xref: /openbmc/linux/net/core/net_namespace.c (revision 7a0877d4)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
41 
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43 
44 static struct net_generic *net_alloc_generic(void)
45 {
46 	struct net_generic *ng;
47 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48 
49 	ng = kzalloc(generic_size, GFP_KERNEL);
50 	if (ng)
51 		ng->len = max_gen_ptrs;
52 
53 	return ng;
54 }
55 
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 	struct net_generic *ng, *old_ng;
59 
60 	BUG_ON(!mutex_is_locked(&net_mutex));
61 	BUG_ON(id == 0);
62 
63 	old_ng = rcu_dereference_protected(net->gen,
64 					   lockdep_is_held(&net_mutex));
65 	ng = old_ng;
66 	if (old_ng->len >= id)
67 		goto assign;
68 
69 	ng = net_alloc_generic();
70 	if (ng == NULL)
71 		return -ENOMEM;
72 
73 	/*
74 	 * Some synchronisation notes:
75 	 *
76 	 * The net_generic explores the net->gen array inside rcu
77 	 * read section. Besides once set the net->gen->ptr[x]
78 	 * pointer never changes (see rules in netns/generic.h).
79 	 *
80 	 * That said, we simply duplicate this array and schedule
81 	 * the old copy for kfree after a grace period.
82 	 */
83 
84 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85 
86 	rcu_assign_pointer(net->gen, ng);
87 	kfree_rcu(old_ng, rcu);
88 assign:
89 	ng->ptr[id - 1] = data;
90 	return 0;
91 }
92 
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 	int err = -ENOMEM;
96 	void *data = NULL;
97 
98 	if (ops->id && ops->size) {
99 		data = kzalloc(ops->size, GFP_KERNEL);
100 		if (!data)
101 			goto out;
102 
103 		err = net_assign_generic(net, *ops->id, data);
104 		if (err)
105 			goto cleanup;
106 	}
107 	err = 0;
108 	if (ops->init)
109 		err = ops->init(net);
110 	if (!err)
111 		return 0;
112 
113 cleanup:
114 	kfree(data);
115 
116 out:
117 	return err;
118 }
119 
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 	if (ops->id && ops->size) {
123 		int id = *ops->id;
124 		kfree(net_generic(net, id));
125 	}
126 }
127 
128 static void ops_exit_list(const struct pernet_operations *ops,
129 			  struct list_head *net_exit_list)
130 {
131 	struct net *net;
132 	if (ops->exit) {
133 		list_for_each_entry(net, net_exit_list, exit_list)
134 			ops->exit(net);
135 	}
136 	if (ops->exit_batch)
137 		ops->exit_batch(net_exit_list);
138 }
139 
140 static void ops_free_list(const struct pernet_operations *ops,
141 			  struct list_head *net_exit_list)
142 {
143 	struct net *net;
144 	if (ops->size && ops->id) {
145 		list_for_each_entry(net, net_exit_list, exit_list)
146 			ops_free(ops, net);
147 	}
148 }
149 
150 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 	int min = 0, max = 0, id;
154 
155 	ASSERT_RTNL();
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	id = idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
163 	if (id >= 0)
164 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
165 
166 	return id;
167 }
168 
169 /* This function is used by idr_for_each(). If net is equal to peer, the
170  * function returns the id so that idr_for_each() stops. Because we cannot
171  * returns the id 0 (idr_for_each() will not stop), we return the magic value
172  * NET_ID_ZERO (-1) for it.
173  */
174 #define NET_ID_ZERO -1
175 static int net_eq_idr(int id, void *net, void *peer)
176 {
177 	if (net_eq(net, peer))
178 		return id ? : NET_ID_ZERO;
179 	return 0;
180 }
181 
182 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
183 {
184 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 
186 	ASSERT_RTNL();
187 
188 	/* Magic value for id 0. */
189 	if (id == NET_ID_ZERO)
190 		return 0;
191 	if (id > 0)
192 		return id;
193 
194 	if (alloc) {
195 		id = alloc_netid(net, peer, -1);
196 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
197 	}
198 
199 	return NETNSA_NSID_NOT_ASSIGNED;
200 }
201 
202 /* This function returns the id of a peer netns. If no id is assigned, one will
203  * be allocated and returned.
204  */
205 int peernet2id_alloc(struct net *net, struct net *peer)
206 {
207 	bool alloc = atomic_read(&peer->count) == 0 ? false : true;
208 
209 	return __peernet2id(net, peer, alloc);
210 }
211 EXPORT_SYMBOL(peernet2id_alloc);
212 
213 struct net *get_net_ns_by_id(struct net *net, int id)
214 {
215 	struct net *peer;
216 
217 	if (id < 0)
218 		return NULL;
219 
220 	rcu_read_lock();
221 	peer = idr_find(&net->netns_ids, id);
222 	if (peer)
223 		get_net(peer);
224 	rcu_read_unlock();
225 
226 	return peer;
227 }
228 
229 /*
230  * setup_net runs the initializers for the network namespace object.
231  */
232 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
233 {
234 	/* Must be called with net_mutex held */
235 	const struct pernet_operations *ops, *saved_ops;
236 	int error = 0;
237 	LIST_HEAD(net_exit_list);
238 
239 	atomic_set(&net->count, 1);
240 	atomic_set(&net->passive, 1);
241 	net->dev_base_seq = 1;
242 	net->user_ns = user_ns;
243 	idr_init(&net->netns_ids);
244 
245 	list_for_each_entry(ops, &pernet_list, list) {
246 		error = ops_init(ops, net);
247 		if (error < 0)
248 			goto out_undo;
249 	}
250 out:
251 	return error;
252 
253 out_undo:
254 	/* Walk through the list backwards calling the exit functions
255 	 * for the pernet modules whose init functions did not fail.
256 	 */
257 	list_add(&net->exit_list, &net_exit_list);
258 	saved_ops = ops;
259 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
260 		ops_exit_list(ops, &net_exit_list);
261 
262 	ops = saved_ops;
263 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
264 		ops_free_list(ops, &net_exit_list);
265 
266 	rcu_barrier();
267 	goto out;
268 }
269 
270 
271 #ifdef CONFIG_NET_NS
272 static struct kmem_cache *net_cachep;
273 static struct workqueue_struct *netns_wq;
274 
275 static struct net *net_alloc(void)
276 {
277 	struct net *net = NULL;
278 	struct net_generic *ng;
279 
280 	ng = net_alloc_generic();
281 	if (!ng)
282 		goto out;
283 
284 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
285 	if (!net)
286 		goto out_free;
287 
288 	rcu_assign_pointer(net->gen, ng);
289 out:
290 	return net;
291 
292 out_free:
293 	kfree(ng);
294 	goto out;
295 }
296 
297 static void net_free(struct net *net)
298 {
299 	kfree(rcu_access_pointer(net->gen));
300 	kmem_cache_free(net_cachep, net);
301 }
302 
303 void net_drop_ns(void *p)
304 {
305 	struct net *ns = p;
306 	if (ns && atomic_dec_and_test(&ns->passive))
307 		net_free(ns);
308 }
309 
310 struct net *copy_net_ns(unsigned long flags,
311 			struct user_namespace *user_ns, struct net *old_net)
312 {
313 	struct net *net;
314 	int rv;
315 
316 	if (!(flags & CLONE_NEWNET))
317 		return get_net(old_net);
318 
319 	net = net_alloc();
320 	if (!net)
321 		return ERR_PTR(-ENOMEM);
322 
323 	get_user_ns(user_ns);
324 
325 	mutex_lock(&net_mutex);
326 	rv = setup_net(net, user_ns);
327 	if (rv == 0) {
328 		rtnl_lock();
329 		list_add_tail_rcu(&net->list, &net_namespace_list);
330 		rtnl_unlock();
331 	}
332 	mutex_unlock(&net_mutex);
333 	if (rv < 0) {
334 		put_user_ns(user_ns);
335 		net_drop_ns(net);
336 		return ERR_PTR(rv);
337 	}
338 	return net;
339 }
340 
341 static DEFINE_SPINLOCK(cleanup_list_lock);
342 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
343 
344 static void cleanup_net(struct work_struct *work)
345 {
346 	const struct pernet_operations *ops;
347 	struct net *net, *tmp;
348 	struct list_head net_kill_list;
349 	LIST_HEAD(net_exit_list);
350 
351 	/* Atomically snapshot the list of namespaces to cleanup */
352 	spin_lock_irq(&cleanup_list_lock);
353 	list_replace_init(&cleanup_list, &net_kill_list);
354 	spin_unlock_irq(&cleanup_list_lock);
355 
356 	mutex_lock(&net_mutex);
357 
358 	/* Don't let anyone else find us. */
359 	rtnl_lock();
360 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
361 		list_del_rcu(&net->list);
362 		list_add_tail(&net->exit_list, &net_exit_list);
363 		for_each_net(tmp) {
364 			int id = __peernet2id(tmp, net, false);
365 
366 			if (id >= 0) {
367 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
368 				idr_remove(&tmp->netns_ids, id);
369 			}
370 		}
371 		idr_destroy(&net->netns_ids);
372 
373 	}
374 	rtnl_unlock();
375 
376 	/*
377 	 * Another CPU might be rcu-iterating the list, wait for it.
378 	 * This needs to be before calling the exit() notifiers, so
379 	 * the rcu_barrier() below isn't sufficient alone.
380 	 */
381 	synchronize_rcu();
382 
383 	/* Run all of the network namespace exit methods */
384 	list_for_each_entry_reverse(ops, &pernet_list, list)
385 		ops_exit_list(ops, &net_exit_list);
386 
387 	/* Free the net generic variables */
388 	list_for_each_entry_reverse(ops, &pernet_list, list)
389 		ops_free_list(ops, &net_exit_list);
390 
391 	mutex_unlock(&net_mutex);
392 
393 	/* Ensure there are no outstanding rcu callbacks using this
394 	 * network namespace.
395 	 */
396 	rcu_barrier();
397 
398 	/* Finally it is safe to free my network namespace structure */
399 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
400 		list_del_init(&net->exit_list);
401 		put_user_ns(net->user_ns);
402 		net_drop_ns(net);
403 	}
404 }
405 static DECLARE_WORK(net_cleanup_work, cleanup_net);
406 
407 void __put_net(struct net *net)
408 {
409 	/* Cleanup the network namespace in process context */
410 	unsigned long flags;
411 
412 	spin_lock_irqsave(&cleanup_list_lock, flags);
413 	list_add(&net->cleanup_list, &cleanup_list);
414 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
415 
416 	queue_work(netns_wq, &net_cleanup_work);
417 }
418 EXPORT_SYMBOL_GPL(__put_net);
419 
420 struct net *get_net_ns_by_fd(int fd)
421 {
422 	struct file *file;
423 	struct ns_common *ns;
424 	struct net *net;
425 
426 	file = proc_ns_fget(fd);
427 	if (IS_ERR(file))
428 		return ERR_CAST(file);
429 
430 	ns = get_proc_ns(file_inode(file));
431 	if (ns->ops == &netns_operations)
432 		net = get_net(container_of(ns, struct net, ns));
433 	else
434 		net = ERR_PTR(-EINVAL);
435 
436 	fput(file);
437 	return net;
438 }
439 
440 #else
441 struct net *get_net_ns_by_fd(int fd)
442 {
443 	return ERR_PTR(-EINVAL);
444 }
445 #endif
446 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
447 
448 struct net *get_net_ns_by_pid(pid_t pid)
449 {
450 	struct task_struct *tsk;
451 	struct net *net;
452 
453 	/* Lookup the network namespace */
454 	net = ERR_PTR(-ESRCH);
455 	rcu_read_lock();
456 	tsk = find_task_by_vpid(pid);
457 	if (tsk) {
458 		struct nsproxy *nsproxy;
459 		task_lock(tsk);
460 		nsproxy = tsk->nsproxy;
461 		if (nsproxy)
462 			net = get_net(nsproxy->net_ns);
463 		task_unlock(tsk);
464 	}
465 	rcu_read_unlock();
466 	return net;
467 }
468 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
469 
470 static __net_init int net_ns_net_init(struct net *net)
471 {
472 #ifdef CONFIG_NET_NS
473 	net->ns.ops = &netns_operations;
474 #endif
475 	return ns_alloc_inum(&net->ns);
476 }
477 
478 static __net_exit void net_ns_net_exit(struct net *net)
479 {
480 	ns_free_inum(&net->ns);
481 }
482 
483 static struct pernet_operations __net_initdata net_ns_ops = {
484 	.init = net_ns_net_init,
485 	.exit = net_ns_net_exit,
486 };
487 
488 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
489 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
490 	[NETNSA_NSID]		= { .type = NLA_S32 },
491 	[NETNSA_PID]		= { .type = NLA_U32 },
492 	[NETNSA_FD]		= { .type = NLA_U32 },
493 };
494 
495 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
496 {
497 	struct net *net = sock_net(skb->sk);
498 	struct nlattr *tb[NETNSA_MAX + 1];
499 	struct net *peer;
500 	int nsid, err;
501 
502 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
503 			  rtnl_net_policy);
504 	if (err < 0)
505 		return err;
506 	if (!tb[NETNSA_NSID])
507 		return -EINVAL;
508 	nsid = nla_get_s32(tb[NETNSA_NSID]);
509 
510 	if (tb[NETNSA_PID])
511 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
512 	else if (tb[NETNSA_FD])
513 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
514 	else
515 		return -EINVAL;
516 	if (IS_ERR(peer))
517 		return PTR_ERR(peer);
518 
519 	if (__peernet2id(net, peer, false) >= 0) {
520 		err = -EEXIST;
521 		goto out;
522 	}
523 
524 	err = alloc_netid(net, peer, nsid);
525 	if (err > 0)
526 		err = 0;
527 out:
528 	put_net(peer);
529 	return err;
530 }
531 
532 static int rtnl_net_get_size(void)
533 {
534 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
535 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
536 	       ;
537 }
538 
539 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
540 			 int cmd, struct net *net, int nsid)
541 {
542 	struct nlmsghdr *nlh;
543 	struct rtgenmsg *rth;
544 
545 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
546 	if (!nlh)
547 		return -EMSGSIZE;
548 
549 	rth = nlmsg_data(nlh);
550 	rth->rtgen_family = AF_UNSPEC;
551 
552 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
553 		goto nla_put_failure;
554 
555 	nlmsg_end(skb, nlh);
556 	return 0;
557 
558 nla_put_failure:
559 	nlmsg_cancel(skb, nlh);
560 	return -EMSGSIZE;
561 }
562 
563 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
564 {
565 	struct net *net = sock_net(skb->sk);
566 	struct nlattr *tb[NETNSA_MAX + 1];
567 	struct sk_buff *msg;
568 	struct net *peer;
569 	int err, id;
570 
571 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
572 			  rtnl_net_policy);
573 	if (err < 0)
574 		return err;
575 	if (tb[NETNSA_PID])
576 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
577 	else if (tb[NETNSA_FD])
578 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
579 	else
580 		return -EINVAL;
581 
582 	if (IS_ERR(peer))
583 		return PTR_ERR(peer);
584 
585 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
586 	if (!msg) {
587 		err = -ENOMEM;
588 		goto out;
589 	}
590 
591 	id = __peernet2id(net, peer, false);
592 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
593 			    RTM_GETNSID, net, id);
594 	if (err < 0)
595 		goto err_out;
596 
597 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
598 	goto out;
599 
600 err_out:
601 	nlmsg_free(msg);
602 out:
603 	put_net(peer);
604 	return err;
605 }
606 
607 struct rtnl_net_dump_cb {
608 	struct net *net;
609 	struct sk_buff *skb;
610 	struct netlink_callback *cb;
611 	int idx;
612 	int s_idx;
613 };
614 
615 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
616 {
617 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
618 	int ret;
619 
620 	if (net_cb->idx < net_cb->s_idx)
621 		goto cont;
622 
623 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
624 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
625 			    RTM_NEWNSID, net_cb->net, id);
626 	if (ret < 0)
627 		return ret;
628 
629 cont:
630 	net_cb->idx++;
631 	return 0;
632 }
633 
634 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
635 {
636 	struct net *net = sock_net(skb->sk);
637 	struct rtnl_net_dump_cb net_cb = {
638 		.net = net,
639 		.skb = skb,
640 		.cb = cb,
641 		.idx = 0,
642 		.s_idx = cb->args[0],
643 	};
644 
645 	ASSERT_RTNL();
646 
647 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
648 
649 	cb->args[0] = net_cb.idx;
650 	return skb->len;
651 }
652 
653 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
654 {
655 	struct sk_buff *msg;
656 	int err = -ENOMEM;
657 
658 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
659 	if (!msg)
660 		goto out;
661 
662 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
663 	if (err < 0)
664 		goto err_out;
665 
666 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
667 	return;
668 
669 err_out:
670 	nlmsg_free(msg);
671 out:
672 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
673 }
674 
675 static int __init net_ns_init(void)
676 {
677 	struct net_generic *ng;
678 
679 #ifdef CONFIG_NET_NS
680 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
681 					SMP_CACHE_BYTES,
682 					SLAB_PANIC, NULL);
683 
684 	/* Create workqueue for cleanup */
685 	netns_wq = create_singlethread_workqueue("netns");
686 	if (!netns_wq)
687 		panic("Could not create netns workq");
688 #endif
689 
690 	ng = net_alloc_generic();
691 	if (!ng)
692 		panic("Could not allocate generic netns");
693 
694 	rcu_assign_pointer(init_net.gen, ng);
695 
696 	mutex_lock(&net_mutex);
697 	if (setup_net(&init_net, &init_user_ns))
698 		panic("Could not setup the initial network namespace");
699 
700 	rtnl_lock();
701 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
702 	rtnl_unlock();
703 
704 	mutex_unlock(&net_mutex);
705 
706 	register_pernet_subsys(&net_ns_ops);
707 
708 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
709 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
710 		      NULL);
711 
712 	return 0;
713 }
714 
715 pure_initcall(net_ns_init);
716 
717 #ifdef CONFIG_NET_NS
718 static int __register_pernet_operations(struct list_head *list,
719 					struct pernet_operations *ops)
720 {
721 	struct net *net;
722 	int error;
723 	LIST_HEAD(net_exit_list);
724 
725 	list_add_tail(&ops->list, list);
726 	if (ops->init || (ops->id && ops->size)) {
727 		for_each_net(net) {
728 			error = ops_init(ops, net);
729 			if (error)
730 				goto out_undo;
731 			list_add_tail(&net->exit_list, &net_exit_list);
732 		}
733 	}
734 	return 0;
735 
736 out_undo:
737 	/* If I have an error cleanup all namespaces I initialized */
738 	list_del(&ops->list);
739 	ops_exit_list(ops, &net_exit_list);
740 	ops_free_list(ops, &net_exit_list);
741 	return error;
742 }
743 
744 static void __unregister_pernet_operations(struct pernet_operations *ops)
745 {
746 	struct net *net;
747 	LIST_HEAD(net_exit_list);
748 
749 	list_del(&ops->list);
750 	for_each_net(net)
751 		list_add_tail(&net->exit_list, &net_exit_list);
752 	ops_exit_list(ops, &net_exit_list);
753 	ops_free_list(ops, &net_exit_list);
754 }
755 
756 #else
757 
758 static int __register_pernet_operations(struct list_head *list,
759 					struct pernet_operations *ops)
760 {
761 	return ops_init(ops, &init_net);
762 }
763 
764 static void __unregister_pernet_operations(struct pernet_operations *ops)
765 {
766 	LIST_HEAD(net_exit_list);
767 	list_add(&init_net.exit_list, &net_exit_list);
768 	ops_exit_list(ops, &net_exit_list);
769 	ops_free_list(ops, &net_exit_list);
770 }
771 
772 #endif /* CONFIG_NET_NS */
773 
774 static DEFINE_IDA(net_generic_ids);
775 
776 static int register_pernet_operations(struct list_head *list,
777 				      struct pernet_operations *ops)
778 {
779 	int error;
780 
781 	if (ops->id) {
782 again:
783 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
784 		if (error < 0) {
785 			if (error == -EAGAIN) {
786 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
787 				goto again;
788 			}
789 			return error;
790 		}
791 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
792 	}
793 	error = __register_pernet_operations(list, ops);
794 	if (error) {
795 		rcu_barrier();
796 		if (ops->id)
797 			ida_remove(&net_generic_ids, *ops->id);
798 	}
799 
800 	return error;
801 }
802 
803 static void unregister_pernet_operations(struct pernet_operations *ops)
804 {
805 
806 	__unregister_pernet_operations(ops);
807 	rcu_barrier();
808 	if (ops->id)
809 		ida_remove(&net_generic_ids, *ops->id);
810 }
811 
812 /**
813  *      register_pernet_subsys - register a network namespace subsystem
814  *	@ops:  pernet operations structure for the subsystem
815  *
816  *	Register a subsystem which has init and exit functions
817  *	that are called when network namespaces are created and
818  *	destroyed respectively.
819  *
820  *	When registered all network namespace init functions are
821  *	called for every existing network namespace.  Allowing kernel
822  *	modules to have a race free view of the set of network namespaces.
823  *
824  *	When a new network namespace is created all of the init
825  *	methods are called in the order in which they were registered.
826  *
827  *	When a network namespace is destroyed all of the exit methods
828  *	are called in the reverse of the order with which they were
829  *	registered.
830  */
831 int register_pernet_subsys(struct pernet_operations *ops)
832 {
833 	int error;
834 	mutex_lock(&net_mutex);
835 	error =  register_pernet_operations(first_device, ops);
836 	mutex_unlock(&net_mutex);
837 	return error;
838 }
839 EXPORT_SYMBOL_GPL(register_pernet_subsys);
840 
841 /**
842  *      unregister_pernet_subsys - unregister a network namespace subsystem
843  *	@ops: pernet operations structure to manipulate
844  *
845  *	Remove the pernet operations structure from the list to be
846  *	used when network namespaces are created or destroyed.  In
847  *	addition run the exit method for all existing network
848  *	namespaces.
849  */
850 void unregister_pernet_subsys(struct pernet_operations *ops)
851 {
852 	mutex_lock(&net_mutex);
853 	unregister_pernet_operations(ops);
854 	mutex_unlock(&net_mutex);
855 }
856 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
857 
858 /**
859  *      register_pernet_device - register a network namespace device
860  *	@ops:  pernet operations structure for the subsystem
861  *
862  *	Register a device which has init and exit functions
863  *	that are called when network namespaces are created and
864  *	destroyed respectively.
865  *
866  *	When registered all network namespace init functions are
867  *	called for every existing network namespace.  Allowing kernel
868  *	modules to have a race free view of the set of network namespaces.
869  *
870  *	When a new network namespace is created all of the init
871  *	methods are called in the order in which they were registered.
872  *
873  *	When a network namespace is destroyed all of the exit methods
874  *	are called in the reverse of the order with which they were
875  *	registered.
876  */
877 int register_pernet_device(struct pernet_operations *ops)
878 {
879 	int error;
880 	mutex_lock(&net_mutex);
881 	error = register_pernet_operations(&pernet_list, ops);
882 	if (!error && (first_device == &pernet_list))
883 		first_device = &ops->list;
884 	mutex_unlock(&net_mutex);
885 	return error;
886 }
887 EXPORT_SYMBOL_GPL(register_pernet_device);
888 
889 /**
890  *      unregister_pernet_device - unregister a network namespace netdevice
891  *	@ops: pernet operations structure to manipulate
892  *
893  *	Remove the pernet operations structure from the list to be
894  *	used when network namespaces are created or destroyed.  In
895  *	addition run the exit method for all existing network
896  *	namespaces.
897  */
898 void unregister_pernet_device(struct pernet_operations *ops)
899 {
900 	mutex_lock(&net_mutex);
901 	if (&ops->list == first_device)
902 		first_device = first_device->next;
903 	unregister_pernet_operations(ops);
904 	mutex_unlock(&net_mutex);
905 }
906 EXPORT_SYMBOL_GPL(unregister_pernet_device);
907 
908 #ifdef CONFIG_NET_NS
909 static struct ns_common *netns_get(struct task_struct *task)
910 {
911 	struct net *net = NULL;
912 	struct nsproxy *nsproxy;
913 
914 	task_lock(task);
915 	nsproxy = task->nsproxy;
916 	if (nsproxy)
917 		net = get_net(nsproxy->net_ns);
918 	task_unlock(task);
919 
920 	return net ? &net->ns : NULL;
921 }
922 
923 static inline struct net *to_net_ns(struct ns_common *ns)
924 {
925 	return container_of(ns, struct net, ns);
926 }
927 
928 static void netns_put(struct ns_common *ns)
929 {
930 	put_net(to_net_ns(ns));
931 }
932 
933 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
934 {
935 	struct net *net = to_net_ns(ns);
936 
937 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
938 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
939 		return -EPERM;
940 
941 	put_net(nsproxy->net_ns);
942 	nsproxy->net_ns = get_net(net);
943 	return 0;
944 }
945 
946 const struct proc_ns_operations netns_operations = {
947 	.name		= "net",
948 	.type		= CLONE_NEWNET,
949 	.get		= netns_get,
950 	.put		= netns_put,
951 	.install	= netns_install,
952 };
953 #endif
954