ns : NULL;
1344 }
1345 
1346 static inline struct net *to_net_ns(struct ns_common *ns)
1347 {
1348 	return container_of(ns, struct net, ns);
1349 }
1350 
1351 static void netns_put(struct ns_common *ns)
1352 {
1353 	put_net(to_net_ns(ns));
1354 }
1355 
1356 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1357 {
1358 	struct nsproxy *nsproxy = nsset->nsproxy;
1359 	struct net *net = to_net_ns(ns);
1360 
1361 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1362 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1363 		return -EPERM;
1364 
1365 	put_net(nsproxy->net_ns);
1366 	nsproxy->net_ns = get_net(net);
1367 	return 0;
1368 }
1369 
1370 static struct user_namespace *netns_owner(struct ns_common *ns)
1371 {
1372 	return to_net_ns(ns)->user_ns;
1373 }
1374 
1375 const struct proc_ns_operations netns_operations = {
1376 	.name		= "net",
1377 	.type		= CLONE_NEWNET,
1378 	.get		= netns_get,
1379 	.put		= netns_put,
1380 	.install	= netns_install,
1381 	.owner		= netns_owner,
1382 };
1383 #endif
1384