1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 24 #include <net/sock.h> 25 #include <net/netlink.h> 26 #include <net/net_namespace.h> 27 #include <net/netns/generic.h> 28 29 /* 30 * Our network namespace constructor/destructor lists 31 */ 32 33 static LIST_HEAD(pernet_list); 34 static struct list_head *first_device = &pernet_list; 35 36 LIST_HEAD(net_namespace_list); 37 EXPORT_SYMBOL_GPL(net_namespace_list); 38 39 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 40 DECLARE_RWSEM(net_rwsem); 41 EXPORT_SYMBOL_GPL(net_rwsem); 42 43 #ifdef CONFIG_KEYS 44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 45 #endif 46 47 struct net init_net = { 48 .ns.count = REFCOUNT_INIT(1), 49 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 50 #ifdef CONFIG_KEYS 51 .key_domain = &init_net_key_domain, 52 #endif 53 }; 54 EXPORT_SYMBOL(init_net); 55 56 static bool init_net_initialized; 57 /* 58 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 59 * init_net_initialized and first_device pointer. 60 * This is internal net namespace object. Please, don't use it 61 * outside. 62 */ 63 DECLARE_RWSEM(pernet_ops_rwsem); 64 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 65 66 #define MIN_PERNET_OPS_ID \ 67 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 68 69 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 70 71 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 72 73 DEFINE_COOKIE(net_cookie); 74 75 static struct net_generic *net_alloc_generic(void) 76 { 77 struct net_generic *ng; 78 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 79 80 ng = kzalloc(generic_size, GFP_KERNEL); 81 if (ng) 82 ng->s.len = max_gen_ptrs; 83 84 return ng; 85 } 86 87 static int net_assign_generic(struct net *net, unsigned int id, void *data) 88 { 89 struct net_generic *ng, *old_ng; 90 91 BUG_ON(id < MIN_PERNET_OPS_ID); 92 93 old_ng = rcu_dereference_protected(net->gen, 94 lockdep_is_held(&pernet_ops_rwsem)); 95 if (old_ng->s.len > id) { 96 old_ng->ptr[id] = data; 97 return 0; 98 } 99 100 ng = net_alloc_generic(); 101 if (!ng) 102 return -ENOMEM; 103 104 /* 105 * Some synchronisation notes: 106 * 107 * The net_generic explores the net->gen array inside rcu 108 * read section. Besides once set the net->gen->ptr[x] 109 * pointer never changes (see rules in netns/generic.h). 110 * 111 * That said, we simply duplicate this array and schedule 112 * the old copy for kfree after a grace period. 113 */ 114 115 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 116 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 117 ng->ptr[id] = data; 118 119 rcu_assign_pointer(net->gen, ng); 120 kfree_rcu(old_ng, s.rcu); 121 return 0; 122 } 123 124 static int ops_init(const struct pernet_operations *ops, struct net *net) 125 { 126 int err = -ENOMEM; 127 void *data = NULL; 128 129 if (ops->id && ops->size) { 130 data = kzalloc(ops->size, GFP_KERNEL); 131 if (!data) 132 goto out; 133 134 err = net_assign_generic(net, *ops->id, data); 135 if (err) 136 goto cleanup; 137 } 138 err = 0; 139 if (ops->init) 140 err = ops->init(net); 141 if (!err) 142 return 0; 143 144 cleanup: 145 kfree(data); 146 147 out: 148 return err; 149 } 150 151 static void ops_pre_exit_list(const struct pernet_operations *ops, 152 struct list_head *net_exit_list) 153 { 154 struct net *net; 155 156 if (ops->pre_exit) { 157 list_for_each_entry(net, net_exit_list, exit_list) 158 ops->pre_exit(net); 159 } 160 } 161 162 static void ops_exit_list(const struct pernet_operations *ops, 163 struct list_head *net_exit_list) 164 { 165 struct net *net; 166 if (ops->exit) { 167 list_for_each_entry(net, net_exit_list, exit_list) 168 ops->exit(net); 169 } 170 if (ops->exit_batch) 171 ops->exit_batch(net_exit_list); 172 } 173 174 static void ops_free_list(const struct pernet_operations *ops, 175 struct list_head *net_exit_list) 176 { 177 struct net *net; 178 if (ops->size && ops->id) { 179 list_for_each_entry(net, net_exit_list, exit_list) 180 kfree(net_generic(net, *ops->id)); 181 } 182 } 183 184 /* should be called with nsid_lock held */ 185 static int alloc_netid(struct net *net, struct net *peer, int reqid) 186 { 187 int min = 0, max = 0; 188 189 if (reqid >= 0) { 190 min = reqid; 191 max = reqid + 1; 192 } 193 194 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 195 } 196 197 /* This function is used by idr_for_each(). If net is equal to peer, the 198 * function returns the id so that idr_for_each() stops. Because we cannot 199 * returns the id 0 (idr_for_each() will not stop), we return the magic value 200 * NET_ID_ZERO (-1) for it. 201 */ 202 #define NET_ID_ZERO -1 203 static int net_eq_idr(int id, void *net, void *peer) 204 { 205 if (net_eq(net, peer)) 206 return id ? : NET_ID_ZERO; 207 return 0; 208 } 209 210 /* Must be called from RCU-critical section or with nsid_lock held */ 211 static int __peernet2id(const struct net *net, struct net *peer) 212 { 213 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 214 215 /* Magic value for id 0. */ 216 if (id == NET_ID_ZERO) 217 return 0; 218 if (id > 0) 219 return id; 220 221 return NETNSA_NSID_NOT_ASSIGNED; 222 } 223 224 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 225 struct nlmsghdr *nlh, gfp_t gfp); 226 /* This function returns the id of a peer netns. If no id is assigned, one will 227 * be allocated and returned. 228 */ 229 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 230 { 231 int id; 232 233 if (refcount_read(&net->ns.count) == 0) 234 return NETNSA_NSID_NOT_ASSIGNED; 235 236 spin_lock_bh(&net->nsid_lock); 237 id = __peernet2id(net, peer); 238 if (id >= 0) { 239 spin_unlock_bh(&net->nsid_lock); 240 return id; 241 } 242 243 /* When peer is obtained from RCU lists, we may race with 244 * its cleanup. Check whether it's alive, and this guarantees 245 * we never hash a peer back to net->netns_ids, after it has 246 * just been idr_remove()'d from there in cleanup_net(). 247 */ 248 if (!maybe_get_net(peer)) { 249 spin_unlock_bh(&net->nsid_lock); 250 return NETNSA_NSID_NOT_ASSIGNED; 251 } 252 253 id = alloc_netid(net, peer, -1); 254 spin_unlock_bh(&net->nsid_lock); 255 256 put_net(peer); 257 if (id < 0) 258 return NETNSA_NSID_NOT_ASSIGNED; 259 260 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 261 262 return id; 263 } 264 EXPORT_SYMBOL_GPL(peernet2id_alloc); 265 266 /* This function returns, if assigned, the id of a peer netns. */ 267 int peernet2id(const struct net *net, struct net *peer) 268 { 269 int id; 270 271 rcu_read_lock(); 272 id = __peernet2id(net, peer); 273 rcu_read_unlock(); 274 275 return id; 276 } 277 EXPORT_SYMBOL(peernet2id); 278 279 /* This function returns true is the peer netns has an id assigned into the 280 * current netns. 281 */ 282 bool peernet_has_id(const struct net *net, struct net *peer) 283 { 284 return peernet2id(net, peer) >= 0; 285 } 286 287 struct net *get_net_ns_by_id(const struct net *net, int id) 288 { 289 struct net *peer; 290 291 if (id < 0) 292 return NULL; 293 294 rcu_read_lock(); 295 peer = idr_find(&net->netns_ids, id); 296 if (peer) 297 peer = maybe_get_net(peer); 298 rcu_read_unlock(); 299 300 return peer; 301 } 302 303 /* 304 * setup_net runs the initializers for the network namespace object. 305 */ 306 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 307 { 308 /* Must be called with pernet_ops_rwsem held */ 309 const struct pernet_operations *ops, *saved_ops; 310 int error = 0; 311 LIST_HEAD(net_exit_list); 312 313 refcount_set(&net->ns.count, 1); 314 refcount_set(&net->passive, 1); 315 get_random_bytes(&net->hash_mix, sizeof(u32)); 316 preempt_disable(); 317 net->net_cookie = gen_cookie_next(&net_cookie); 318 preempt_enable(); 319 net->dev_base_seq = 1; 320 net->user_ns = user_ns; 321 idr_init(&net->netns_ids); 322 spin_lock_init(&net->nsid_lock); 323 mutex_init(&net->ipv4.ra_mutex); 324 325 list_for_each_entry(ops, &pernet_list, list) { 326 error = ops_init(ops, net); 327 if (error < 0) 328 goto out_undo; 329 } 330 down_write(&net_rwsem); 331 list_add_tail_rcu(&net->list, &net_namespace_list); 332 up_write(&net_rwsem); 333 out: 334 return error; 335 336 out_undo: 337 /* Walk through the list backwards calling the exit functions 338 * for the pernet modules whose init functions did not fail. 339 */ 340 list_add(&net->exit_list, &net_exit_list); 341 saved_ops = ops; 342 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 343 ops_pre_exit_list(ops, &net_exit_list); 344 345 synchronize_rcu(); 346 347 ops = saved_ops; 348 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 349 ops_exit_list(ops, &net_exit_list); 350 351 ops = saved_ops; 352 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 353 ops_free_list(ops, &net_exit_list); 354 355 rcu_barrier(); 356 goto out; 357 } 358 359 static int __net_init net_defaults_init_net(struct net *net) 360 { 361 net->core.sysctl_somaxconn = SOMAXCONN; 362 return 0; 363 } 364 365 static struct pernet_operations net_defaults_ops = { 366 .init = net_defaults_init_net, 367 }; 368 369 static __init int net_defaults_init(void) 370 { 371 if (register_pernet_subsys(&net_defaults_ops)) 372 panic("Cannot initialize net default settings"); 373 374 return 0; 375 } 376 377 core_initcall(net_defaults_init); 378 379 #ifdef CONFIG_NET_NS 380 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 381 { 382 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 383 } 384 385 static void dec_net_namespaces(struct ucounts *ucounts) 386 { 387 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 388 } 389 390 static struct kmem_cache *net_cachep __ro_after_init; 391 static struct workqueue_struct *netns_wq; 392 393 static struct net *net_alloc(void) 394 { 395 struct net *net = NULL; 396 struct net_generic *ng; 397 398 ng = net_alloc_generic(); 399 if (!ng) 400 goto out; 401 402 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 403 if (!net) 404 goto out_free; 405 406 #ifdef CONFIG_KEYS 407 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 408 if (!net->key_domain) 409 goto out_free_2; 410 refcount_set(&net->key_domain->usage, 1); 411 #endif 412 413 rcu_assign_pointer(net->gen, ng); 414 out: 415 return net; 416 417 #ifdef CONFIG_KEYS 418 out_free_2: 419 kmem_cache_free(net_cachep, net); 420 net = NULL; 421 #endif 422 out_free: 423 kfree(ng); 424 goto out; 425 } 426 427 static void net_free(struct net *net) 428 { 429 if (refcount_dec_and_test(&net->passive)) { 430 kfree(rcu_access_pointer(net->gen)); 431 kmem_cache_free(net_cachep, net); 432 } 433 } 434 435 void net_drop_ns(void *p) 436 { 437 struct net *net = (struct net *)p; 438 439 if (net) 440 net_free(net); 441 } 442 443 struct net *copy_net_ns(unsigned long flags, 444 struct user_namespace *user_ns, struct net *old_net) 445 { 446 struct ucounts *ucounts; 447 struct net *net; 448 int rv; 449 450 if (!(flags & CLONE_NEWNET)) 451 return get_net(old_net); 452 453 ucounts = inc_net_namespaces(user_ns); 454 if (!ucounts) 455 return ERR_PTR(-ENOSPC); 456 457 net = net_alloc(); 458 if (!net) { 459 rv = -ENOMEM; 460 goto dec_ucounts; 461 } 462 refcount_set(&net->passive, 1); 463 net->ucounts = ucounts; 464 get_user_ns(user_ns); 465 466 rv = down_read_killable(&pernet_ops_rwsem); 467 if (rv < 0) 468 goto put_userns; 469 470 rv = setup_net(net, user_ns); 471 472 up_read(&pernet_ops_rwsem); 473 474 if (rv < 0) { 475 put_userns: 476 #ifdef CONFIG_KEYS 477 key_remove_domain(net->key_domain); 478 #endif 479 put_user_ns(user_ns); 480 net_free(net); 481 dec_ucounts: 482 dec_net_namespaces(ucounts); 483 return ERR_PTR(rv); 484 } 485 return net; 486 } 487 488 /** 489 * net_ns_get_ownership - get sysfs ownership data for @net 490 * @net: network namespace in question (can be NULL) 491 * @uid: kernel user ID for sysfs objects 492 * @gid: kernel group ID for sysfs objects 493 * 494 * Returns the uid/gid pair of root in the user namespace associated with the 495 * given network namespace. 496 */ 497 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 498 { 499 if (net) { 500 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 501 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 502 503 if (uid_valid(ns_root_uid)) 504 *uid = ns_root_uid; 505 506 if (gid_valid(ns_root_gid)) 507 *gid = ns_root_gid; 508 } else { 509 *uid = GLOBAL_ROOT_UID; 510 *gid = GLOBAL_ROOT_GID; 511 } 512 } 513 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 514 515 static void unhash_nsid(struct net *net, struct net *last) 516 { 517 struct net *tmp; 518 /* This function is only called from cleanup_net() work, 519 * and this work is the only process, that may delete 520 * a net from net_namespace_list. So, when the below 521 * is executing, the list may only grow. Thus, we do not 522 * use for_each_net_rcu() or net_rwsem. 523 */ 524 for_each_net(tmp) { 525 int id; 526 527 spin_lock_bh(&tmp->nsid_lock); 528 id = __peernet2id(tmp, net); 529 if (id >= 0) 530 idr_remove(&tmp->netns_ids, id); 531 spin_unlock_bh(&tmp->nsid_lock); 532 if (id >= 0) 533 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 534 GFP_KERNEL); 535 if (tmp == last) 536 break; 537 } 538 spin_lock_bh(&net->nsid_lock); 539 idr_destroy(&net->netns_ids); 540 spin_unlock_bh(&net->nsid_lock); 541 } 542 543 static LLIST_HEAD(cleanup_list); 544 545 static void cleanup_net(struct work_struct *work) 546 { 547 const struct pernet_operations *ops; 548 struct net *net, *tmp, *last; 549 struct llist_node *net_kill_list; 550 LIST_HEAD(net_exit_list); 551 552 /* Atomically snapshot the list of namespaces to cleanup */ 553 net_kill_list = llist_del_all(&cleanup_list); 554 555 down_read(&pernet_ops_rwsem); 556 557 /* Don't let anyone else find us. */ 558 down_write(&net_rwsem); 559 llist_for_each_entry(net, net_kill_list, cleanup_list) 560 list_del_rcu(&net->list); 561 /* Cache last net. After we unlock rtnl, no one new net 562 * added to net_namespace_list can assign nsid pointer 563 * to a net from net_kill_list (see peernet2id_alloc()). 564 * So, we skip them in unhash_nsid(). 565 * 566 * Note, that unhash_nsid() does not delete nsid links 567 * between net_kill_list's nets, as they've already 568 * deleted from net_namespace_list. But, this would be 569 * useless anyway, as netns_ids are destroyed there. 570 */ 571 last = list_last_entry(&net_namespace_list, struct net, list); 572 up_write(&net_rwsem); 573 574 llist_for_each_entry(net, net_kill_list, cleanup_list) { 575 unhash_nsid(net, last); 576 list_add_tail(&net->exit_list, &net_exit_list); 577 } 578 579 /* Run all of the network namespace pre_exit methods */ 580 list_for_each_entry_reverse(ops, &pernet_list, list) 581 ops_pre_exit_list(ops, &net_exit_list); 582 583 /* 584 * Another CPU might be rcu-iterating the list, wait for it. 585 * This needs to be before calling the exit() notifiers, so 586 * the rcu_barrier() below isn't sufficient alone. 587 * Also the pre_exit() and exit() methods need this barrier. 588 */ 589 synchronize_rcu(); 590 591 /* Run all of the network namespace exit methods */ 592 list_for_each_entry_reverse(ops, &pernet_list, list) 593 ops_exit_list(ops, &net_exit_list); 594 595 /* Free the net generic variables */ 596 list_for_each_entry_reverse(ops, &pernet_list, list) 597 ops_free_list(ops, &net_exit_list); 598 599 up_read(&pernet_ops_rwsem); 600 601 /* Ensure there are no outstanding rcu callbacks using this 602 * network namespace. 603 */ 604 rcu_barrier(); 605 606 /* Finally it is safe to free my network namespace structure */ 607 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 608 list_del_init(&net->exit_list); 609 dec_net_namespaces(net->ucounts); 610 #ifdef CONFIG_KEYS 611 key_remove_domain(net->key_domain); 612 #endif 613 put_user_ns(net->user_ns); 614 net_free(net); 615 } 616 } 617 618 /** 619 * net_ns_barrier - wait until concurrent net_cleanup_work is done 620 * 621 * cleanup_net runs from work queue and will first remove namespaces 622 * from the global list, then run net exit functions. 623 * 624 * Call this in module exit path to make sure that all netns 625 * ->exit ops have been invoked before the function is removed. 626 */ 627 void net_ns_barrier(void) 628 { 629 down_write(&pernet_ops_rwsem); 630 up_write(&pernet_ops_rwsem); 631 } 632 EXPORT_SYMBOL(net_ns_barrier); 633 634 static DECLARE_WORK(net_cleanup_work, cleanup_net); 635 636 void __put_net(struct net *net) 637 { 638 /* Cleanup the network namespace in process context */ 639 if (llist_add(&net->cleanup_list, &cleanup_list)) 640 queue_work(netns_wq, &net_cleanup_work); 641 } 642 EXPORT_SYMBOL_GPL(__put_net); 643 644 /** 645 * get_net_ns - increment the refcount of the network namespace 646 * @ns: common namespace (net) 647 * 648 * Returns the net's common namespace. 649 */ 650 struct ns_common *get_net_ns(struct ns_common *ns) 651 { 652 return &get_net(container_of(ns, struct net, ns))->ns; 653 } 654 EXPORT_SYMBOL_GPL(get_net_ns); 655 656 struct net *get_net_ns_by_fd(int fd) 657 { 658 struct file *file; 659 struct ns_common *ns; 660 struct net *net; 661 662 file = proc_ns_fget(fd); 663 if (IS_ERR(file)) 664 return ERR_CAST(file); 665 666 ns = get_proc_ns(file_inode(file)); 667 if (ns->ops == &netns_operations) 668 net = get_net(container_of(ns, struct net, ns)); 669 else 670 net = ERR_PTR(-EINVAL); 671 672 fput(file); 673 return net; 674 } 675 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 676 #endif 677 678 struct net *get_net_ns_by_pid(pid_t pid) 679 { 680 struct task_struct *tsk; 681 struct net *net; 682 683 /* Lookup the network namespace */ 684 net = ERR_PTR(-ESRCH); 685 rcu_read_lock(); 686 tsk = find_task_by_vpid(pid); 687 if (tsk) { 688 struct nsproxy *nsproxy; 689 task_lock(tsk); 690 nsproxy = tsk->nsproxy; 691 if (nsproxy) 692 net = get_net(nsproxy->net_ns); 693 task_unlock(tsk); 694 } 695 rcu_read_unlock(); 696 return net; 697 } 698 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 699 700 static __net_init int net_ns_net_init(struct net *net) 701 { 702 #ifdef CONFIG_NET_NS 703 net->ns.ops = &netns_operations; 704 #endif 705 return ns_alloc_inum(&net->ns); 706 } 707 708 static __net_exit void net_ns_net_exit(struct net *net) 709 { 710 ns_free_inum(&net->ns); 711 } 712 713 static struct pernet_operations __net_initdata net_ns_ops = { 714 .init = net_ns_net_init, 715 .exit = net_ns_net_exit, 716 }; 717 718 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 719 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 720 [NETNSA_NSID] = { .type = NLA_S32 }, 721 [NETNSA_PID] = { .type = NLA_U32 }, 722 [NETNSA_FD] = { .type = NLA_U32 }, 723 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 724 }; 725 726 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 727 struct netlink_ext_ack *extack) 728 { 729 struct net *net = sock_net(skb->sk); 730 struct nlattr *tb[NETNSA_MAX + 1]; 731 struct nlattr *nla; 732 struct net *peer; 733 int nsid, err; 734 735 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 736 NETNSA_MAX, rtnl_net_policy, extack); 737 if (err < 0) 738 return err; 739 if (!tb[NETNSA_NSID]) { 740 NL_SET_ERR_MSG(extack, "nsid is missing"); 741 return -EINVAL; 742 } 743 nsid = nla_get_s32(tb[NETNSA_NSID]); 744 745 if (tb[NETNSA_PID]) { 746 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 747 nla = tb[NETNSA_PID]; 748 } else if (tb[NETNSA_FD]) { 749 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 750 nla = tb[NETNSA_FD]; 751 } else { 752 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 753 return -EINVAL; 754 } 755 if (IS_ERR(peer)) { 756 NL_SET_BAD_ATTR(extack, nla); 757 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 758 return PTR_ERR(peer); 759 } 760 761 spin_lock_bh(&net->nsid_lock); 762 if (__peernet2id(net, peer) >= 0) { 763 spin_unlock_bh(&net->nsid_lock); 764 err = -EEXIST; 765 NL_SET_BAD_ATTR(extack, nla); 766 NL_SET_ERR_MSG(extack, 767 "Peer netns already has a nsid assigned"); 768 goto out; 769 } 770 771 err = alloc_netid(net, peer, nsid); 772 spin_unlock_bh(&net->nsid_lock); 773 if (err >= 0) { 774 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 775 nlh, GFP_KERNEL); 776 err = 0; 777 } else if (err == -ENOSPC && nsid >= 0) { 778 err = -EEXIST; 779 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 780 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 781 } 782 out: 783 put_net(peer); 784 return err; 785 } 786 787 static int rtnl_net_get_size(void) 788 { 789 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 790 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 791 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 792 ; 793 } 794 795 struct net_fill_args { 796 u32 portid; 797 u32 seq; 798 int flags; 799 int cmd; 800 int nsid; 801 bool add_ref; 802 int ref_nsid; 803 }; 804 805 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 806 { 807 struct nlmsghdr *nlh; 808 struct rtgenmsg *rth; 809 810 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 811 args->flags); 812 if (!nlh) 813 return -EMSGSIZE; 814 815 rth = nlmsg_data(nlh); 816 rth->rtgen_family = AF_UNSPEC; 817 818 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 819 goto nla_put_failure; 820 821 if (args->add_ref && 822 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 823 goto nla_put_failure; 824 825 nlmsg_end(skb, nlh); 826 return 0; 827 828 nla_put_failure: 829 nlmsg_cancel(skb, nlh); 830 return -EMSGSIZE; 831 } 832 833 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 834 const struct nlmsghdr *nlh, 835 struct nlattr **tb, 836 struct netlink_ext_ack *extack) 837 { 838 int i, err; 839 840 if (!netlink_strict_get_check(skb)) 841 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 842 tb, NETNSA_MAX, rtnl_net_policy, 843 extack); 844 845 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 846 NETNSA_MAX, rtnl_net_policy, 847 extack); 848 if (err) 849 return err; 850 851 for (i = 0; i <= NETNSA_MAX; i++) { 852 if (!tb[i]) 853 continue; 854 855 switch (i) { 856 case NETNSA_PID: 857 case NETNSA_FD: 858 case NETNSA_NSID: 859 case NETNSA_TARGET_NSID: 860 break; 861 default: 862 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 863 return -EINVAL; 864 } 865 } 866 867 return 0; 868 } 869 870 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 871 struct netlink_ext_ack *extack) 872 { 873 struct net *net = sock_net(skb->sk); 874 struct nlattr *tb[NETNSA_MAX + 1]; 875 struct net_fill_args fillargs = { 876 .portid = NETLINK_CB(skb).portid, 877 .seq = nlh->nlmsg_seq, 878 .cmd = RTM_NEWNSID, 879 }; 880 struct net *peer, *target = net; 881 struct nlattr *nla; 882 struct sk_buff *msg; 883 int err; 884 885 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 886 if (err < 0) 887 return err; 888 if (tb[NETNSA_PID]) { 889 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 890 nla = tb[NETNSA_PID]; 891 } else if (tb[NETNSA_FD]) { 892 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 893 nla = tb[NETNSA_FD]; 894 } else if (tb[NETNSA_NSID]) { 895 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 896 if (!peer) 897 peer = ERR_PTR(-ENOENT); 898 nla = tb[NETNSA_NSID]; 899 } else { 900 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 901 return -EINVAL; 902 } 903 904 if (IS_ERR(peer)) { 905 NL_SET_BAD_ATTR(extack, nla); 906 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 907 return PTR_ERR(peer); 908 } 909 910 if (tb[NETNSA_TARGET_NSID]) { 911 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 912 913 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 914 if (IS_ERR(target)) { 915 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 916 NL_SET_ERR_MSG(extack, 917 "Target netns reference is invalid"); 918 err = PTR_ERR(target); 919 goto out; 920 } 921 fillargs.add_ref = true; 922 fillargs.ref_nsid = peernet2id(net, peer); 923 } 924 925 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 926 if (!msg) { 927 err = -ENOMEM; 928 goto out; 929 } 930 931 fillargs.nsid = peernet2id(target, peer); 932 err = rtnl_net_fill(msg, &fillargs); 933 if (err < 0) 934 goto err_out; 935 936 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 937 goto out; 938 939 err_out: 940 nlmsg_free(msg); 941 out: 942 if (fillargs.add_ref) 943 put_net(target); 944 put_net(peer); 945 return err; 946 } 947 948 struct rtnl_net_dump_cb { 949 struct net *tgt_net; 950 struct net *ref_net; 951 struct sk_buff *skb; 952 struct net_fill_args fillargs; 953 int idx; 954 int s_idx; 955 }; 956 957 /* Runs in RCU-critical section. */ 958 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 959 { 960 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 961 int ret; 962 963 if (net_cb->idx < net_cb->s_idx) 964 goto cont; 965 966 net_cb->fillargs.nsid = id; 967 if (net_cb->fillargs.add_ref) 968 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 969 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 970 if (ret < 0) 971 return ret; 972 973 cont: 974 net_cb->idx++; 975 return 0; 976 } 977 978 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 979 struct rtnl_net_dump_cb *net_cb, 980 struct netlink_callback *cb) 981 { 982 struct netlink_ext_ack *extack = cb->extack; 983 struct nlattr *tb[NETNSA_MAX + 1]; 984 int err, i; 985 986 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 987 NETNSA_MAX, rtnl_net_policy, 988 extack); 989 if (err < 0) 990 return err; 991 992 for (i = 0; i <= NETNSA_MAX; i++) { 993 if (!tb[i]) 994 continue; 995 996 if (i == NETNSA_TARGET_NSID) { 997 struct net *net; 998 999 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1000 if (IS_ERR(net)) { 1001 NL_SET_BAD_ATTR(extack, tb[i]); 1002 NL_SET_ERR_MSG(extack, 1003 "Invalid target network namespace id"); 1004 return PTR_ERR(net); 1005 } 1006 net_cb->fillargs.add_ref = true; 1007 net_cb->ref_net = net_cb->tgt_net; 1008 net_cb->tgt_net = net; 1009 } else { 1010 NL_SET_BAD_ATTR(extack, tb[i]); 1011 NL_SET_ERR_MSG(extack, 1012 "Unsupported attribute in dump request"); 1013 return -EINVAL; 1014 } 1015 } 1016 1017 return 0; 1018 } 1019 1020 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1021 { 1022 struct rtnl_net_dump_cb net_cb = { 1023 .tgt_net = sock_net(skb->sk), 1024 .skb = skb, 1025 .fillargs = { 1026 .portid = NETLINK_CB(cb->skb).portid, 1027 .seq = cb->nlh->nlmsg_seq, 1028 .flags = NLM_F_MULTI, 1029 .cmd = RTM_NEWNSID, 1030 }, 1031 .idx = 0, 1032 .s_idx = cb->args[0], 1033 }; 1034 int err = 0; 1035 1036 if (cb->strict_check) { 1037 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1038 if (err < 0) 1039 goto end; 1040 } 1041 1042 rcu_read_lock(); 1043 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1044 rcu_read_unlock(); 1045 1046 cb->args[0] = net_cb.idx; 1047 end: 1048 if (net_cb.fillargs.add_ref) 1049 put_net(net_cb.tgt_net); 1050 return err < 0 ? err : skb->len; 1051 } 1052 1053 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1054 struct nlmsghdr *nlh, gfp_t gfp) 1055 { 1056 struct net_fill_args fillargs = { 1057 .portid = portid, 1058 .seq = nlh ? nlh->nlmsg_seq : 0, 1059 .cmd = cmd, 1060 .nsid = id, 1061 }; 1062 struct sk_buff *msg; 1063 int err = -ENOMEM; 1064 1065 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1066 if (!msg) 1067 goto out; 1068 1069 err = rtnl_net_fill(msg, &fillargs); 1070 if (err < 0) 1071 goto err_out; 1072 1073 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1074 return; 1075 1076 err_out: 1077 nlmsg_free(msg); 1078 out: 1079 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1080 } 1081 1082 static int __init net_ns_init(void) 1083 { 1084 struct net_generic *ng; 1085 1086 #ifdef CONFIG_NET_NS 1087 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1088 SMP_CACHE_BYTES, 1089 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1090 1091 /* Create workqueue for cleanup */ 1092 netns_wq = create_singlethread_workqueue("netns"); 1093 if (!netns_wq) 1094 panic("Could not create netns workq"); 1095 #endif 1096 1097 ng = net_alloc_generic(); 1098 if (!ng) 1099 panic("Could not allocate generic netns"); 1100 1101 rcu_assign_pointer(init_net.gen, ng); 1102 1103 down_write(&pernet_ops_rwsem); 1104 if (setup_net(&init_net, &init_user_ns)) 1105 panic("Could not setup the initial network namespace"); 1106 1107 init_net_initialized = true; 1108 up_write(&pernet_ops_rwsem); 1109 1110 if (register_pernet_subsys(&net_ns_ops)) 1111 panic("Could not register network namespace subsystems"); 1112 1113 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1114 RTNL_FLAG_DOIT_UNLOCKED); 1115 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1116 RTNL_FLAG_DOIT_UNLOCKED); 1117 1118 return 0; 1119 } 1120 1121 pure_initcall(net_ns_init); 1122 1123 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1124 { 1125 ops_pre_exit_list(ops, net_exit_list); 1126 synchronize_rcu(); 1127 ops_exit_list(ops, net_exit_list); 1128 ops_free_list(ops, net_exit_list); 1129 } 1130 1131 #ifdef CONFIG_NET_NS 1132 static int __register_pernet_operations(struct list_head *list, 1133 struct pernet_operations *ops) 1134 { 1135 struct net *net; 1136 int error; 1137 LIST_HEAD(net_exit_list); 1138 1139 list_add_tail(&ops->list, list); 1140 if (ops->init || (ops->id && ops->size)) { 1141 /* We held write locked pernet_ops_rwsem, and parallel 1142 * setup_net() and cleanup_net() are not possible. 1143 */ 1144 for_each_net(net) { 1145 error = ops_init(ops, net); 1146 if (error) 1147 goto out_undo; 1148 list_add_tail(&net->exit_list, &net_exit_list); 1149 } 1150 } 1151 return 0; 1152 1153 out_undo: 1154 /* If I have an error cleanup all namespaces I initialized */ 1155 list_del(&ops->list); 1156 free_exit_list(ops, &net_exit_list); 1157 return error; 1158 } 1159 1160 static void __unregister_pernet_operations(struct pernet_operations *ops) 1161 { 1162 struct net *net; 1163 LIST_HEAD(net_exit_list); 1164 1165 list_del(&ops->list); 1166 /* See comment in __register_pernet_operations() */ 1167 for_each_net(net) 1168 list_add_tail(&net->exit_list, &net_exit_list); 1169 1170 free_exit_list(ops, &net_exit_list); 1171 } 1172 1173 #else 1174 1175 static int __register_pernet_operations(struct list_head *list, 1176 struct pernet_operations *ops) 1177 { 1178 if (!init_net_initialized) { 1179 list_add_tail(&ops->list, list); 1180 return 0; 1181 } 1182 1183 return ops_init(ops, &init_net); 1184 } 1185 1186 static void __unregister_pernet_operations(struct pernet_operations *ops) 1187 { 1188 if (!init_net_initialized) { 1189 list_del(&ops->list); 1190 } else { 1191 LIST_HEAD(net_exit_list); 1192 list_add(&init_net.exit_list, &net_exit_list); 1193 free_exit_list(ops, &net_exit_list); 1194 } 1195 } 1196 1197 #endif /* CONFIG_NET_NS */ 1198 1199 static DEFINE_IDA(net_generic_ids); 1200 1201 static int register_pernet_operations(struct list_head *list, 1202 struct pernet_operations *ops) 1203 { 1204 int error; 1205 1206 if (ops->id) { 1207 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1208 GFP_KERNEL); 1209 if (error < 0) 1210 return error; 1211 *ops->id = error; 1212 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1213 } 1214 error = __register_pernet_operations(list, ops); 1215 if (error) { 1216 rcu_barrier(); 1217 if (ops->id) 1218 ida_free(&net_generic_ids, *ops->id); 1219 } 1220 1221 return error; 1222 } 1223 1224 static void unregister_pernet_operations(struct pernet_operations *ops) 1225 { 1226 __unregister_pernet_operations(ops); 1227 rcu_barrier(); 1228 if (ops->id) 1229 ida_free(&net_generic_ids, *ops->id); 1230 } 1231 1232 /** 1233 * register_pernet_subsys - register a network namespace subsystem 1234 * @ops: pernet operations structure for the subsystem 1235 * 1236 * Register a subsystem which has init and exit functions 1237 * that are called when network namespaces are created and 1238 * destroyed respectively. 1239 * 1240 * When registered all network namespace init functions are 1241 * called for every existing network namespace. Allowing kernel 1242 * modules to have a race free view of the set of network namespaces. 1243 * 1244 * When a new network namespace is created all of the init 1245 * methods are called in the order in which they were registered. 1246 * 1247 * When a network namespace is destroyed all of the exit methods 1248 * are called in the reverse of the order with which they were 1249 * registered. 1250 */ 1251 int register_pernet_subsys(struct pernet_operations *ops) 1252 { 1253 int error; 1254 down_write(&pernet_ops_rwsem); 1255 error = register_pernet_operations(first_device, ops); 1256 up_write(&pernet_ops_rwsem); 1257 return error; 1258 } 1259 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1260 1261 /** 1262 * unregister_pernet_subsys - unregister a network namespace subsystem 1263 * @ops: pernet operations structure to manipulate 1264 * 1265 * Remove the pernet operations structure from the list to be 1266 * used when network namespaces are created or destroyed. In 1267 * addition run the exit method for all existing network 1268 * namespaces. 1269 */ 1270 void unregister_pernet_subsys(struct pernet_operations *ops) 1271 { 1272 down_write(&pernet_ops_rwsem); 1273 unregister_pernet_operations(ops); 1274 up_write(&pernet_ops_rwsem); 1275 } 1276 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1277 1278 /** 1279 * register_pernet_device - register a network namespace device 1280 * @ops: pernet operations structure for the subsystem 1281 * 1282 * Register a device which has init and exit functions 1283 * that are called when network namespaces are created and 1284 * destroyed respectively. 1285 * 1286 * When registered all network namespace init functions are 1287 * called for every existing network namespace. Allowing kernel 1288 * modules to have a race free view of the set of network namespaces. 1289 * 1290 * When a new network namespace is created all of the init 1291 * methods are called in the order in which they were registered. 1292 * 1293 * When a network namespace is destroyed all of the exit methods 1294 * are called in the reverse of the order with which they were 1295 * registered. 1296 */ 1297 int register_pernet_device(struct pernet_operations *ops) 1298 { 1299 int error; 1300 down_write(&pernet_ops_rwsem); 1301 error = register_pernet_operations(&pernet_list, ops); 1302 if (!error && (first_device == &pernet_list)) 1303 first_device = &ops->list; 1304 up_write(&pernet_ops_rwsem); 1305 return error; 1306 } 1307 EXPORT_SYMBOL_GPL(register_pernet_device); 1308 1309 /** 1310 * unregister_pernet_device - unregister a network namespace netdevice 1311 * @ops: pernet operations structure to manipulate 1312 * 1313 * Remove the pernet operations structure from the list to be 1314 * used when network namespaces are created or destroyed. In 1315 * addition run the exit method for all existing network 1316 * namespaces. 1317 */ 1318 void unregister_pernet_device(struct pernet_operations *ops) 1319 { 1320 down_write(&pernet_ops_rwsem); 1321 if (&ops->list == first_device) 1322 first_device = first_device->next; 1323 unregister_pernet_operations(ops); 1324 up_write(&pernet_ops_rwsem); 1325 } 1326 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1327 1328 #ifdef CONFIG_NET_NS 1329 static struct ns_common *netns_get(struct task_struct *task) 1330 { 1331 struct net *net = NULL; 1332 struct nsproxy *nsproxy; 1333 1334 task_lock(task); 1335 nsproxy = task->nsproxy; 1336 if (nsproxy) 1337 net = get_net(nsproxy->net_ns); 1338 task_unlock(task); 1339 1340 return net ? &net->ns : NULL; 1341 } 1342 1343 static inline struct net *to_net_ns(struct ns_common *ns) 1344 { 1345 return container_of(ns, struct net, ns); 1346 } 1347 1348 static void netns_put(struct ns_common *ns) 1349 { 1350 put_net(to_net_ns(ns)); 1351 } 1352 1353 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1354 { 1355 struct nsproxy *nsproxy = nsset->nsproxy; 1356 struct net *net = to_net_ns(ns); 1357 1358 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1359 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1360 return -EPERM; 1361 1362 put_net(nsproxy->net_ns); 1363 nsproxy->net_ns = get_net(net); 1364 return 0; 1365 } 1366 1367 static struct user_namespace *netns_owner(struct ns_common *ns) 1368 { 1369 return to_net_ns(ns)->user_ns; 1370 } 1371 1372 const struct proc_ns_operations netns_operations = { 1373 .name = "net", 1374 .type = CLONE_NEWNET, 1375 .get = netns_get, 1376 .put = netns_put, 1377 .install = netns_install, 1378 .owner = netns_owner, 1379 }; 1380 #endif 1381