1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 24 #include <net/sock.h> 25 #include <net/netlink.h> 26 #include <net/net_namespace.h> 27 #include <net/netns/generic.h> 28 29 /* 30 * Our network namespace constructor/destructor lists 31 */ 32 33 static LIST_HEAD(pernet_list); 34 static struct list_head *first_device = &pernet_list; 35 36 LIST_HEAD(net_namespace_list); 37 EXPORT_SYMBOL_GPL(net_namespace_list); 38 39 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 40 DECLARE_RWSEM(net_rwsem); 41 EXPORT_SYMBOL_GPL(net_rwsem); 42 43 #ifdef CONFIG_KEYS 44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 45 #endif 46 47 struct net init_net = { 48 .ns.count = REFCOUNT_INIT(1), 49 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 50 #ifdef CONFIG_KEYS 51 .key_domain = &init_net_key_domain, 52 #endif 53 }; 54 EXPORT_SYMBOL(init_net); 55 56 static bool init_net_initialized; 57 /* 58 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 59 * init_net_initialized and first_device pointer. 60 * This is internal net namespace object. Please, don't use it 61 * outside. 62 */ 63 DECLARE_RWSEM(pernet_ops_rwsem); 64 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 65 66 #define MIN_PERNET_OPS_ID \ 67 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 68 69 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 70 71 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 72 73 DEFINE_COOKIE(net_cookie); 74 75 static struct net_generic *net_alloc_generic(void) 76 { 77 struct net_generic *ng; 78 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 79 80 ng = kzalloc(generic_size, GFP_KERNEL); 81 if (ng) 82 ng->s.len = max_gen_ptrs; 83 84 return ng; 85 } 86 87 static int net_assign_generic(struct net *net, unsigned int id, void *data) 88 { 89 struct net_generic *ng, *old_ng; 90 91 BUG_ON(id < MIN_PERNET_OPS_ID); 92 93 old_ng = rcu_dereference_protected(net->gen, 94 lockdep_is_held(&pernet_ops_rwsem)); 95 if (old_ng->s.len > id) { 96 old_ng->ptr[id] = data; 97 return 0; 98 } 99 100 ng = net_alloc_generic(); 101 if (!ng) 102 return -ENOMEM; 103 104 /* 105 * Some synchronisation notes: 106 * 107 * The net_generic explores the net->gen array inside rcu 108 * read section. Besides once set the net->gen->ptr[x] 109 * pointer never changes (see rules in netns/generic.h). 110 * 111 * That said, we simply duplicate this array and schedule 112 * the old copy for kfree after a grace period. 113 */ 114 115 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 116 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 117 ng->ptr[id] = data; 118 119 rcu_assign_pointer(net->gen, ng); 120 kfree_rcu(old_ng, s.rcu); 121 return 0; 122 } 123 124 static int ops_init(const struct pernet_operations *ops, struct net *net) 125 { 126 int err = -ENOMEM; 127 void *data = NULL; 128 129 if (ops->id && ops->size) { 130 data = kzalloc(ops->size, GFP_KERNEL); 131 if (!data) 132 goto out; 133 134 err = net_assign_generic(net, *ops->id, data); 135 if (err) 136 goto cleanup; 137 } 138 err = 0; 139 if (ops->init) 140 err = ops->init(net); 141 if (!err) 142 return 0; 143 144 cleanup: 145 kfree(data); 146 147 out: 148 return err; 149 } 150 151 static void ops_pre_exit_list(const struct pernet_operations *ops, 152 struct list_head *net_exit_list) 153 { 154 struct net *net; 155 156 if (ops->pre_exit) { 157 list_for_each_entry(net, net_exit_list, exit_list) 158 ops->pre_exit(net); 159 } 160 } 161 162 static void ops_exit_list(const struct pernet_operations *ops, 163 struct list_head *net_exit_list) 164 { 165 struct net *net; 166 if (ops->exit) { 167 list_for_each_entry(net, net_exit_list, exit_list) 168 ops->exit(net); 169 } 170 if (ops->exit_batch) 171 ops->exit_batch(net_exit_list); 172 } 173 174 static void ops_free_list(const struct pernet_operations *ops, 175 struct list_head *net_exit_list) 176 { 177 struct net *net; 178 if (ops->size && ops->id) { 179 list_for_each_entry(net, net_exit_list, exit_list) 180 kfree(net_generic(net, *ops->id)); 181 } 182 } 183 184 /* should be called with nsid_lock held */ 185 static int alloc_netid(struct net *net, struct net *peer, int reqid) 186 { 187 int min = 0, max = 0; 188 189 if (reqid >= 0) { 190 min = reqid; 191 max = reqid + 1; 192 } 193 194 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 195 } 196 197 /* This function is used by idr_for_each(). If net is equal to peer, the 198 * function returns the id so that idr_for_each() stops. Because we cannot 199 * returns the id 0 (idr_for_each() will not stop), we return the magic value 200 * NET_ID_ZERO (-1) for it. 201 */ 202 #define NET_ID_ZERO -1 203 static int net_eq_idr(int id, void *net, void *peer) 204 { 205 if (net_eq(net, peer)) 206 return id ? : NET_ID_ZERO; 207 return 0; 208 } 209 210 /* Must be called from RCU-critical section or with nsid_lock held */ 211 static int __peernet2id(const struct net *net, struct net *peer) 212 { 213 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 214 215 /* Magic value for id 0. */ 216 if (id == NET_ID_ZERO) 217 return 0; 218 if (id > 0) 219 return id; 220 221 return NETNSA_NSID_NOT_ASSIGNED; 222 } 223 224 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 225 struct nlmsghdr *nlh, gfp_t gfp); 226 /* This function returns the id of a peer netns. If no id is assigned, one will 227 * be allocated and returned. 228 */ 229 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 230 { 231 int id; 232 233 if (refcount_read(&net->ns.count) == 0) 234 return NETNSA_NSID_NOT_ASSIGNED; 235 236 spin_lock_bh(&net->nsid_lock); 237 id = __peernet2id(net, peer); 238 if (id >= 0) { 239 spin_unlock_bh(&net->nsid_lock); 240 return id; 241 } 242 243 /* When peer is obtained from RCU lists, we may race with 244 * its cleanup. Check whether it's alive, and this guarantees 245 * we never hash a peer back to net->netns_ids, after it has 246 * just been idr_remove()'d from there in cleanup_net(). 247 */ 248 if (!maybe_get_net(peer)) { 249 spin_unlock_bh(&net->nsid_lock); 250 return NETNSA_NSID_NOT_ASSIGNED; 251 } 252 253 id = alloc_netid(net, peer, -1); 254 spin_unlock_bh(&net->nsid_lock); 255 256 put_net(peer); 257 if (id < 0) 258 return NETNSA_NSID_NOT_ASSIGNED; 259 260 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 261 262 return id; 263 } 264 EXPORT_SYMBOL_GPL(peernet2id_alloc); 265 266 /* This function returns, if assigned, the id of a peer netns. */ 267 int peernet2id(const struct net *net, struct net *peer) 268 { 269 int id; 270 271 rcu_read_lock(); 272 id = __peernet2id(net, peer); 273 rcu_read_unlock(); 274 275 return id; 276 } 277 EXPORT_SYMBOL(peernet2id); 278 279 /* This function returns true is the peer netns has an id assigned into the 280 * current netns. 281 */ 282 bool peernet_has_id(const struct net *net, struct net *peer) 283 { 284 return peernet2id(net, peer) >= 0; 285 } 286 287 struct net *get_net_ns_by_id(const struct net *net, int id) 288 { 289 struct net *peer; 290 291 if (id < 0) 292 return NULL; 293 294 rcu_read_lock(); 295 peer = idr_find(&net->netns_ids, id); 296 if (peer) 297 peer = maybe_get_net(peer); 298 rcu_read_unlock(); 299 300 return peer; 301 } 302 303 /* 304 * setup_net runs the initializers for the network namespace object. 305 */ 306 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 307 { 308 /* Must be called with pernet_ops_rwsem held */ 309 const struct pernet_operations *ops, *saved_ops; 310 int error = 0; 311 LIST_HEAD(net_exit_list); 312 313 refcount_set(&net->ns.count, 1); 314 ref_tracker_dir_init(&net->refcnt_tracker, 128); 315 316 refcount_set(&net->passive, 1); 317 get_random_bytes(&net->hash_mix, sizeof(u32)); 318 preempt_disable(); 319 net->net_cookie = gen_cookie_next(&net_cookie); 320 preempt_enable(); 321 net->dev_base_seq = 1; 322 net->user_ns = user_ns; 323 idr_init(&net->netns_ids); 324 spin_lock_init(&net->nsid_lock); 325 mutex_init(&net->ipv4.ra_mutex); 326 327 list_for_each_entry(ops, &pernet_list, list) { 328 error = ops_init(ops, net); 329 if (error < 0) 330 goto out_undo; 331 } 332 down_write(&net_rwsem); 333 list_add_tail_rcu(&net->list, &net_namespace_list); 334 up_write(&net_rwsem); 335 out: 336 return error; 337 338 out_undo: 339 /* Walk through the list backwards calling the exit functions 340 * for the pernet modules whose init functions did not fail. 341 */ 342 list_add(&net->exit_list, &net_exit_list); 343 saved_ops = ops; 344 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 345 ops_pre_exit_list(ops, &net_exit_list); 346 347 synchronize_rcu(); 348 349 ops = saved_ops; 350 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 351 ops_exit_list(ops, &net_exit_list); 352 353 ops = saved_ops; 354 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 355 ops_free_list(ops, &net_exit_list); 356 357 rcu_barrier(); 358 goto out; 359 } 360 361 static int __net_init net_defaults_init_net(struct net *net) 362 { 363 net->core.sysctl_somaxconn = SOMAXCONN; 364 return 0; 365 } 366 367 static struct pernet_operations net_defaults_ops = { 368 .init = net_defaults_init_net, 369 }; 370 371 static __init int net_defaults_init(void) 372 { 373 if (register_pernet_subsys(&net_defaults_ops)) 374 panic("Cannot initialize net default settings"); 375 376 return 0; 377 } 378 379 core_initcall(net_defaults_init); 380 381 #ifdef CONFIG_NET_NS 382 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 383 { 384 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 385 } 386 387 static void dec_net_namespaces(struct ucounts *ucounts) 388 { 389 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 390 } 391 392 static struct kmem_cache *net_cachep __ro_after_init; 393 static struct workqueue_struct *netns_wq; 394 395 static struct net *net_alloc(void) 396 { 397 struct net *net = NULL; 398 struct net_generic *ng; 399 400 ng = net_alloc_generic(); 401 if (!ng) 402 goto out; 403 404 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 405 if (!net) 406 goto out_free; 407 408 #ifdef CONFIG_KEYS 409 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 410 if (!net->key_domain) 411 goto out_free_2; 412 refcount_set(&net->key_domain->usage, 1); 413 #endif 414 415 rcu_assign_pointer(net->gen, ng); 416 out: 417 return net; 418 419 #ifdef CONFIG_KEYS 420 out_free_2: 421 kmem_cache_free(net_cachep, net); 422 net = NULL; 423 #endif 424 out_free: 425 kfree(ng); 426 goto out; 427 } 428 429 static void net_free(struct net *net) 430 { 431 if (refcount_dec_and_test(&net->passive)) { 432 kfree(rcu_access_pointer(net->gen)); 433 kmem_cache_free(net_cachep, net); 434 } 435 } 436 437 void net_drop_ns(void *p) 438 { 439 struct net *net = (struct net *)p; 440 441 if (net) 442 net_free(net); 443 } 444 445 struct net *copy_net_ns(unsigned long flags, 446 struct user_namespace *user_ns, struct net *old_net) 447 { 448 struct ucounts *ucounts; 449 struct net *net; 450 int rv; 451 452 if (!(flags & CLONE_NEWNET)) 453 return get_net(old_net); 454 455 ucounts = inc_net_namespaces(user_ns); 456 if (!ucounts) 457 return ERR_PTR(-ENOSPC); 458 459 net = net_alloc(); 460 if (!net) { 461 rv = -ENOMEM; 462 goto dec_ucounts; 463 } 464 refcount_set(&net->passive, 1); 465 net->ucounts = ucounts; 466 get_user_ns(user_ns); 467 468 rv = down_read_killable(&pernet_ops_rwsem); 469 if (rv < 0) 470 goto put_userns; 471 472 rv = setup_net(net, user_ns); 473 474 up_read(&pernet_ops_rwsem); 475 476 if (rv < 0) { 477 put_userns: 478 #ifdef CONFIG_KEYS 479 key_remove_domain(net->key_domain); 480 #endif 481 put_user_ns(user_ns); 482 net_free(net); 483 dec_ucounts: 484 dec_net_namespaces(ucounts); 485 return ERR_PTR(rv); 486 } 487 return net; 488 } 489 490 /** 491 * net_ns_get_ownership - get sysfs ownership data for @net 492 * @net: network namespace in question (can be NULL) 493 * @uid: kernel user ID for sysfs objects 494 * @gid: kernel group ID for sysfs objects 495 * 496 * Returns the uid/gid pair of root in the user namespace associated with the 497 * given network namespace. 498 */ 499 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 500 { 501 if (net) { 502 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 503 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 504 505 if (uid_valid(ns_root_uid)) 506 *uid = ns_root_uid; 507 508 if (gid_valid(ns_root_gid)) 509 *gid = ns_root_gid; 510 } else { 511 *uid = GLOBAL_ROOT_UID; 512 *gid = GLOBAL_ROOT_GID; 513 } 514 } 515 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 516 517 static void unhash_nsid(struct net *net, struct net *last) 518 { 519 struct net *tmp; 520 /* This function is only called from cleanup_net() work, 521 * and this work is the only process, that may delete 522 * a net from net_namespace_list. So, when the below 523 * is executing, the list may only grow. Thus, we do not 524 * use for_each_net_rcu() or net_rwsem. 525 */ 526 for_each_net(tmp) { 527 int id; 528 529 spin_lock_bh(&tmp->nsid_lock); 530 id = __peernet2id(tmp, net); 531 if (id >= 0) 532 idr_remove(&tmp->netns_ids, id); 533 spin_unlock_bh(&tmp->nsid_lock); 534 if (id >= 0) 535 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 536 GFP_KERNEL); 537 if (tmp == last) 538 break; 539 } 540 spin_lock_bh(&net->nsid_lock); 541 idr_destroy(&net->netns_ids); 542 spin_unlock_bh(&net->nsid_lock); 543 } 544 545 static LLIST_HEAD(cleanup_list); 546 547 static void cleanup_net(struct work_struct *work) 548 { 549 const struct pernet_operations *ops; 550 struct net *net, *tmp, *last; 551 struct llist_node *net_kill_list; 552 LIST_HEAD(net_exit_list); 553 554 /* Atomically snapshot the list of namespaces to cleanup */ 555 net_kill_list = llist_del_all(&cleanup_list); 556 557 down_read(&pernet_ops_rwsem); 558 559 /* Don't let anyone else find us. */ 560 down_write(&net_rwsem); 561 llist_for_each_entry(net, net_kill_list, cleanup_list) 562 list_del_rcu(&net->list); 563 /* Cache last net. After we unlock rtnl, no one new net 564 * added to net_namespace_list can assign nsid pointer 565 * to a net from net_kill_list (see peernet2id_alloc()). 566 * So, we skip them in unhash_nsid(). 567 * 568 * Note, that unhash_nsid() does not delete nsid links 569 * between net_kill_list's nets, as they've already 570 * deleted from net_namespace_list. But, this would be 571 * useless anyway, as netns_ids are destroyed there. 572 */ 573 last = list_last_entry(&net_namespace_list, struct net, list); 574 up_write(&net_rwsem); 575 576 llist_for_each_entry(net, net_kill_list, cleanup_list) { 577 unhash_nsid(net, last); 578 list_add_tail(&net->exit_list, &net_exit_list); 579 } 580 581 /* Run all of the network namespace pre_exit methods */ 582 list_for_each_entry_reverse(ops, &pernet_list, list) 583 ops_pre_exit_list(ops, &net_exit_list); 584 585 /* 586 * Another CPU might be rcu-iterating the list, wait for it. 587 * This needs to be before calling the exit() notifiers, so 588 * the rcu_barrier() below isn't sufficient alone. 589 * Also the pre_exit() and exit() methods need this barrier. 590 */ 591 synchronize_rcu(); 592 593 /* Run all of the network namespace exit methods */ 594 list_for_each_entry_reverse(ops, &pernet_list, list) 595 ops_exit_list(ops, &net_exit_list); 596 597 /* Free the net generic variables */ 598 list_for_each_entry_reverse(ops, &pernet_list, list) 599 ops_free_list(ops, &net_exit_list); 600 601 up_read(&pernet_ops_rwsem); 602 603 /* Ensure there are no outstanding rcu callbacks using this 604 * network namespace. 605 */ 606 rcu_barrier(); 607 608 /* Finally it is safe to free my network namespace structure */ 609 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 610 list_del_init(&net->exit_list); 611 dec_net_namespaces(net->ucounts); 612 #ifdef CONFIG_KEYS 613 key_remove_domain(net->key_domain); 614 #endif 615 put_user_ns(net->user_ns); 616 net_free(net); 617 } 618 } 619 620 /** 621 * net_ns_barrier - wait until concurrent net_cleanup_work is done 622 * 623 * cleanup_net runs from work queue and will first remove namespaces 624 * from the global list, then run net exit functions. 625 * 626 * Call this in module exit path to make sure that all netns 627 * ->exit ops have been invoked before the function is removed. 628 */ 629 void net_ns_barrier(void) 630 { 631 down_write(&pernet_ops_rwsem); 632 up_write(&pernet_ops_rwsem); 633 } 634 EXPORT_SYMBOL(net_ns_barrier); 635 636 static DECLARE_WORK(net_cleanup_work, cleanup_net); 637 638 void __put_net(struct net *net) 639 { 640 ref_tracker_dir_exit(&net->refcnt_tracker); 641 /* Cleanup the network namespace in process context */ 642 if (llist_add(&net->cleanup_list, &cleanup_list)) 643 queue_work(netns_wq, &net_cleanup_work); 644 } 645 EXPORT_SYMBOL_GPL(__put_net); 646 647 /** 648 * get_net_ns - increment the refcount of the network namespace 649 * @ns: common namespace (net) 650 * 651 * Returns the net's common namespace. 652 */ 653 struct ns_common *get_net_ns(struct ns_common *ns) 654 { 655 return &get_net(container_of(ns, struct net, ns))->ns; 656 } 657 EXPORT_SYMBOL_GPL(get_net_ns); 658 659 struct net *get_net_ns_by_fd(int fd) 660 { 661 struct file *file; 662 struct ns_common *ns; 663 struct net *net; 664 665 file = proc_ns_fget(fd); 666 if (IS_ERR(file)) 667 return ERR_CAST(file); 668 669 ns = get_proc_ns(file_inode(file)); 670 if (ns->ops == &netns_operations) 671 net = get_net(container_of(ns, struct net, ns)); 672 else 673 net = ERR_PTR(-EINVAL); 674 675 fput(file); 676 return net; 677 } 678 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 679 #endif 680 681 struct net *get_net_ns_by_pid(pid_t pid) 682 { 683 struct task_struct *tsk; 684 struct net *net; 685 686 /* Lookup the network namespace */ 687 net = ERR_PTR(-ESRCH); 688 rcu_read_lock(); 689 tsk = find_task_by_vpid(pid); 690 if (tsk) { 691 struct nsproxy *nsproxy; 692 task_lock(tsk); 693 nsproxy = tsk->nsproxy; 694 if (nsproxy) 695 net = get_net(nsproxy->net_ns); 696 task_unlock(tsk); 697 } 698 rcu_read_unlock(); 699 return net; 700 } 701 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 702 703 static __net_init int net_ns_net_init(struct net *net) 704 { 705 #ifdef CONFIG_NET_NS 706 net->ns.ops = &netns_operations; 707 #endif 708 return ns_alloc_inum(&net->ns); 709 } 710 711 static __net_exit void net_ns_net_exit(struct net *net) 712 { 713 ns_free_inum(&net->ns); 714 } 715 716 static struct pernet_operations __net_initdata net_ns_ops = { 717 .init = net_ns_net_init, 718 .exit = net_ns_net_exit, 719 }; 720 721 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 722 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 723 [NETNSA_NSID] = { .type = NLA_S32 }, 724 [NETNSA_PID] = { .type = NLA_U32 }, 725 [NETNSA_FD] = { .type = NLA_U32 }, 726 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 727 }; 728 729 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 730 struct netlink_ext_ack *extack) 731 { 732 struct net *net = sock_net(skb->sk); 733 struct nlattr *tb[NETNSA_MAX + 1]; 734 struct nlattr *nla; 735 struct net *peer; 736 int nsid, err; 737 738 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 739 NETNSA_MAX, rtnl_net_policy, extack); 740 if (err < 0) 741 return err; 742 if (!tb[NETNSA_NSID]) { 743 NL_SET_ERR_MSG(extack, "nsid is missing"); 744 return -EINVAL; 745 } 746 nsid = nla_get_s32(tb[NETNSA_NSID]); 747 748 if (tb[NETNSA_PID]) { 749 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 750 nla = tb[NETNSA_PID]; 751 } else if (tb[NETNSA_FD]) { 752 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 753 nla = tb[NETNSA_FD]; 754 } else { 755 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 756 return -EINVAL; 757 } 758 if (IS_ERR(peer)) { 759 NL_SET_BAD_ATTR(extack, nla); 760 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 761 return PTR_ERR(peer); 762 } 763 764 spin_lock_bh(&net->nsid_lock); 765 if (__peernet2id(net, peer) >= 0) { 766 spin_unlock_bh(&net->nsid_lock); 767 err = -EEXIST; 768 NL_SET_BAD_ATTR(extack, nla); 769 NL_SET_ERR_MSG(extack, 770 "Peer netns already has a nsid assigned"); 771 goto out; 772 } 773 774 err = alloc_netid(net, peer, nsid); 775 spin_unlock_bh(&net->nsid_lock); 776 if (err >= 0) { 777 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 778 nlh, GFP_KERNEL); 779 err = 0; 780 } else if (err == -ENOSPC && nsid >= 0) { 781 err = -EEXIST; 782 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 783 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 784 } 785 out: 786 put_net(peer); 787 return err; 788 } 789 790 static int rtnl_net_get_size(void) 791 { 792 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 793 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 794 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 795 ; 796 } 797 798 struct net_fill_args { 799 u32 portid; 800 u32 seq; 801 int flags; 802 int cmd; 803 int nsid; 804 bool add_ref; 805 int ref_nsid; 806 }; 807 808 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 809 { 810 struct nlmsghdr *nlh; 811 struct rtgenmsg *rth; 812 813 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 814 args->flags); 815 if (!nlh) 816 return -EMSGSIZE; 817 818 rth = nlmsg_data(nlh); 819 rth->rtgen_family = AF_UNSPEC; 820 821 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 822 goto nla_put_failure; 823 824 if (args->add_ref && 825 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 826 goto nla_put_failure; 827 828 nlmsg_end(skb, nlh); 829 return 0; 830 831 nla_put_failure: 832 nlmsg_cancel(skb, nlh); 833 return -EMSGSIZE; 834 } 835 836 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 837 const struct nlmsghdr *nlh, 838 struct nlattr **tb, 839 struct netlink_ext_ack *extack) 840 { 841 int i, err; 842 843 if (!netlink_strict_get_check(skb)) 844 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 845 tb, NETNSA_MAX, rtnl_net_policy, 846 extack); 847 848 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 849 NETNSA_MAX, rtnl_net_policy, 850 extack); 851 if (err) 852 return err; 853 854 for (i = 0; i <= NETNSA_MAX; i++) { 855 if (!tb[i]) 856 continue; 857 858 switch (i) { 859 case NETNSA_PID: 860 case NETNSA_FD: 861 case NETNSA_NSID: 862 case NETNSA_TARGET_NSID: 863 break; 864 default: 865 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 866 return -EINVAL; 867 } 868 } 869 870 return 0; 871 } 872 873 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 874 struct netlink_ext_ack *extack) 875 { 876 struct net *net = sock_net(skb->sk); 877 struct nlattr *tb[NETNSA_MAX + 1]; 878 struct net_fill_args fillargs = { 879 .portid = NETLINK_CB(skb).portid, 880 .seq = nlh->nlmsg_seq, 881 .cmd = RTM_NEWNSID, 882 }; 883 struct net *peer, *target = net; 884 struct nlattr *nla; 885 struct sk_buff *msg; 886 int err; 887 888 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 889 if (err < 0) 890 return err; 891 if (tb[NETNSA_PID]) { 892 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 893 nla = tb[NETNSA_PID]; 894 } else if (tb[NETNSA_FD]) { 895 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 896 nla = tb[NETNSA_FD]; 897 } else if (tb[NETNSA_NSID]) { 898 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 899 if (!peer) 900 peer = ERR_PTR(-ENOENT); 901 nla = tb[NETNSA_NSID]; 902 } else { 903 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 904 return -EINVAL; 905 } 906 907 if (IS_ERR(peer)) { 908 NL_SET_BAD_ATTR(extack, nla); 909 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 910 return PTR_ERR(peer); 911 } 912 913 if (tb[NETNSA_TARGET_NSID]) { 914 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 915 916 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 917 if (IS_ERR(target)) { 918 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 919 NL_SET_ERR_MSG(extack, 920 "Target netns reference is invalid"); 921 err = PTR_ERR(target); 922 goto out; 923 } 924 fillargs.add_ref = true; 925 fillargs.ref_nsid = peernet2id(net, peer); 926 } 927 928 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 929 if (!msg) { 930 err = -ENOMEM; 931 goto out; 932 } 933 934 fillargs.nsid = peernet2id(target, peer); 935 err = rtnl_net_fill(msg, &fillargs); 936 if (err < 0) 937 goto err_out; 938 939 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 940 goto out; 941 942 err_out: 943 nlmsg_free(msg); 944 out: 945 if (fillargs.add_ref) 946 put_net(target); 947 put_net(peer); 948 return err; 949 } 950 951 struct rtnl_net_dump_cb { 952 struct net *tgt_net; 953 struct net *ref_net; 954 struct sk_buff *skb; 955 struct net_fill_args fillargs; 956 int idx; 957 int s_idx; 958 }; 959 960 /* Runs in RCU-critical section. */ 961 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 962 { 963 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 964 int ret; 965 966 if (net_cb->idx < net_cb->s_idx) 967 goto cont; 968 969 net_cb->fillargs.nsid = id; 970 if (net_cb->fillargs.add_ref) 971 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 972 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 973 if (ret < 0) 974 return ret; 975 976 cont: 977 net_cb->idx++; 978 return 0; 979 } 980 981 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 982 struct rtnl_net_dump_cb *net_cb, 983 struct netlink_callback *cb) 984 { 985 struct netlink_ext_ack *extack = cb->extack; 986 struct nlattr *tb[NETNSA_MAX + 1]; 987 int err, i; 988 989 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 990 NETNSA_MAX, rtnl_net_policy, 991 extack); 992 if (err < 0) 993 return err; 994 995 for (i = 0; i <= NETNSA_MAX; i++) { 996 if (!tb[i]) 997 continue; 998 999 if (i == NETNSA_TARGET_NSID) { 1000 struct net *net; 1001 1002 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1003 if (IS_ERR(net)) { 1004 NL_SET_BAD_ATTR(extack, tb[i]); 1005 NL_SET_ERR_MSG(extack, 1006 "Invalid target network namespace id"); 1007 return PTR_ERR(net); 1008 } 1009 net_cb->fillargs.add_ref = true; 1010 net_cb->ref_net = net_cb->tgt_net; 1011 net_cb->tgt_net = net; 1012 } else { 1013 NL_SET_BAD_ATTR(extack, tb[i]); 1014 NL_SET_ERR_MSG(extack, 1015 "Unsupported attribute in dump request"); 1016 return -EINVAL; 1017 } 1018 } 1019 1020 return 0; 1021 } 1022 1023 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1024 { 1025 struct rtnl_net_dump_cb net_cb = { 1026 .tgt_net = sock_net(skb->sk), 1027 .skb = skb, 1028 .fillargs = { 1029 .portid = NETLINK_CB(cb->skb).portid, 1030 .seq = cb->nlh->nlmsg_seq, 1031 .flags = NLM_F_MULTI, 1032 .cmd = RTM_NEWNSID, 1033 }, 1034 .idx = 0, 1035 .s_idx = cb->args[0], 1036 }; 1037 int err = 0; 1038 1039 if (cb->strict_check) { 1040 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1041 if (err < 0) 1042 goto end; 1043 } 1044 1045 rcu_read_lock(); 1046 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1047 rcu_read_unlock(); 1048 1049 cb->args[0] = net_cb.idx; 1050 end: 1051 if (net_cb.fillargs.add_ref) 1052 put_net(net_cb.tgt_net); 1053 return err < 0 ? err : skb->len; 1054 } 1055 1056 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1057 struct nlmsghdr *nlh, gfp_t gfp) 1058 { 1059 struct net_fill_args fillargs = { 1060 .portid = portid, 1061 .seq = nlh ? nlh->nlmsg_seq : 0, 1062 .cmd = cmd, 1063 .nsid = id, 1064 }; 1065 struct sk_buff *msg; 1066 int err = -ENOMEM; 1067 1068 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1069 if (!msg) 1070 goto out; 1071 1072 err = rtnl_net_fill(msg, &fillargs); 1073 if (err < 0) 1074 goto err_out; 1075 1076 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1077 return; 1078 1079 err_out: 1080 nlmsg_free(msg); 1081 out: 1082 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1083 } 1084 1085 static int __init net_ns_init(void) 1086 { 1087 struct net_generic *ng; 1088 1089 #ifdef CONFIG_NET_NS 1090 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1091 SMP_CACHE_BYTES, 1092 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1093 1094 /* Create workqueue for cleanup */ 1095 netns_wq = create_singlethread_workqueue("netns"); 1096 if (!netns_wq) 1097 panic("Could not create netns workq"); 1098 #endif 1099 1100 ng = net_alloc_generic(); 1101 if (!ng) 1102 panic("Could not allocate generic netns"); 1103 1104 rcu_assign_pointer(init_net.gen, ng); 1105 1106 down_write(&pernet_ops_rwsem); 1107 if (setup_net(&init_net, &init_user_ns)) 1108 panic("Could not setup the initial network namespace"); 1109 1110 init_net_initialized = true; 1111 up_write(&pernet_ops_rwsem); 1112 1113 if (register_pernet_subsys(&net_ns_ops)) 1114 panic("Could not register network namespace subsystems"); 1115 1116 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1117 RTNL_FLAG_DOIT_UNLOCKED); 1118 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1119 RTNL_FLAG_DOIT_UNLOCKED); 1120 1121 return 0; 1122 } 1123 1124 pure_initcall(net_ns_init); 1125 1126 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1127 { 1128 ops_pre_exit_list(ops, net_exit_list); 1129 synchronize_rcu(); 1130 ops_exit_list(ops, net_exit_list); 1131 ops_free_list(ops, net_exit_list); 1132 } 1133 1134 #ifdef CONFIG_NET_NS 1135 static int __register_pernet_operations(struct list_head *list, 1136 struct pernet_operations *ops) 1137 { 1138 struct net *net; 1139 int error; 1140 LIST_HEAD(net_exit_list); 1141 1142 list_add_tail(&ops->list, list); 1143 if (ops->init || (ops->id && ops->size)) { 1144 /* We held write locked pernet_ops_rwsem, and parallel 1145 * setup_net() and cleanup_net() are not possible. 1146 */ 1147 for_each_net(net) { 1148 error = ops_init(ops, net); 1149 if (error) 1150 goto out_undo; 1151 list_add_tail(&net->exit_list, &net_exit_list); 1152 } 1153 } 1154 return 0; 1155 1156 out_undo: 1157 /* If I have an error cleanup all namespaces I initialized */ 1158 list_del(&ops->list); 1159 free_exit_list(ops, &net_exit_list); 1160 return error; 1161 } 1162 1163 static void __unregister_pernet_operations(struct pernet_operations *ops) 1164 { 1165 struct net *net; 1166 LIST_HEAD(net_exit_list); 1167 1168 list_del(&ops->list); 1169 /* See comment in __register_pernet_operations() */ 1170 for_each_net(net) 1171 list_add_tail(&net->exit_list, &net_exit_list); 1172 1173 free_exit_list(ops, &net_exit_list); 1174 } 1175 1176 #else 1177 1178 static int __register_pernet_operations(struct list_head *list, 1179 struct pernet_operations *ops) 1180 { 1181 if (!init_net_initialized) { 1182 list_add_tail(&ops->list, list); 1183 return 0; 1184 } 1185 1186 return ops_init(ops, &init_net); 1187 } 1188 1189 static void __unregister_pernet_operations(struct pernet_operations *ops) 1190 { 1191 if (!init_net_initialized) { 1192 list_del(&ops->list); 1193 } else { 1194 LIST_HEAD(net_exit_list); 1195 list_add(&init_net.exit_list, &net_exit_list); 1196 free_exit_list(ops, &net_exit_list); 1197 } 1198 } 1199 1200 #endif /* CONFIG_NET_NS */ 1201 1202 static DEFINE_IDA(net_generic_ids); 1203 1204 static int register_pernet_operations(struct list_head *list, 1205 struct pernet_operations *ops) 1206 { 1207 int error; 1208 1209 if (ops->id) { 1210 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1211 GFP_KERNEL); 1212 if (error < 0) 1213 return error; 1214 *ops->id = error; 1215 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1216 } 1217 error = __register_pernet_operations(list, ops); 1218 if (error) { 1219 rcu_barrier(); 1220 if (ops->id) 1221 ida_free(&net_generic_ids, *ops->id); 1222 } 1223 1224 return error; 1225 } 1226 1227 static void unregister_pernet_operations(struct pernet_operations *ops) 1228 { 1229 __unregister_pernet_operations(ops); 1230 rcu_barrier(); 1231 if (ops->id) 1232 ida_free(&net_generic_ids, *ops->id); 1233 } 1234 1235 /** 1236 * register_pernet_subsys - register a network namespace subsystem 1237 * @ops: pernet operations structure for the subsystem 1238 * 1239 * Register a subsystem which has init and exit functions 1240 * that are called when network namespaces are created and 1241 * destroyed respectively. 1242 * 1243 * When registered all network namespace init functions are 1244 * called for every existing network namespace. Allowing kernel 1245 * modules to have a race free view of the set of network namespaces. 1246 * 1247 * When a new network namespace is created all of the init 1248 * methods are called in the order in which they were registered. 1249 * 1250 * When a network namespace is destroyed all of the exit methods 1251 * are called in the reverse of the order with which they were 1252 * registered. 1253 */ 1254 int register_pernet_subsys(struct pernet_operations *ops) 1255 { 1256 int error; 1257 down_write(&pernet_ops_rwsem); 1258 error = register_pernet_operations(first_device, ops); 1259 up_write(&pernet_ops_rwsem); 1260 return error; 1261 } 1262 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1263 1264 /** 1265 * unregister_pernet_subsys - unregister a network namespace subsystem 1266 * @ops: pernet operations structure to manipulate 1267 * 1268 * Remove the pernet operations structure from the list to be 1269 * used when network namespaces are created or destroyed. In 1270 * addition run the exit method for all existing network 1271 * namespaces. 1272 */ 1273 void unregister_pernet_subsys(struct pernet_operations *ops) 1274 { 1275 down_write(&pernet_ops_rwsem); 1276 unregister_pernet_operations(ops); 1277 up_write(&pernet_ops_rwsem); 1278 } 1279 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1280 1281 /** 1282 * register_pernet_device - register a network namespace device 1283 * @ops: pernet operations structure for the subsystem 1284 * 1285 * Register a device which has init and exit functions 1286 * that are called when network namespaces are created and 1287 * destroyed respectively. 1288 * 1289 * When registered all network namespace init functions are 1290 * called for every existing network namespace. Allowing kernel 1291 * modules to have a race free view of the set of network namespaces. 1292 * 1293 * When a new network namespace is created all of the init 1294 * methods are called in the order in which they were registered. 1295 * 1296 * When a network namespace is destroyed all of the exit methods 1297 * are called in the reverse of the order with which they were 1298 * registered. 1299 */ 1300 int register_pernet_device(struct pernet_operations *ops) 1301 { 1302 int error; 1303 down_write(&pernet_ops_rwsem); 1304 error = register_pernet_operations(&pernet_list, ops); 1305 if (!error && (first_device == &pernet_list)) 1306 first_device = &ops->list; 1307 up_write(&pernet_ops_rwsem); 1308 return error; 1309 } 1310 EXPORT_SYMBOL_GPL(register_pernet_device); 1311 1312 /** 1313 * unregister_pernet_device - unregister a network namespace netdevice 1314 * @ops: pernet operations structure to manipulate 1315 * 1316 * Remove the pernet operations structure from the list to be 1317 * used when network namespaces are created or destroyed. In 1318 * addition run the exit method for all existing network 1319 * namespaces. 1320 */ 1321 void unregister_pernet_device(struct pernet_operations *ops) 1322 { 1323 down_write(&pernet_ops_rwsem); 1324 if (&ops->list == first_device) 1325 first_device = first_device->next; 1326 unregister_pernet_operations(ops); 1327 up_write(&pernet_ops_rwsem); 1328 } 1329 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1330 1331 #ifdef CONFIG_NET_NS 1332 static struct ns_common *netns_get(struct task_struct *task) 1333 { 1334 struct net *net = NULL; 1335 struct nsproxy *nsproxy; 1336 1337 task_lock(task); 1338 nsproxy = task->nsproxy; 1339 if (nsproxy) 1340 net = get_net(nsproxy->net_ns); 1341 task_unlock(task); 1342 1343 return net ? &net->ns : NULL; 1344 } 1345 1346 static inline struct net *to_net_ns(struct ns_common *ns) 1347 { 1348 return container_of(ns, struct net, ns); 1349 } 1350 1351 static void netns_put(struct ns_common *ns) 1352 { 1353 put_net(to_net_ns(ns)); 1354 } 1355 1356 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1357 { 1358 struct nsproxy *nsproxy = nsset->nsproxy; 1359 struct net *net = to_net_ns(ns); 1360 1361 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1362 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1363 return -EPERM; 1364 1365 put_net(nsproxy->net_ns); 1366 nsproxy->net_ns = get_net(net); 1367 return 0; 1368 } 1369 1370 static struct user_namespace *netns_owner(struct ns_common *ns) 1371 { 1372 return to_net_ns(ns)->user_ns; 1373 } 1374 1375 const struct proc_ns_operations netns_operations = { 1376 .name = "net", 1377 .type = CLONE_NEWNET, 1378 .get = netns_get, 1379 .put = netns_put, 1380 .install = netns_install, 1381 .owner = netns_owner, 1382 }; 1383 #endif 1384