xref: /openbmc/linux/net/core/net_namespace.c (revision 82ecff65)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 
23 #include <net/sock.h>
24 #include <net/netlink.h>
25 #include <net/net_namespace.h>
26 #include <net/netns/generic.h>
27 
28 /*
29  *	Our network namespace constructor/destructor lists
30  */
31 
32 static LIST_HEAD(pernet_list);
33 static struct list_head *first_device = &pernet_list;
34 
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37 
38 /* Protects net_namespace_list. Nests iside rtnl_lock() */
39 DECLARE_RWSEM(net_rwsem);
40 EXPORT_SYMBOL_GPL(net_rwsem);
41 
42 #ifdef CONFIG_KEYS
43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
44 #endif
45 
46 struct net init_net = {
47 	.count		= REFCOUNT_INIT(1),
48 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
49 #ifdef CONFIG_KEYS
50 	.key_domain	= &init_net_key_domain,
51 #endif
52 };
53 EXPORT_SYMBOL(init_net);
54 
55 static bool init_net_initialized;
56 /*
57  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
58  * init_net_initialized and first_device pointer.
59  * This is internal net namespace object. Please, don't use it
60  * outside.
61  */
62 DECLARE_RWSEM(pernet_ops_rwsem);
63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
64 
65 #define MIN_PERNET_OPS_ID	\
66 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
67 
68 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
69 
70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
71 
72 static struct net_generic *net_alloc_generic(void)
73 {
74 	struct net_generic *ng;
75 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
76 
77 	ng = kzalloc(generic_size, GFP_KERNEL);
78 	if (ng)
79 		ng->s.len = max_gen_ptrs;
80 
81 	return ng;
82 }
83 
84 static int net_assign_generic(struct net *net, unsigned int id, void *data)
85 {
86 	struct net_generic *ng, *old_ng;
87 
88 	BUG_ON(id < MIN_PERNET_OPS_ID);
89 
90 	old_ng = rcu_dereference_protected(net->gen,
91 					   lockdep_is_held(&pernet_ops_rwsem));
92 	if (old_ng->s.len > id) {
93 		old_ng->ptr[id] = data;
94 		return 0;
95 	}
96 
97 	ng = net_alloc_generic();
98 	if (ng == NULL)
99 		return -ENOMEM;
100 
101 	/*
102 	 * Some synchronisation notes:
103 	 *
104 	 * The net_generic explores the net->gen array inside rcu
105 	 * read section. Besides once set the net->gen->ptr[x]
106 	 * pointer never changes (see rules in netns/generic.h).
107 	 *
108 	 * That said, we simply duplicate this array and schedule
109 	 * the old copy for kfree after a grace period.
110 	 */
111 
112 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
113 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
114 	ng->ptr[id] = data;
115 
116 	rcu_assign_pointer(net->gen, ng);
117 	kfree_rcu(old_ng, s.rcu);
118 	return 0;
119 }
120 
121 static int ops_init(const struct pernet_operations *ops, struct net *net)
122 {
123 	int err = -ENOMEM;
124 	void *data = NULL;
125 
126 	if (ops->id && ops->size) {
127 		data = kzalloc(ops->size, GFP_KERNEL);
128 		if (!data)
129 			goto out;
130 
131 		err = net_assign_generic(net, *ops->id, data);
132 		if (err)
133 			goto cleanup;
134 	}
135 	err = 0;
136 	if (ops->init)
137 		err = ops->init(net);
138 	if (!err)
139 		return 0;
140 
141 cleanup:
142 	kfree(data);
143 
144 out:
145 	return err;
146 }
147 
148 static void ops_free(const struct pernet_operations *ops, struct net *net)
149 {
150 	if (ops->id && ops->size) {
151 		kfree(net_generic(net, *ops->id));
152 	}
153 }
154 
155 static void ops_pre_exit_list(const struct pernet_operations *ops,
156 			      struct list_head *net_exit_list)
157 {
158 	struct net *net;
159 
160 	if (ops->pre_exit) {
161 		list_for_each_entry(net, net_exit_list, exit_list)
162 			ops->pre_exit(net);
163 	}
164 }
165 
166 static void ops_exit_list(const struct pernet_operations *ops,
167 			  struct list_head *net_exit_list)
168 {
169 	struct net *net;
170 	if (ops->exit) {
171 		list_for_each_entry(net, net_exit_list, exit_list)
172 			ops->exit(net);
173 	}
174 	if (ops->exit_batch)
175 		ops->exit_batch(net_exit_list);
176 }
177 
178 static void ops_free_list(const struct pernet_operations *ops,
179 			  struct list_head *net_exit_list)
180 {
181 	struct net *net;
182 	if (ops->size && ops->id) {
183 		list_for_each_entry(net, net_exit_list, exit_list)
184 			ops_free(ops, net);
185 	}
186 }
187 
188 /* should be called with nsid_lock held */
189 static int alloc_netid(struct net *net, struct net *peer, int reqid)
190 {
191 	int min = 0, max = 0;
192 
193 	if (reqid >= 0) {
194 		min = reqid;
195 		max = reqid + 1;
196 	}
197 
198 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
199 }
200 
201 /* This function is used by idr_for_each(). If net is equal to peer, the
202  * function returns the id so that idr_for_each() stops. Because we cannot
203  * returns the id 0 (idr_for_each() will not stop), we return the magic value
204  * NET_ID_ZERO (-1) for it.
205  */
206 #define NET_ID_ZERO -1
207 static int net_eq_idr(int id, void *net, void *peer)
208 {
209 	if (net_eq(net, peer))
210 		return id ? : NET_ID_ZERO;
211 	return 0;
212 }
213 
214 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
215  * is set to true, thus the caller knows that the new id must be notified via
216  * rtnl.
217  */
218 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
219 {
220 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
221 	bool alloc_it = *alloc;
222 
223 	*alloc = false;
224 
225 	/* Magic value for id 0. */
226 	if (id == NET_ID_ZERO)
227 		return 0;
228 	if (id > 0)
229 		return id;
230 
231 	if (alloc_it) {
232 		id = alloc_netid(net, peer, -1);
233 		*alloc = true;
234 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
235 	}
236 
237 	return NETNSA_NSID_NOT_ASSIGNED;
238 }
239 
240 /* should be called with nsid_lock held */
241 static int __peernet2id(struct net *net, struct net *peer)
242 {
243 	bool no = false;
244 
245 	return __peernet2id_alloc(net, peer, &no);
246 }
247 
248 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
249 			      struct nlmsghdr *nlh);
250 /* This function returns the id of a peer netns. If no id is assigned, one will
251  * be allocated and returned.
252  */
253 int peernet2id_alloc(struct net *net, struct net *peer)
254 {
255 	bool alloc = false, alive = false;
256 	int id;
257 
258 	if (refcount_read(&net->count) == 0)
259 		return NETNSA_NSID_NOT_ASSIGNED;
260 	spin_lock_bh(&net->nsid_lock);
261 	/*
262 	 * When peer is obtained from RCU lists, we may race with
263 	 * its cleanup. Check whether it's alive, and this guarantees
264 	 * we never hash a peer back to net->netns_ids, after it has
265 	 * just been idr_remove()'d from there in cleanup_net().
266 	 */
267 	if (maybe_get_net(peer))
268 		alive = alloc = true;
269 	id = __peernet2id_alloc(net, peer, &alloc);
270 	spin_unlock_bh(&net->nsid_lock);
271 	if (alloc && id >= 0)
272 		rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL);
273 	if (alive)
274 		put_net(peer);
275 	return id;
276 }
277 EXPORT_SYMBOL_GPL(peernet2id_alloc);
278 
279 /* This function returns, if assigned, the id of a peer netns. */
280 int peernet2id(struct net *net, struct net *peer)
281 {
282 	int id;
283 
284 	spin_lock_bh(&net->nsid_lock);
285 	id = __peernet2id(net, peer);
286 	spin_unlock_bh(&net->nsid_lock);
287 	return id;
288 }
289 EXPORT_SYMBOL(peernet2id);
290 
291 /* This function returns true is the peer netns has an id assigned into the
292  * current netns.
293  */
294 bool peernet_has_id(struct net *net, struct net *peer)
295 {
296 	return peernet2id(net, peer) >= 0;
297 }
298 
299 struct net *get_net_ns_by_id(struct net *net, int id)
300 {
301 	struct net *peer;
302 
303 	if (id < 0)
304 		return NULL;
305 
306 	rcu_read_lock();
307 	peer = idr_find(&net->netns_ids, id);
308 	if (peer)
309 		peer = maybe_get_net(peer);
310 	rcu_read_unlock();
311 
312 	return peer;
313 }
314 
315 /*
316  * setup_net runs the initializers for the network namespace object.
317  */
318 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
319 {
320 	/* Must be called with pernet_ops_rwsem held */
321 	const struct pernet_operations *ops, *saved_ops;
322 	int error = 0;
323 	LIST_HEAD(net_exit_list);
324 
325 	refcount_set(&net->count, 1);
326 	refcount_set(&net->passive, 1);
327 	get_random_bytes(&net->hash_mix, sizeof(u32));
328 	net->dev_base_seq = 1;
329 	net->user_ns = user_ns;
330 	idr_init(&net->netns_ids);
331 	spin_lock_init(&net->nsid_lock);
332 	mutex_init(&net->ipv4.ra_mutex);
333 
334 	list_for_each_entry(ops, &pernet_list, list) {
335 		error = ops_init(ops, net);
336 		if (error < 0)
337 			goto out_undo;
338 	}
339 	down_write(&net_rwsem);
340 	list_add_tail_rcu(&net->list, &net_namespace_list);
341 	up_write(&net_rwsem);
342 out:
343 	return error;
344 
345 out_undo:
346 	/* Walk through the list backwards calling the exit functions
347 	 * for the pernet modules whose init functions did not fail.
348 	 */
349 	list_add(&net->exit_list, &net_exit_list);
350 	saved_ops = ops;
351 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
352 		ops_pre_exit_list(ops, &net_exit_list);
353 
354 	synchronize_rcu();
355 
356 	ops = saved_ops;
357 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
358 		ops_exit_list(ops, &net_exit_list);
359 
360 	ops = saved_ops;
361 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
362 		ops_free_list(ops, &net_exit_list);
363 
364 	rcu_barrier();
365 	goto out;
366 }
367 
368 static int __net_init net_defaults_init_net(struct net *net)
369 {
370 	net->core.sysctl_somaxconn = SOMAXCONN;
371 	return 0;
372 }
373 
374 static struct pernet_operations net_defaults_ops = {
375 	.init = net_defaults_init_net,
376 };
377 
378 static __init int net_defaults_init(void)
379 {
380 	if (register_pernet_subsys(&net_defaults_ops))
381 		panic("Cannot initialize net default settings");
382 
383 	return 0;
384 }
385 
386 core_initcall(net_defaults_init);
387 
388 #ifdef CONFIG_NET_NS
389 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
390 {
391 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
392 }
393 
394 static void dec_net_namespaces(struct ucounts *ucounts)
395 {
396 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
397 }
398 
399 static struct kmem_cache *net_cachep __ro_after_init;
400 static struct workqueue_struct *netns_wq;
401 
402 static struct net *net_alloc(void)
403 {
404 	struct net *net = NULL;
405 	struct net_generic *ng;
406 
407 	ng = net_alloc_generic();
408 	if (!ng)
409 		goto out;
410 
411 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
412 	if (!net)
413 		goto out_free;
414 
415 #ifdef CONFIG_KEYS
416 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
417 	if (!net->key_domain)
418 		goto out_free_2;
419 	refcount_set(&net->key_domain->usage, 1);
420 #endif
421 
422 	rcu_assign_pointer(net->gen, ng);
423 out:
424 	return net;
425 
426 #ifdef CONFIG_KEYS
427 out_free_2:
428 	kmem_cache_free(net_cachep, net);
429 	net = NULL;
430 #endif
431 out_free:
432 	kfree(ng);
433 	goto out;
434 }
435 
436 static void net_free(struct net *net)
437 {
438 	kfree(rcu_access_pointer(net->gen));
439 	kmem_cache_free(net_cachep, net);
440 }
441 
442 void net_drop_ns(void *p)
443 {
444 	struct net *ns = p;
445 	if (ns && refcount_dec_and_test(&ns->passive))
446 		net_free(ns);
447 }
448 
449 struct net *copy_net_ns(unsigned long flags,
450 			struct user_namespace *user_ns, struct net *old_net)
451 {
452 	struct ucounts *ucounts;
453 	struct net *net;
454 	int rv;
455 
456 	if (!(flags & CLONE_NEWNET))
457 		return get_net(old_net);
458 
459 	ucounts = inc_net_namespaces(user_ns);
460 	if (!ucounts)
461 		return ERR_PTR(-ENOSPC);
462 
463 	net = net_alloc();
464 	if (!net) {
465 		rv = -ENOMEM;
466 		goto dec_ucounts;
467 	}
468 	refcount_set(&net->passive, 1);
469 	net->ucounts = ucounts;
470 	get_user_ns(user_ns);
471 
472 	rv = down_read_killable(&pernet_ops_rwsem);
473 	if (rv < 0)
474 		goto put_userns;
475 
476 	rv = setup_net(net, user_ns);
477 
478 	up_read(&pernet_ops_rwsem);
479 
480 	if (rv < 0) {
481 put_userns:
482 		key_remove_domain(net->key_domain);
483 		put_user_ns(user_ns);
484 		net_drop_ns(net);
485 dec_ucounts:
486 		dec_net_namespaces(ucounts);
487 		return ERR_PTR(rv);
488 	}
489 	return net;
490 }
491 
492 /**
493  * net_ns_get_ownership - get sysfs ownership data for @net
494  * @net: network namespace in question (can be NULL)
495  * @uid: kernel user ID for sysfs objects
496  * @gid: kernel group ID for sysfs objects
497  *
498  * Returns the uid/gid pair of root in the user namespace associated with the
499  * given network namespace.
500  */
501 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
502 {
503 	if (net) {
504 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
505 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
506 
507 		if (uid_valid(ns_root_uid))
508 			*uid = ns_root_uid;
509 
510 		if (gid_valid(ns_root_gid))
511 			*gid = ns_root_gid;
512 	} else {
513 		*uid = GLOBAL_ROOT_UID;
514 		*gid = GLOBAL_ROOT_GID;
515 	}
516 }
517 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
518 
519 static void unhash_nsid(struct net *net, struct net *last)
520 {
521 	struct net *tmp;
522 	/* This function is only called from cleanup_net() work,
523 	 * and this work is the only process, that may delete
524 	 * a net from net_namespace_list. So, when the below
525 	 * is executing, the list may only grow. Thus, we do not
526 	 * use for_each_net_rcu() or net_rwsem.
527 	 */
528 	for_each_net(tmp) {
529 		int id;
530 
531 		spin_lock_bh(&tmp->nsid_lock);
532 		id = __peernet2id(tmp, net);
533 		if (id >= 0)
534 			idr_remove(&tmp->netns_ids, id);
535 		spin_unlock_bh(&tmp->nsid_lock);
536 		if (id >= 0)
537 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL);
538 		if (tmp == last)
539 			break;
540 	}
541 	spin_lock_bh(&net->nsid_lock);
542 	idr_destroy(&net->netns_ids);
543 	spin_unlock_bh(&net->nsid_lock);
544 }
545 
546 static LLIST_HEAD(cleanup_list);
547 
548 static void cleanup_net(struct work_struct *work)
549 {
550 	const struct pernet_operations *ops;
551 	struct net *net, *tmp, *last;
552 	struct llist_node *net_kill_list;
553 	LIST_HEAD(net_exit_list);
554 
555 	/* Atomically snapshot the list of namespaces to cleanup */
556 	net_kill_list = llist_del_all(&cleanup_list);
557 
558 	down_read(&pernet_ops_rwsem);
559 
560 	/* Don't let anyone else find us. */
561 	down_write(&net_rwsem);
562 	llist_for_each_entry(net, net_kill_list, cleanup_list)
563 		list_del_rcu(&net->list);
564 	/* Cache last net. After we unlock rtnl, no one new net
565 	 * added to net_namespace_list can assign nsid pointer
566 	 * to a net from net_kill_list (see peernet2id_alloc()).
567 	 * So, we skip them in unhash_nsid().
568 	 *
569 	 * Note, that unhash_nsid() does not delete nsid links
570 	 * between net_kill_list's nets, as they've already
571 	 * deleted from net_namespace_list. But, this would be
572 	 * useless anyway, as netns_ids are destroyed there.
573 	 */
574 	last = list_last_entry(&net_namespace_list, struct net, list);
575 	up_write(&net_rwsem);
576 
577 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
578 		unhash_nsid(net, last);
579 		list_add_tail(&net->exit_list, &net_exit_list);
580 	}
581 
582 	/* Run all of the network namespace pre_exit methods */
583 	list_for_each_entry_reverse(ops, &pernet_list, list)
584 		ops_pre_exit_list(ops, &net_exit_list);
585 
586 	/*
587 	 * Another CPU might be rcu-iterating the list, wait for it.
588 	 * This needs to be before calling the exit() notifiers, so
589 	 * the rcu_barrier() below isn't sufficient alone.
590 	 * Also the pre_exit() and exit() methods need this barrier.
591 	 */
592 	synchronize_rcu();
593 
594 	/* Run all of the network namespace exit methods */
595 	list_for_each_entry_reverse(ops, &pernet_list, list)
596 		ops_exit_list(ops, &net_exit_list);
597 
598 	/* Free the net generic variables */
599 	list_for_each_entry_reverse(ops, &pernet_list, list)
600 		ops_free_list(ops, &net_exit_list);
601 
602 	up_read(&pernet_ops_rwsem);
603 
604 	/* Ensure there are no outstanding rcu callbacks using this
605 	 * network namespace.
606 	 */
607 	rcu_barrier();
608 
609 	/* Finally it is safe to free my network namespace structure */
610 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
611 		list_del_init(&net->exit_list);
612 		dec_net_namespaces(net->ucounts);
613 		key_remove_domain(net->key_domain);
614 		put_user_ns(net->user_ns);
615 		net_drop_ns(net);
616 	}
617 }
618 
619 /**
620  * net_ns_barrier - wait until concurrent net_cleanup_work is done
621  *
622  * cleanup_net runs from work queue and will first remove namespaces
623  * from the global list, then run net exit functions.
624  *
625  * Call this in module exit path to make sure that all netns
626  * ->exit ops have been invoked before the function is removed.
627  */
628 void net_ns_barrier(void)
629 {
630 	down_write(&pernet_ops_rwsem);
631 	up_write(&pernet_ops_rwsem);
632 }
633 EXPORT_SYMBOL(net_ns_barrier);
634 
635 static DECLARE_WORK(net_cleanup_work, cleanup_net);
636 
637 void __put_net(struct net *net)
638 {
639 	/* Cleanup the network namespace in process context */
640 	if (llist_add(&net->cleanup_list, &cleanup_list))
641 		queue_work(netns_wq, &net_cleanup_work);
642 }
643 EXPORT_SYMBOL_GPL(__put_net);
644 
645 struct net *get_net_ns_by_fd(int fd)
646 {
647 	struct file *file;
648 	struct ns_common *ns;
649 	struct net *net;
650 
651 	file = proc_ns_fget(fd);
652 	if (IS_ERR(file))
653 		return ERR_CAST(file);
654 
655 	ns = get_proc_ns(file_inode(file));
656 	if (ns->ops == &netns_operations)
657 		net = get_net(container_of(ns, struct net, ns));
658 	else
659 		net = ERR_PTR(-EINVAL);
660 
661 	fput(file);
662 	return net;
663 }
664 
665 #else
666 struct net *get_net_ns_by_fd(int fd)
667 {
668 	return ERR_PTR(-EINVAL);
669 }
670 #endif
671 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
672 
673 struct net *get_net_ns_by_pid(pid_t pid)
674 {
675 	struct task_struct *tsk;
676 	struct net *net;
677 
678 	/* Lookup the network namespace */
679 	net = ERR_PTR(-ESRCH);
680 	rcu_read_lock();
681 	tsk = find_task_by_vpid(pid);
682 	if (tsk) {
683 		struct nsproxy *nsproxy;
684 		task_lock(tsk);
685 		nsproxy = tsk->nsproxy;
686 		if (nsproxy)
687 			net = get_net(nsproxy->net_ns);
688 		task_unlock(tsk);
689 	}
690 	rcu_read_unlock();
691 	return net;
692 }
693 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
694 
695 static __net_init int net_ns_net_init(struct net *net)
696 {
697 #ifdef CONFIG_NET_NS
698 	net->ns.ops = &netns_operations;
699 #endif
700 	return ns_alloc_inum(&net->ns);
701 }
702 
703 static __net_exit void net_ns_net_exit(struct net *net)
704 {
705 	ns_free_inum(&net->ns);
706 }
707 
708 static struct pernet_operations __net_initdata net_ns_ops = {
709 	.init = net_ns_net_init,
710 	.exit = net_ns_net_exit,
711 };
712 
713 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
714 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
715 	[NETNSA_NSID]		= { .type = NLA_S32 },
716 	[NETNSA_PID]		= { .type = NLA_U32 },
717 	[NETNSA_FD]		= { .type = NLA_U32 },
718 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
719 };
720 
721 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
722 			  struct netlink_ext_ack *extack)
723 {
724 	struct net *net = sock_net(skb->sk);
725 	struct nlattr *tb[NETNSA_MAX + 1];
726 	struct nlattr *nla;
727 	struct net *peer;
728 	int nsid, err;
729 
730 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
731 				     NETNSA_MAX, rtnl_net_policy, extack);
732 	if (err < 0)
733 		return err;
734 	if (!tb[NETNSA_NSID]) {
735 		NL_SET_ERR_MSG(extack, "nsid is missing");
736 		return -EINVAL;
737 	}
738 	nsid = nla_get_s32(tb[NETNSA_NSID]);
739 
740 	if (tb[NETNSA_PID]) {
741 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
742 		nla = tb[NETNSA_PID];
743 	} else if (tb[NETNSA_FD]) {
744 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
745 		nla = tb[NETNSA_FD];
746 	} else {
747 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
748 		return -EINVAL;
749 	}
750 	if (IS_ERR(peer)) {
751 		NL_SET_BAD_ATTR(extack, nla);
752 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
753 		return PTR_ERR(peer);
754 	}
755 
756 	spin_lock_bh(&net->nsid_lock);
757 	if (__peernet2id(net, peer) >= 0) {
758 		spin_unlock_bh(&net->nsid_lock);
759 		err = -EEXIST;
760 		NL_SET_BAD_ATTR(extack, nla);
761 		NL_SET_ERR_MSG(extack,
762 			       "Peer netns already has a nsid assigned");
763 		goto out;
764 	}
765 
766 	err = alloc_netid(net, peer, nsid);
767 	spin_unlock_bh(&net->nsid_lock);
768 	if (err >= 0) {
769 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
770 				  nlh);
771 		err = 0;
772 	} else if (err == -ENOSPC && nsid >= 0) {
773 		err = -EEXIST;
774 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
775 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
776 	}
777 out:
778 	put_net(peer);
779 	return err;
780 }
781 
782 static int rtnl_net_get_size(void)
783 {
784 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
785 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
786 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
787 	       ;
788 }
789 
790 struct net_fill_args {
791 	u32 portid;
792 	u32 seq;
793 	int flags;
794 	int cmd;
795 	int nsid;
796 	bool add_ref;
797 	int ref_nsid;
798 };
799 
800 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
801 {
802 	struct nlmsghdr *nlh;
803 	struct rtgenmsg *rth;
804 
805 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
806 			args->flags);
807 	if (!nlh)
808 		return -EMSGSIZE;
809 
810 	rth = nlmsg_data(nlh);
811 	rth->rtgen_family = AF_UNSPEC;
812 
813 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
814 		goto nla_put_failure;
815 
816 	if (args->add_ref &&
817 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
818 		goto nla_put_failure;
819 
820 	nlmsg_end(skb, nlh);
821 	return 0;
822 
823 nla_put_failure:
824 	nlmsg_cancel(skb, nlh);
825 	return -EMSGSIZE;
826 }
827 
828 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
829 				    const struct nlmsghdr *nlh,
830 				    struct nlattr **tb,
831 				    struct netlink_ext_ack *extack)
832 {
833 	int i, err;
834 
835 	if (!netlink_strict_get_check(skb))
836 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
837 					      tb, NETNSA_MAX, rtnl_net_policy,
838 					      extack);
839 
840 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
841 					    NETNSA_MAX, rtnl_net_policy,
842 					    extack);
843 	if (err)
844 		return err;
845 
846 	for (i = 0; i <= NETNSA_MAX; i++) {
847 		if (!tb[i])
848 			continue;
849 
850 		switch (i) {
851 		case NETNSA_PID:
852 		case NETNSA_FD:
853 		case NETNSA_NSID:
854 		case NETNSA_TARGET_NSID:
855 			break;
856 		default:
857 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
858 			return -EINVAL;
859 		}
860 	}
861 
862 	return 0;
863 }
864 
865 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
866 			  struct netlink_ext_ack *extack)
867 {
868 	struct net *net = sock_net(skb->sk);
869 	struct nlattr *tb[NETNSA_MAX + 1];
870 	struct net_fill_args fillargs = {
871 		.portid = NETLINK_CB(skb).portid,
872 		.seq = nlh->nlmsg_seq,
873 		.cmd = RTM_NEWNSID,
874 	};
875 	struct net *peer, *target = net;
876 	struct nlattr *nla;
877 	struct sk_buff *msg;
878 	int err;
879 
880 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
881 	if (err < 0)
882 		return err;
883 	if (tb[NETNSA_PID]) {
884 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
885 		nla = tb[NETNSA_PID];
886 	} else if (tb[NETNSA_FD]) {
887 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
888 		nla = tb[NETNSA_FD];
889 	} else if (tb[NETNSA_NSID]) {
890 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
891 		if (!peer)
892 			peer = ERR_PTR(-ENOENT);
893 		nla = tb[NETNSA_NSID];
894 	} else {
895 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
896 		return -EINVAL;
897 	}
898 
899 	if (IS_ERR(peer)) {
900 		NL_SET_BAD_ATTR(extack, nla);
901 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
902 		return PTR_ERR(peer);
903 	}
904 
905 	if (tb[NETNSA_TARGET_NSID]) {
906 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
907 
908 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
909 		if (IS_ERR(target)) {
910 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
911 			NL_SET_ERR_MSG(extack,
912 				       "Target netns reference is invalid");
913 			err = PTR_ERR(target);
914 			goto out;
915 		}
916 		fillargs.add_ref = true;
917 		fillargs.ref_nsid = peernet2id(net, peer);
918 	}
919 
920 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
921 	if (!msg) {
922 		err = -ENOMEM;
923 		goto out;
924 	}
925 
926 	fillargs.nsid = peernet2id(target, peer);
927 	err = rtnl_net_fill(msg, &fillargs);
928 	if (err < 0)
929 		goto err_out;
930 
931 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
932 	goto out;
933 
934 err_out:
935 	nlmsg_free(msg);
936 out:
937 	if (fillargs.add_ref)
938 		put_net(target);
939 	put_net(peer);
940 	return err;
941 }
942 
943 struct rtnl_net_dump_cb {
944 	struct net *tgt_net;
945 	struct net *ref_net;
946 	struct sk_buff *skb;
947 	struct net_fill_args fillargs;
948 	int idx;
949 	int s_idx;
950 };
951 
952 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
953 {
954 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
955 	int ret;
956 
957 	if (net_cb->idx < net_cb->s_idx)
958 		goto cont;
959 
960 	net_cb->fillargs.nsid = id;
961 	if (net_cb->fillargs.add_ref)
962 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
963 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
964 	if (ret < 0)
965 		return ret;
966 
967 cont:
968 	net_cb->idx++;
969 	return 0;
970 }
971 
972 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
973 				   struct rtnl_net_dump_cb *net_cb,
974 				   struct netlink_callback *cb)
975 {
976 	struct netlink_ext_ack *extack = cb->extack;
977 	struct nlattr *tb[NETNSA_MAX + 1];
978 	int err, i;
979 
980 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
981 					    NETNSA_MAX, rtnl_net_policy,
982 					    extack);
983 	if (err < 0)
984 		return err;
985 
986 	for (i = 0; i <= NETNSA_MAX; i++) {
987 		if (!tb[i])
988 			continue;
989 
990 		if (i == NETNSA_TARGET_NSID) {
991 			struct net *net;
992 
993 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
994 			if (IS_ERR(net)) {
995 				NL_SET_BAD_ATTR(extack, tb[i]);
996 				NL_SET_ERR_MSG(extack,
997 					       "Invalid target network namespace id");
998 				return PTR_ERR(net);
999 			}
1000 			net_cb->fillargs.add_ref = true;
1001 			net_cb->ref_net = net_cb->tgt_net;
1002 			net_cb->tgt_net = net;
1003 		} else {
1004 			NL_SET_BAD_ATTR(extack, tb[i]);
1005 			NL_SET_ERR_MSG(extack,
1006 				       "Unsupported attribute in dump request");
1007 			return -EINVAL;
1008 		}
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1015 {
1016 	struct rtnl_net_dump_cb net_cb = {
1017 		.tgt_net = sock_net(skb->sk),
1018 		.skb = skb,
1019 		.fillargs = {
1020 			.portid = NETLINK_CB(cb->skb).portid,
1021 			.seq = cb->nlh->nlmsg_seq,
1022 			.flags = NLM_F_MULTI,
1023 			.cmd = RTM_NEWNSID,
1024 		},
1025 		.idx = 0,
1026 		.s_idx = cb->args[0],
1027 	};
1028 	int err = 0;
1029 
1030 	if (cb->strict_check) {
1031 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1032 		if (err < 0)
1033 			goto end;
1034 	}
1035 
1036 	spin_lock_bh(&net_cb.tgt_net->nsid_lock);
1037 	if (net_cb.fillargs.add_ref &&
1038 	    !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
1039 	    !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
1040 		spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1041 		err = -EAGAIN;
1042 		goto end;
1043 	}
1044 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1045 	if (net_cb.fillargs.add_ref &&
1046 	    !net_eq(net_cb.ref_net, net_cb.tgt_net))
1047 		spin_unlock_bh(&net_cb.ref_net->nsid_lock);
1048 	spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1049 
1050 	cb->args[0] = net_cb.idx;
1051 end:
1052 	if (net_cb.fillargs.add_ref)
1053 		put_net(net_cb.tgt_net);
1054 	return err < 0 ? err : skb->len;
1055 }
1056 
1057 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1058 			      struct nlmsghdr *nlh)
1059 {
1060 	struct net_fill_args fillargs = {
1061 		.portid = portid,
1062 		.seq = nlh ? nlh->nlmsg_seq : 0,
1063 		.cmd = cmd,
1064 		.nsid = id,
1065 	};
1066 	struct sk_buff *msg;
1067 	int err = -ENOMEM;
1068 
1069 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1070 	if (!msg)
1071 		goto out;
1072 
1073 	err = rtnl_net_fill(msg, &fillargs);
1074 	if (err < 0)
1075 		goto err_out;
1076 
1077 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, 0);
1078 	return;
1079 
1080 err_out:
1081 	nlmsg_free(msg);
1082 out:
1083 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1084 }
1085 
1086 static int __init net_ns_init(void)
1087 {
1088 	struct net_generic *ng;
1089 
1090 #ifdef CONFIG_NET_NS
1091 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1092 					SMP_CACHE_BYTES,
1093 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1094 
1095 	/* Create workqueue for cleanup */
1096 	netns_wq = create_singlethread_workqueue("netns");
1097 	if (!netns_wq)
1098 		panic("Could not create netns workq");
1099 #endif
1100 
1101 	ng = net_alloc_generic();
1102 	if (!ng)
1103 		panic("Could not allocate generic netns");
1104 
1105 	rcu_assign_pointer(init_net.gen, ng);
1106 
1107 	down_write(&pernet_ops_rwsem);
1108 	if (setup_net(&init_net, &init_user_ns))
1109 		panic("Could not setup the initial network namespace");
1110 
1111 	init_net_initialized = true;
1112 	up_write(&pernet_ops_rwsem);
1113 
1114 	if (register_pernet_subsys(&net_ns_ops))
1115 		panic("Could not register network namespace subsystems");
1116 
1117 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1118 		      RTNL_FLAG_DOIT_UNLOCKED);
1119 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1120 		      RTNL_FLAG_DOIT_UNLOCKED);
1121 
1122 	return 0;
1123 }
1124 
1125 pure_initcall(net_ns_init);
1126 
1127 #ifdef CONFIG_NET_NS
1128 static int __register_pernet_operations(struct list_head *list,
1129 					struct pernet_operations *ops)
1130 {
1131 	struct net *net;
1132 	int error;
1133 	LIST_HEAD(net_exit_list);
1134 
1135 	list_add_tail(&ops->list, list);
1136 	if (ops->init || (ops->id && ops->size)) {
1137 		/* We held write locked pernet_ops_rwsem, and parallel
1138 		 * setup_net() and cleanup_net() are not possible.
1139 		 */
1140 		for_each_net(net) {
1141 			error = ops_init(ops, net);
1142 			if (error)
1143 				goto out_undo;
1144 			list_add_tail(&net->exit_list, &net_exit_list);
1145 		}
1146 	}
1147 	return 0;
1148 
1149 out_undo:
1150 	/* If I have an error cleanup all namespaces I initialized */
1151 	list_del(&ops->list);
1152 	ops_pre_exit_list(ops, &net_exit_list);
1153 	synchronize_rcu();
1154 	ops_exit_list(ops, &net_exit_list);
1155 	ops_free_list(ops, &net_exit_list);
1156 	return error;
1157 }
1158 
1159 static void __unregister_pernet_operations(struct pernet_operations *ops)
1160 {
1161 	struct net *net;
1162 	LIST_HEAD(net_exit_list);
1163 
1164 	list_del(&ops->list);
1165 	/* See comment in __register_pernet_operations() */
1166 	for_each_net(net)
1167 		list_add_tail(&net->exit_list, &net_exit_list);
1168 	ops_pre_exit_list(ops, &net_exit_list);
1169 	synchronize_rcu();
1170 	ops_exit_list(ops, &net_exit_list);
1171 	ops_free_list(ops, &net_exit_list);
1172 }
1173 
1174 #else
1175 
1176 static int __register_pernet_operations(struct list_head *list,
1177 					struct pernet_operations *ops)
1178 {
1179 	if (!init_net_initialized) {
1180 		list_add_tail(&ops->list, list);
1181 		return 0;
1182 	}
1183 
1184 	return ops_init(ops, &init_net);
1185 }
1186 
1187 static void __unregister_pernet_operations(struct pernet_operations *ops)
1188 {
1189 	if (!init_net_initialized) {
1190 		list_del(&ops->list);
1191 	} else {
1192 		LIST_HEAD(net_exit_list);
1193 		list_add(&init_net.exit_list, &net_exit_list);
1194 		ops_pre_exit_list(ops, &net_exit_list);
1195 		synchronize_rcu();
1196 		ops_exit_list(ops, &net_exit_list);
1197 		ops_free_list(ops, &net_exit_list);
1198 	}
1199 }
1200 
1201 #endif /* CONFIG_NET_NS */
1202 
1203 static DEFINE_IDA(net_generic_ids);
1204 
1205 static int register_pernet_operations(struct list_head *list,
1206 				      struct pernet_operations *ops)
1207 {
1208 	int error;
1209 
1210 	if (ops->id) {
1211 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1212 				GFP_KERNEL);
1213 		if (error < 0)
1214 			return error;
1215 		*ops->id = error;
1216 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1217 	}
1218 	error = __register_pernet_operations(list, ops);
1219 	if (error) {
1220 		rcu_barrier();
1221 		if (ops->id)
1222 			ida_free(&net_generic_ids, *ops->id);
1223 	}
1224 
1225 	return error;
1226 }
1227 
1228 static void unregister_pernet_operations(struct pernet_operations *ops)
1229 {
1230 	__unregister_pernet_operations(ops);
1231 	rcu_barrier();
1232 	if (ops->id)
1233 		ida_free(&net_generic_ids, *ops->id);
1234 }
1235 
1236 /**
1237  *      register_pernet_subsys - register a network namespace subsystem
1238  *	@ops:  pernet operations structure for the subsystem
1239  *
1240  *	Register a subsystem which has init and exit functions
1241  *	that are called when network namespaces are created and
1242  *	destroyed respectively.
1243  *
1244  *	When registered all network namespace init functions are
1245  *	called for every existing network namespace.  Allowing kernel
1246  *	modules to have a race free view of the set of network namespaces.
1247  *
1248  *	When a new network namespace is created all of the init
1249  *	methods are called in the order in which they were registered.
1250  *
1251  *	When a network namespace is destroyed all of the exit methods
1252  *	are called in the reverse of the order with which they were
1253  *	registered.
1254  */
1255 int register_pernet_subsys(struct pernet_operations *ops)
1256 {
1257 	int error;
1258 	down_write(&pernet_ops_rwsem);
1259 	error =  register_pernet_operations(first_device, ops);
1260 	up_write(&pernet_ops_rwsem);
1261 	return error;
1262 }
1263 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1264 
1265 /**
1266  *      unregister_pernet_subsys - unregister a network namespace subsystem
1267  *	@ops: pernet operations structure to manipulate
1268  *
1269  *	Remove the pernet operations structure from the list to be
1270  *	used when network namespaces are created or destroyed.  In
1271  *	addition run the exit method for all existing network
1272  *	namespaces.
1273  */
1274 void unregister_pernet_subsys(struct pernet_operations *ops)
1275 {
1276 	down_write(&pernet_ops_rwsem);
1277 	unregister_pernet_operations(ops);
1278 	up_write(&pernet_ops_rwsem);
1279 }
1280 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1281 
1282 /**
1283  *      register_pernet_device - register a network namespace device
1284  *	@ops:  pernet operations structure for the subsystem
1285  *
1286  *	Register a device which has init and exit functions
1287  *	that are called when network namespaces are created and
1288  *	destroyed respectively.
1289  *
1290  *	When registered all network namespace init functions are
1291  *	called for every existing network namespace.  Allowing kernel
1292  *	modules to have a race free view of the set of network namespaces.
1293  *
1294  *	When a new network namespace is created all of the init
1295  *	methods are called in the order in which they were registered.
1296  *
1297  *	When a network namespace is destroyed all of the exit methods
1298  *	are called in the reverse of the order with which they were
1299  *	registered.
1300  */
1301 int register_pernet_device(struct pernet_operations *ops)
1302 {
1303 	int error;
1304 	down_write(&pernet_ops_rwsem);
1305 	error = register_pernet_operations(&pernet_list, ops);
1306 	if (!error && (first_device == &pernet_list))
1307 		first_device = &ops->list;
1308 	up_write(&pernet_ops_rwsem);
1309 	return error;
1310 }
1311 EXPORT_SYMBOL_GPL(register_pernet_device);
1312 
1313 /**
1314  *      unregister_pernet_device - unregister a network namespace netdevice
1315  *	@ops: pernet operations structure to manipulate
1316  *
1317  *	Remove the pernet operations structure from the list to be
1318  *	used when network namespaces are created or destroyed.  In
1319  *	addition run the exit method for all existing network
1320  *	namespaces.
1321  */
1322 void unregister_pernet_device(struct pernet_operations *ops)
1323 {
1324 	down_write(&pernet_ops_rwsem);
1325 	if (&ops->list == first_device)
1326 		first_device = first_device->next;
1327 	unregister_pernet_operations(ops);
1328 	up_write(&pernet_ops_rwsem);
1329 }
1330 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1331 
1332 #ifdef CONFIG_NET_NS
1333 static struct ns_common *netns_get(struct task_struct *task)
1334 {
1335 	struct net *net = NULL;
1336 	struct nsproxy *nsproxy;
1337 
1338 	task_lock(task);
1339 	nsproxy = task->nsproxy;
1340 	if (nsproxy)
1341 		net = get_net(nsproxy->net_ns);
1342 	task_unlock(task);
1343 
1344 	return net ? &net->ns : NULL;
1345 }
1346 
1347 static inline struct net *to_net_ns(struct ns_common *ns)
1348 {
1349 	return container_of(ns, struct net, ns);
1350 }
1351 
1352 static void netns_put(struct ns_common *ns)
1353 {
1354 	put_net(to_net_ns(ns));
1355 }
1356 
1357 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1358 {
1359 	struct net *net = to_net_ns(ns);
1360 
1361 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1362 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1363 		return -EPERM;
1364 
1365 	put_net(nsproxy->net_ns);
1366 	nsproxy->net_ns = get_net(net);
1367 	return 0;
1368 }
1369 
1370 static struct user_namespace *netns_owner(struct ns_common *ns)
1371 {
1372 	return to_net_ns(ns)->user_ns;
1373 }
1374 
1375 const struct proc_ns_operations netns_operations = {
1376 	.name		= "net",
1377 	.type		= CLONE_NEWNET,
1378 	.get		= netns_get,
1379 	.put		= netns_put,
1380 	.install	= netns_install,
1381 	.owner		= netns_owner,
1382 };
1383 #endif
1384