xref: /openbmc/linux/net/core/net_namespace.c (revision 6aa7de05)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 struct net init_net = {
38 	.count		= ATOMIC_INIT(1),
39 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42 
43 static bool init_net_initialized;
44 
45 #define MIN_PERNET_OPS_ID	\
46 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47 
48 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
49 
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51 
52 static struct net_generic *net_alloc_generic(void)
53 {
54 	struct net_generic *ng;
55 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56 
57 	ng = kzalloc(generic_size, GFP_KERNEL);
58 	if (ng)
59 		ng->s.len = max_gen_ptrs;
60 
61 	return ng;
62 }
63 
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 	struct net_generic *ng, *old_ng;
67 
68 	BUG_ON(!mutex_is_locked(&net_mutex));
69 	BUG_ON(id < MIN_PERNET_OPS_ID);
70 
71 	old_ng = rcu_dereference_protected(net->gen,
72 					   lockdep_is_held(&net_mutex));
73 	if (old_ng->s.len > id) {
74 		old_ng->ptr[id] = data;
75 		return 0;
76 	}
77 
78 	ng = net_alloc_generic();
79 	if (ng == NULL)
80 		return -ENOMEM;
81 
82 	/*
83 	 * Some synchronisation notes:
84 	 *
85 	 * The net_generic explores the net->gen array inside rcu
86 	 * read section. Besides once set the net->gen->ptr[x]
87 	 * pointer never changes (see rules in netns/generic.h).
88 	 *
89 	 * That said, we simply duplicate this array and schedule
90 	 * the old copy for kfree after a grace period.
91 	 */
92 
93 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 	ng->ptr[id] = data;
96 
97 	rcu_assign_pointer(net->gen, ng);
98 	kfree_rcu(old_ng, s.rcu);
99 	return 0;
100 }
101 
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 	int err = -ENOMEM;
105 	void *data = NULL;
106 
107 	if (ops->id && ops->size) {
108 		data = kzalloc(ops->size, GFP_KERNEL);
109 		if (!data)
110 			goto out;
111 
112 		err = net_assign_generic(net, *ops->id, data);
113 		if (err)
114 			goto cleanup;
115 	}
116 	err = 0;
117 	if (ops->init)
118 		err = ops->init(net);
119 	if (!err)
120 		return 0;
121 
122 cleanup:
123 	kfree(data);
124 
125 out:
126 	return err;
127 }
128 
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 	if (ops->id && ops->size) {
132 		kfree(net_generic(net, *ops->id));
133 	}
134 }
135 
136 static void ops_exit_list(const struct pernet_operations *ops,
137 			  struct list_head *net_exit_list)
138 {
139 	struct net *net;
140 	if (ops->exit) {
141 		list_for_each_entry(net, net_exit_list, exit_list)
142 			ops->exit(net);
143 	}
144 	if (ops->exit_batch)
145 		ops->exit_batch(net_exit_list);
146 }
147 
148 static void ops_free_list(const struct pernet_operations *ops,
149 			  struct list_head *net_exit_list)
150 {
151 	struct net *net;
152 	if (ops->size && ops->id) {
153 		list_for_each_entry(net, net_exit_list, exit_list)
154 			ops_free(ops, net);
155 	}
156 }
157 
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 	int min = 0, max = 0;
162 
163 	if (reqid >= 0) {
164 		min = reqid;
165 		max = reqid + 1;
166 	}
167 
168 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170 
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172  * function returns the id so that idr_for_each() stops. Because we cannot
173  * returns the id 0 (idr_for_each() will not stop), we return the magic value
174  * NET_ID_ZERO (-1) for it.
175  */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 	if (net_eq(net, peer))
180 		return id ? : NET_ID_ZERO;
181 	return 0;
182 }
183 
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185  * is set to true, thus the caller knows that the new id must be notified via
186  * rtnl.
187  */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 	bool alloc_it = *alloc;
192 
193 	*alloc = false;
194 
195 	/* Magic value for id 0. */
196 	if (id == NET_ID_ZERO)
197 		return 0;
198 	if (id > 0)
199 		return id;
200 
201 	if (alloc_it) {
202 		id = alloc_netid(net, peer, -1);
203 		*alloc = true;
204 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 	}
206 
207 	return NETNSA_NSID_NOT_ASSIGNED;
208 }
209 
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 	bool no = false;
214 
215 	return __peernet2id_alloc(net, peer, &no);
216 }
217 
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220  * be allocated and returned.
221  */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 	bool alloc;
225 	int id;
226 
227 	if (atomic_read(&net->count) == 0)
228 		return NETNSA_NSID_NOT_ASSIGNED;
229 	spin_lock_bh(&net->nsid_lock);
230 	alloc = atomic_read(&peer->count) == 0 ? false : true;
231 	id = __peernet2id_alloc(net, peer, &alloc);
232 	spin_unlock_bh(&net->nsid_lock);
233 	if (alloc && id >= 0)
234 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
235 	return id;
236 }
237 
238 /* This function returns, if assigned, the id of a peer netns. */
239 int peernet2id(struct net *net, struct net *peer)
240 {
241 	int id;
242 
243 	spin_lock_bh(&net->nsid_lock);
244 	id = __peernet2id(net, peer);
245 	spin_unlock_bh(&net->nsid_lock);
246 	return id;
247 }
248 EXPORT_SYMBOL(peernet2id);
249 
250 /* This function returns true is the peer netns has an id assigned into the
251  * current netns.
252  */
253 bool peernet_has_id(struct net *net, struct net *peer)
254 {
255 	return peernet2id(net, peer) >= 0;
256 }
257 
258 struct net *get_net_ns_by_id(struct net *net, int id)
259 {
260 	struct net *peer;
261 
262 	if (id < 0)
263 		return NULL;
264 
265 	rcu_read_lock();
266 	spin_lock_bh(&net->nsid_lock);
267 	peer = idr_find(&net->netns_ids, id);
268 	if (peer)
269 		get_net(peer);
270 	spin_unlock_bh(&net->nsid_lock);
271 	rcu_read_unlock();
272 
273 	return peer;
274 }
275 
276 /*
277  * setup_net runs the initializers for the network namespace object.
278  */
279 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
280 {
281 	/* Must be called with net_mutex held */
282 	const struct pernet_operations *ops, *saved_ops;
283 	int error = 0;
284 	LIST_HEAD(net_exit_list);
285 
286 	atomic_set(&net->count, 1);
287 	refcount_set(&net->passive, 1);
288 	net->dev_base_seq = 1;
289 	net->user_ns = user_ns;
290 	idr_init(&net->netns_ids);
291 	spin_lock_init(&net->nsid_lock);
292 
293 	list_for_each_entry(ops, &pernet_list, list) {
294 		error = ops_init(ops, net);
295 		if (error < 0)
296 			goto out_undo;
297 	}
298 out:
299 	return error;
300 
301 out_undo:
302 	/* Walk through the list backwards calling the exit functions
303 	 * for the pernet modules whose init functions did not fail.
304 	 */
305 	list_add(&net->exit_list, &net_exit_list);
306 	saved_ops = ops;
307 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
308 		ops_exit_list(ops, &net_exit_list);
309 
310 	ops = saved_ops;
311 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
312 		ops_free_list(ops, &net_exit_list);
313 
314 	rcu_barrier();
315 	goto out;
316 }
317 
318 static int __net_init net_defaults_init_net(struct net *net)
319 {
320 	net->core.sysctl_somaxconn = SOMAXCONN;
321 	return 0;
322 }
323 
324 static struct pernet_operations net_defaults_ops = {
325 	.init = net_defaults_init_net,
326 };
327 
328 static __init int net_defaults_init(void)
329 {
330 	if (register_pernet_subsys(&net_defaults_ops))
331 		panic("Cannot initialize net default settings");
332 
333 	return 0;
334 }
335 
336 core_initcall(net_defaults_init);
337 
338 #ifdef CONFIG_NET_NS
339 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
340 {
341 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
342 }
343 
344 static void dec_net_namespaces(struct ucounts *ucounts)
345 {
346 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
347 }
348 
349 static struct kmem_cache *net_cachep;
350 static struct workqueue_struct *netns_wq;
351 
352 static struct net *net_alloc(void)
353 {
354 	struct net *net = NULL;
355 	struct net_generic *ng;
356 
357 	ng = net_alloc_generic();
358 	if (!ng)
359 		goto out;
360 
361 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
362 	if (!net)
363 		goto out_free;
364 
365 	rcu_assign_pointer(net->gen, ng);
366 out:
367 	return net;
368 
369 out_free:
370 	kfree(ng);
371 	goto out;
372 }
373 
374 static void net_free(struct net *net)
375 {
376 	kfree(rcu_access_pointer(net->gen));
377 	kmem_cache_free(net_cachep, net);
378 }
379 
380 void net_drop_ns(void *p)
381 {
382 	struct net *ns = p;
383 	if (ns && refcount_dec_and_test(&ns->passive))
384 		net_free(ns);
385 }
386 
387 struct net *copy_net_ns(unsigned long flags,
388 			struct user_namespace *user_ns, struct net *old_net)
389 {
390 	struct ucounts *ucounts;
391 	struct net *net;
392 	int rv;
393 
394 	if (!(flags & CLONE_NEWNET))
395 		return get_net(old_net);
396 
397 	ucounts = inc_net_namespaces(user_ns);
398 	if (!ucounts)
399 		return ERR_PTR(-ENOSPC);
400 
401 	net = net_alloc();
402 	if (!net) {
403 		dec_net_namespaces(ucounts);
404 		return ERR_PTR(-ENOMEM);
405 	}
406 
407 	get_user_ns(user_ns);
408 
409 	rv = mutex_lock_killable(&net_mutex);
410 	if (rv < 0) {
411 		net_free(net);
412 		dec_net_namespaces(ucounts);
413 		put_user_ns(user_ns);
414 		return ERR_PTR(rv);
415 	}
416 
417 	net->ucounts = ucounts;
418 	rv = setup_net(net, user_ns);
419 	if (rv == 0) {
420 		rtnl_lock();
421 		list_add_tail_rcu(&net->list, &net_namespace_list);
422 		rtnl_unlock();
423 	}
424 	mutex_unlock(&net_mutex);
425 	if (rv < 0) {
426 		dec_net_namespaces(ucounts);
427 		put_user_ns(user_ns);
428 		net_drop_ns(net);
429 		return ERR_PTR(rv);
430 	}
431 	return net;
432 }
433 
434 static DEFINE_SPINLOCK(cleanup_list_lock);
435 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
436 
437 static void cleanup_net(struct work_struct *work)
438 {
439 	const struct pernet_operations *ops;
440 	struct net *net, *tmp;
441 	struct list_head net_kill_list;
442 	LIST_HEAD(net_exit_list);
443 
444 	/* Atomically snapshot the list of namespaces to cleanup */
445 	spin_lock_irq(&cleanup_list_lock);
446 	list_replace_init(&cleanup_list, &net_kill_list);
447 	spin_unlock_irq(&cleanup_list_lock);
448 
449 	mutex_lock(&net_mutex);
450 
451 	/* Don't let anyone else find us. */
452 	rtnl_lock();
453 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
454 		list_del_rcu(&net->list);
455 		list_add_tail(&net->exit_list, &net_exit_list);
456 		for_each_net(tmp) {
457 			int id;
458 
459 			spin_lock_bh(&tmp->nsid_lock);
460 			id = __peernet2id(tmp, net);
461 			if (id >= 0)
462 				idr_remove(&tmp->netns_ids, id);
463 			spin_unlock_bh(&tmp->nsid_lock);
464 			if (id >= 0)
465 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
466 		}
467 		spin_lock_bh(&net->nsid_lock);
468 		idr_destroy(&net->netns_ids);
469 		spin_unlock_bh(&net->nsid_lock);
470 
471 	}
472 	rtnl_unlock();
473 
474 	/*
475 	 * Another CPU might be rcu-iterating the list, wait for it.
476 	 * This needs to be before calling the exit() notifiers, so
477 	 * the rcu_barrier() below isn't sufficient alone.
478 	 */
479 	synchronize_rcu();
480 
481 	/* Run all of the network namespace exit methods */
482 	list_for_each_entry_reverse(ops, &pernet_list, list)
483 		ops_exit_list(ops, &net_exit_list);
484 
485 	/* Free the net generic variables */
486 	list_for_each_entry_reverse(ops, &pernet_list, list)
487 		ops_free_list(ops, &net_exit_list);
488 
489 	mutex_unlock(&net_mutex);
490 
491 	/* Ensure there are no outstanding rcu callbacks using this
492 	 * network namespace.
493 	 */
494 	rcu_barrier();
495 
496 	/* Finally it is safe to free my network namespace structure */
497 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
498 		list_del_init(&net->exit_list);
499 		dec_net_namespaces(net->ucounts);
500 		put_user_ns(net->user_ns);
501 		net_drop_ns(net);
502 	}
503 }
504 
505 /**
506  * net_ns_barrier - wait until concurrent net_cleanup_work is done
507  *
508  * cleanup_net runs from work queue and will first remove namespaces
509  * from the global list, then run net exit functions.
510  *
511  * Call this in module exit path to make sure that all netns
512  * ->exit ops have been invoked before the function is removed.
513  */
514 void net_ns_barrier(void)
515 {
516 	mutex_lock(&net_mutex);
517 	mutex_unlock(&net_mutex);
518 }
519 EXPORT_SYMBOL(net_ns_barrier);
520 
521 static DECLARE_WORK(net_cleanup_work, cleanup_net);
522 
523 void __put_net(struct net *net)
524 {
525 	/* Cleanup the network namespace in process context */
526 	unsigned long flags;
527 
528 	spin_lock_irqsave(&cleanup_list_lock, flags);
529 	list_add(&net->cleanup_list, &cleanup_list);
530 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
531 
532 	queue_work(netns_wq, &net_cleanup_work);
533 }
534 EXPORT_SYMBOL_GPL(__put_net);
535 
536 struct net *get_net_ns_by_fd(int fd)
537 {
538 	struct file *file;
539 	struct ns_common *ns;
540 	struct net *net;
541 
542 	file = proc_ns_fget(fd);
543 	if (IS_ERR(file))
544 		return ERR_CAST(file);
545 
546 	ns = get_proc_ns(file_inode(file));
547 	if (ns->ops == &netns_operations)
548 		net = get_net(container_of(ns, struct net, ns));
549 	else
550 		net = ERR_PTR(-EINVAL);
551 
552 	fput(file);
553 	return net;
554 }
555 
556 #else
557 struct net *get_net_ns_by_fd(int fd)
558 {
559 	return ERR_PTR(-EINVAL);
560 }
561 #endif
562 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
563 
564 struct net *get_net_ns_by_pid(pid_t pid)
565 {
566 	struct task_struct *tsk;
567 	struct net *net;
568 
569 	/* Lookup the network namespace */
570 	net = ERR_PTR(-ESRCH);
571 	rcu_read_lock();
572 	tsk = find_task_by_vpid(pid);
573 	if (tsk) {
574 		struct nsproxy *nsproxy;
575 		task_lock(tsk);
576 		nsproxy = tsk->nsproxy;
577 		if (nsproxy)
578 			net = get_net(nsproxy->net_ns);
579 		task_unlock(tsk);
580 	}
581 	rcu_read_unlock();
582 	return net;
583 }
584 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
585 
586 static __net_init int net_ns_net_init(struct net *net)
587 {
588 #ifdef CONFIG_NET_NS
589 	net->ns.ops = &netns_operations;
590 #endif
591 	return ns_alloc_inum(&net->ns);
592 }
593 
594 static __net_exit void net_ns_net_exit(struct net *net)
595 {
596 	ns_free_inum(&net->ns);
597 }
598 
599 static struct pernet_operations __net_initdata net_ns_ops = {
600 	.init = net_ns_net_init,
601 	.exit = net_ns_net_exit,
602 };
603 
604 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
605 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
606 	[NETNSA_NSID]		= { .type = NLA_S32 },
607 	[NETNSA_PID]		= { .type = NLA_U32 },
608 	[NETNSA_FD]		= { .type = NLA_U32 },
609 };
610 
611 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
612 			  struct netlink_ext_ack *extack)
613 {
614 	struct net *net = sock_net(skb->sk);
615 	struct nlattr *tb[NETNSA_MAX + 1];
616 	struct nlattr *nla;
617 	struct net *peer;
618 	int nsid, err;
619 
620 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
621 			  rtnl_net_policy, extack);
622 	if (err < 0)
623 		return err;
624 	if (!tb[NETNSA_NSID]) {
625 		NL_SET_ERR_MSG(extack, "nsid is missing");
626 		return -EINVAL;
627 	}
628 	nsid = nla_get_s32(tb[NETNSA_NSID]);
629 
630 	if (tb[NETNSA_PID]) {
631 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
632 		nla = tb[NETNSA_PID];
633 	} else if (tb[NETNSA_FD]) {
634 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
635 		nla = tb[NETNSA_FD];
636 	} else {
637 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
638 		return -EINVAL;
639 	}
640 	if (IS_ERR(peer)) {
641 		NL_SET_BAD_ATTR(extack, nla);
642 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
643 		return PTR_ERR(peer);
644 	}
645 
646 	spin_lock_bh(&net->nsid_lock);
647 	if (__peernet2id(net, peer) >= 0) {
648 		spin_unlock_bh(&net->nsid_lock);
649 		err = -EEXIST;
650 		NL_SET_BAD_ATTR(extack, nla);
651 		NL_SET_ERR_MSG(extack,
652 			       "Peer netns already has a nsid assigned");
653 		goto out;
654 	}
655 
656 	err = alloc_netid(net, peer, nsid);
657 	spin_unlock_bh(&net->nsid_lock);
658 	if (err >= 0) {
659 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
660 		err = 0;
661 	} else if (err == -ENOSPC && nsid >= 0) {
662 		err = -EEXIST;
663 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
664 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
665 	}
666 out:
667 	put_net(peer);
668 	return err;
669 }
670 
671 static int rtnl_net_get_size(void)
672 {
673 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
674 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
675 	       ;
676 }
677 
678 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
679 			 int cmd, struct net *net, int nsid)
680 {
681 	struct nlmsghdr *nlh;
682 	struct rtgenmsg *rth;
683 
684 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
685 	if (!nlh)
686 		return -EMSGSIZE;
687 
688 	rth = nlmsg_data(nlh);
689 	rth->rtgen_family = AF_UNSPEC;
690 
691 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
692 		goto nla_put_failure;
693 
694 	nlmsg_end(skb, nlh);
695 	return 0;
696 
697 nla_put_failure:
698 	nlmsg_cancel(skb, nlh);
699 	return -EMSGSIZE;
700 }
701 
702 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
703 			  struct netlink_ext_ack *extack)
704 {
705 	struct net *net = sock_net(skb->sk);
706 	struct nlattr *tb[NETNSA_MAX + 1];
707 	struct nlattr *nla;
708 	struct sk_buff *msg;
709 	struct net *peer;
710 	int err, id;
711 
712 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
713 			  rtnl_net_policy, extack);
714 	if (err < 0)
715 		return err;
716 	if (tb[NETNSA_PID]) {
717 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
718 		nla = tb[NETNSA_PID];
719 	} else if (tb[NETNSA_FD]) {
720 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
721 		nla = tb[NETNSA_FD];
722 	} else {
723 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
724 		return -EINVAL;
725 	}
726 
727 	if (IS_ERR(peer)) {
728 		NL_SET_BAD_ATTR(extack, nla);
729 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
730 		return PTR_ERR(peer);
731 	}
732 
733 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
734 	if (!msg) {
735 		err = -ENOMEM;
736 		goto out;
737 	}
738 
739 	id = peernet2id(net, peer);
740 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
741 			    RTM_NEWNSID, net, id);
742 	if (err < 0)
743 		goto err_out;
744 
745 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
746 	goto out;
747 
748 err_out:
749 	nlmsg_free(msg);
750 out:
751 	put_net(peer);
752 	return err;
753 }
754 
755 struct rtnl_net_dump_cb {
756 	struct net *net;
757 	struct sk_buff *skb;
758 	struct netlink_callback *cb;
759 	int idx;
760 	int s_idx;
761 };
762 
763 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
764 {
765 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
766 	int ret;
767 
768 	if (net_cb->idx < net_cb->s_idx)
769 		goto cont;
770 
771 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
772 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
773 			    RTM_NEWNSID, net_cb->net, id);
774 	if (ret < 0)
775 		return ret;
776 
777 cont:
778 	net_cb->idx++;
779 	return 0;
780 }
781 
782 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
783 {
784 	struct net *net = sock_net(skb->sk);
785 	struct rtnl_net_dump_cb net_cb = {
786 		.net = net,
787 		.skb = skb,
788 		.cb = cb,
789 		.idx = 0,
790 		.s_idx = cb->args[0],
791 	};
792 
793 	spin_lock_bh(&net->nsid_lock);
794 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
795 	spin_unlock_bh(&net->nsid_lock);
796 
797 	cb->args[0] = net_cb.idx;
798 	return skb->len;
799 }
800 
801 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
802 {
803 	struct sk_buff *msg;
804 	int err = -ENOMEM;
805 
806 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
807 	if (!msg)
808 		goto out;
809 
810 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
811 	if (err < 0)
812 		goto err_out;
813 
814 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
815 	return;
816 
817 err_out:
818 	nlmsg_free(msg);
819 out:
820 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
821 }
822 
823 static int __init net_ns_init(void)
824 {
825 	struct net_generic *ng;
826 
827 #ifdef CONFIG_NET_NS
828 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
829 					SMP_CACHE_BYTES,
830 					SLAB_PANIC, NULL);
831 
832 	/* Create workqueue for cleanup */
833 	netns_wq = create_singlethread_workqueue("netns");
834 	if (!netns_wq)
835 		panic("Could not create netns workq");
836 #endif
837 
838 	ng = net_alloc_generic();
839 	if (!ng)
840 		panic("Could not allocate generic netns");
841 
842 	rcu_assign_pointer(init_net.gen, ng);
843 
844 	mutex_lock(&net_mutex);
845 	if (setup_net(&init_net, &init_user_ns))
846 		panic("Could not setup the initial network namespace");
847 
848 	init_net_initialized = true;
849 
850 	rtnl_lock();
851 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
852 	rtnl_unlock();
853 
854 	mutex_unlock(&net_mutex);
855 
856 	register_pernet_subsys(&net_ns_ops);
857 
858 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
859 		      RTNL_FLAG_DOIT_UNLOCKED);
860 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
861 		      RTNL_FLAG_DOIT_UNLOCKED);
862 
863 	return 0;
864 }
865 
866 pure_initcall(net_ns_init);
867 
868 #ifdef CONFIG_NET_NS
869 static int __register_pernet_operations(struct list_head *list,
870 					struct pernet_operations *ops)
871 {
872 	struct net *net;
873 	int error;
874 	LIST_HEAD(net_exit_list);
875 
876 	list_add_tail(&ops->list, list);
877 	if (ops->init || (ops->id && ops->size)) {
878 		for_each_net(net) {
879 			error = ops_init(ops, net);
880 			if (error)
881 				goto out_undo;
882 			list_add_tail(&net->exit_list, &net_exit_list);
883 		}
884 	}
885 	return 0;
886 
887 out_undo:
888 	/* If I have an error cleanup all namespaces I initialized */
889 	list_del(&ops->list);
890 	ops_exit_list(ops, &net_exit_list);
891 	ops_free_list(ops, &net_exit_list);
892 	return error;
893 }
894 
895 static void __unregister_pernet_operations(struct pernet_operations *ops)
896 {
897 	struct net *net;
898 	LIST_HEAD(net_exit_list);
899 
900 	list_del(&ops->list);
901 	for_each_net(net)
902 		list_add_tail(&net->exit_list, &net_exit_list);
903 	ops_exit_list(ops, &net_exit_list);
904 	ops_free_list(ops, &net_exit_list);
905 }
906 
907 #else
908 
909 static int __register_pernet_operations(struct list_head *list,
910 					struct pernet_operations *ops)
911 {
912 	if (!init_net_initialized) {
913 		list_add_tail(&ops->list, list);
914 		return 0;
915 	}
916 
917 	return ops_init(ops, &init_net);
918 }
919 
920 static void __unregister_pernet_operations(struct pernet_operations *ops)
921 {
922 	if (!init_net_initialized) {
923 		list_del(&ops->list);
924 	} else {
925 		LIST_HEAD(net_exit_list);
926 		list_add(&init_net.exit_list, &net_exit_list);
927 		ops_exit_list(ops, &net_exit_list);
928 		ops_free_list(ops, &net_exit_list);
929 	}
930 }
931 
932 #endif /* CONFIG_NET_NS */
933 
934 static DEFINE_IDA(net_generic_ids);
935 
936 static int register_pernet_operations(struct list_head *list,
937 				      struct pernet_operations *ops)
938 {
939 	int error;
940 
941 	if (ops->id) {
942 again:
943 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
944 		if (error < 0) {
945 			if (error == -EAGAIN) {
946 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
947 				goto again;
948 			}
949 			return error;
950 		}
951 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
952 	}
953 	error = __register_pernet_operations(list, ops);
954 	if (error) {
955 		rcu_barrier();
956 		if (ops->id)
957 			ida_remove(&net_generic_ids, *ops->id);
958 	}
959 
960 	return error;
961 }
962 
963 static void unregister_pernet_operations(struct pernet_operations *ops)
964 {
965 
966 	__unregister_pernet_operations(ops);
967 	rcu_barrier();
968 	if (ops->id)
969 		ida_remove(&net_generic_ids, *ops->id);
970 }
971 
972 /**
973  *      register_pernet_subsys - register a network namespace subsystem
974  *	@ops:  pernet operations structure for the subsystem
975  *
976  *	Register a subsystem which has init and exit functions
977  *	that are called when network namespaces are created and
978  *	destroyed respectively.
979  *
980  *	When registered all network namespace init functions are
981  *	called for every existing network namespace.  Allowing kernel
982  *	modules to have a race free view of the set of network namespaces.
983  *
984  *	When a new network namespace is created all of the init
985  *	methods are called in the order in which they were registered.
986  *
987  *	When a network namespace is destroyed all of the exit methods
988  *	are called in the reverse of the order with which they were
989  *	registered.
990  */
991 int register_pernet_subsys(struct pernet_operations *ops)
992 {
993 	int error;
994 	mutex_lock(&net_mutex);
995 	error =  register_pernet_operations(first_device, ops);
996 	mutex_unlock(&net_mutex);
997 	return error;
998 }
999 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1000 
1001 /**
1002  *      unregister_pernet_subsys - unregister a network namespace subsystem
1003  *	@ops: pernet operations structure to manipulate
1004  *
1005  *	Remove the pernet operations structure from the list to be
1006  *	used when network namespaces are created or destroyed.  In
1007  *	addition run the exit method for all existing network
1008  *	namespaces.
1009  */
1010 void unregister_pernet_subsys(struct pernet_operations *ops)
1011 {
1012 	mutex_lock(&net_mutex);
1013 	unregister_pernet_operations(ops);
1014 	mutex_unlock(&net_mutex);
1015 }
1016 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1017 
1018 /**
1019  *      register_pernet_device - register a network namespace device
1020  *	@ops:  pernet operations structure for the subsystem
1021  *
1022  *	Register a device which has init and exit functions
1023  *	that are called when network namespaces are created and
1024  *	destroyed respectively.
1025  *
1026  *	When registered all network namespace init functions are
1027  *	called for every existing network namespace.  Allowing kernel
1028  *	modules to have a race free view of the set of network namespaces.
1029  *
1030  *	When a new network namespace is created all of the init
1031  *	methods are called in the order in which they were registered.
1032  *
1033  *	When a network namespace is destroyed all of the exit methods
1034  *	are called in the reverse of the order with which they were
1035  *	registered.
1036  */
1037 int register_pernet_device(struct pernet_operations *ops)
1038 {
1039 	int error;
1040 	mutex_lock(&net_mutex);
1041 	error = register_pernet_operations(&pernet_list, ops);
1042 	if (!error && (first_device == &pernet_list))
1043 		first_device = &ops->list;
1044 	mutex_unlock(&net_mutex);
1045 	return error;
1046 }
1047 EXPORT_SYMBOL_GPL(register_pernet_device);
1048 
1049 /**
1050  *      unregister_pernet_device - unregister a network namespace netdevice
1051  *	@ops: pernet operations structure to manipulate
1052  *
1053  *	Remove the pernet operations structure from the list to be
1054  *	used when network namespaces are created or destroyed.  In
1055  *	addition run the exit method for all existing network
1056  *	namespaces.
1057  */
1058 void unregister_pernet_device(struct pernet_operations *ops)
1059 {
1060 	mutex_lock(&net_mutex);
1061 	if (&ops->list == first_device)
1062 		first_device = first_device->next;
1063 	unregister_pernet_operations(ops);
1064 	mutex_unlock(&net_mutex);
1065 }
1066 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1067 
1068 #ifdef CONFIG_NET_NS
1069 static struct ns_common *netns_get(struct task_struct *task)
1070 {
1071 	struct net *net = NULL;
1072 	struct nsproxy *nsproxy;
1073 
1074 	task_lock(task);
1075 	nsproxy = task->nsproxy;
1076 	if (nsproxy)
1077 		net = get_net(nsproxy->net_ns);
1078 	task_unlock(task);
1079 
1080 	return net ? &net->ns : NULL;
1081 }
1082 
1083 static inline struct net *to_net_ns(struct ns_common *ns)
1084 {
1085 	return container_of(ns, struct net, ns);
1086 }
1087 
1088 static void netns_put(struct ns_common *ns)
1089 {
1090 	put_net(to_net_ns(ns));
1091 }
1092 
1093 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1094 {
1095 	struct net *net = to_net_ns(ns);
1096 
1097 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1098 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1099 		return -EPERM;
1100 
1101 	put_net(nsproxy->net_ns);
1102 	nsproxy->net_ns = get_net(net);
1103 	return 0;
1104 }
1105 
1106 static struct user_namespace *netns_owner(struct ns_common *ns)
1107 {
1108 	return to_net_ns(ns)->user_ns;
1109 }
1110 
1111 const struct proc_ns_operations netns_operations = {
1112 	.name		= "net",
1113 	.type		= CLONE_NEWNET,
1114 	.get		= netns_get,
1115 	.put		= netns_put,
1116 	.install	= netns_install,
1117 	.owner		= netns_owner,
1118 };
1119 #endif
1120