xref: /openbmc/linux/net/core/net_namespace.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 
24 #include <net/sock.h>
25 #include <net/netlink.h>
26 #include <net/net_namespace.h>
27 #include <net/netns/generic.h>
28 
29 /*
30  *	Our network namespace constructor/destructor lists
31  */
32 
33 static LIST_HEAD(pernet_list);
34 static struct list_head *first_device = &pernet_list;
35 
36 LIST_HEAD(net_namespace_list);
37 EXPORT_SYMBOL_GPL(net_namespace_list);
38 
39 /* Protects net_namespace_list. Nests iside rtnl_lock() */
40 DECLARE_RWSEM(net_rwsem);
41 EXPORT_SYMBOL_GPL(net_rwsem);
42 
43 #ifdef CONFIG_KEYS
44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
45 #endif
46 
47 struct net init_net = {
48 	.count		= REFCOUNT_INIT(1),
49 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
50 #ifdef CONFIG_KEYS
51 	.key_domain	= &init_net_key_domain,
52 #endif
53 };
54 EXPORT_SYMBOL(init_net);
55 
56 static bool init_net_initialized;
57 /*
58  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
59  * init_net_initialized and first_device pointer.
60  * This is internal net namespace object. Please, don't use it
61  * outside.
62  */
63 DECLARE_RWSEM(pernet_ops_rwsem);
64 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
65 
66 #define MIN_PERNET_OPS_ID	\
67 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
68 
69 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
70 
71 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
72 
73 DEFINE_COOKIE(net_cookie);
74 
75 u64 __net_gen_cookie(struct net *net)
76 {
77 	while (1) {
78 		u64 res = atomic64_read(&net->net_cookie);
79 
80 		if (res)
81 			return res;
82 		res = gen_cookie_next(&net_cookie);
83 		atomic64_cmpxchg(&net->net_cookie, 0, res);
84 	}
85 }
86 
87 static struct net_generic *net_alloc_generic(void)
88 {
89 	struct net_generic *ng;
90 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
91 
92 	ng = kzalloc(generic_size, GFP_KERNEL);
93 	if (ng)
94 		ng->s.len = max_gen_ptrs;
95 
96 	return ng;
97 }
98 
99 static int net_assign_generic(struct net *net, unsigned int id, void *data)
100 {
101 	struct net_generic *ng, *old_ng;
102 
103 	BUG_ON(id < MIN_PERNET_OPS_ID);
104 
105 	old_ng = rcu_dereference_protected(net->gen,
106 					   lockdep_is_held(&pernet_ops_rwsem));
107 	if (old_ng->s.len > id) {
108 		old_ng->ptr[id] = data;
109 		return 0;
110 	}
111 
112 	ng = net_alloc_generic();
113 	if (ng == NULL)
114 		return -ENOMEM;
115 
116 	/*
117 	 * Some synchronisation notes:
118 	 *
119 	 * The net_generic explores the net->gen array inside rcu
120 	 * read section. Besides once set the net->gen->ptr[x]
121 	 * pointer never changes (see rules in netns/generic.h).
122 	 *
123 	 * That said, we simply duplicate this array and schedule
124 	 * the old copy for kfree after a grace period.
125 	 */
126 
127 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
128 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
129 	ng->ptr[id] = data;
130 
131 	rcu_assign_pointer(net->gen, ng);
132 	kfree_rcu(old_ng, s.rcu);
133 	return 0;
134 }
135 
136 static int ops_init(const struct pernet_operations *ops, struct net *net)
137 {
138 	int err = -ENOMEM;
139 	void *data = NULL;
140 
141 	if (ops->id && ops->size) {
142 		data = kzalloc(ops->size, GFP_KERNEL);
143 		if (!data)
144 			goto out;
145 
146 		err = net_assign_generic(net, *ops->id, data);
147 		if (err)
148 			goto cleanup;
149 	}
150 	err = 0;
151 	if (ops->init)
152 		err = ops->init(net);
153 	if (!err)
154 		return 0;
155 
156 cleanup:
157 	kfree(data);
158 
159 out:
160 	return err;
161 }
162 
163 static void ops_free(const struct pernet_operations *ops, struct net *net)
164 {
165 	if (ops->id && ops->size) {
166 		kfree(net_generic(net, *ops->id));
167 	}
168 }
169 
170 static void ops_pre_exit_list(const struct pernet_operations *ops,
171 			      struct list_head *net_exit_list)
172 {
173 	struct net *net;
174 
175 	if (ops->pre_exit) {
176 		list_for_each_entry(net, net_exit_list, exit_list)
177 			ops->pre_exit(net);
178 	}
179 }
180 
181 static void ops_exit_list(const struct pernet_operations *ops,
182 			  struct list_head *net_exit_list)
183 {
184 	struct net *net;
185 	if (ops->exit) {
186 		list_for_each_entry(net, net_exit_list, exit_list)
187 			ops->exit(net);
188 	}
189 	if (ops->exit_batch)
190 		ops->exit_batch(net_exit_list);
191 }
192 
193 static void ops_free_list(const struct pernet_operations *ops,
194 			  struct list_head *net_exit_list)
195 {
196 	struct net *net;
197 	if (ops->size && ops->id) {
198 		list_for_each_entry(net, net_exit_list, exit_list)
199 			ops_free(ops, net);
200 	}
201 }
202 
203 /* should be called with nsid_lock held */
204 static int alloc_netid(struct net *net, struct net *peer, int reqid)
205 {
206 	int min = 0, max = 0;
207 
208 	if (reqid >= 0) {
209 		min = reqid;
210 		max = reqid + 1;
211 	}
212 
213 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
214 }
215 
216 /* This function is used by idr_for_each(). If net is equal to peer, the
217  * function returns the id so that idr_for_each() stops. Because we cannot
218  * returns the id 0 (idr_for_each() will not stop), we return the magic value
219  * NET_ID_ZERO (-1) for it.
220  */
221 #define NET_ID_ZERO -1
222 static int net_eq_idr(int id, void *net, void *peer)
223 {
224 	if (net_eq(net, peer))
225 		return id ? : NET_ID_ZERO;
226 	return 0;
227 }
228 
229 /* Must be called from RCU-critical section or with nsid_lock held */
230 static int __peernet2id(const struct net *net, struct net *peer)
231 {
232 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
233 
234 	/* Magic value for id 0. */
235 	if (id == NET_ID_ZERO)
236 		return 0;
237 	if (id > 0)
238 		return id;
239 
240 	return NETNSA_NSID_NOT_ASSIGNED;
241 }
242 
243 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
244 			      struct nlmsghdr *nlh, gfp_t gfp);
245 /* This function returns the id of a peer netns. If no id is assigned, one will
246  * be allocated and returned.
247  */
248 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
249 {
250 	int id;
251 
252 	if (refcount_read(&net->count) == 0)
253 		return NETNSA_NSID_NOT_ASSIGNED;
254 
255 	spin_lock_bh(&net->nsid_lock);
256 	id = __peernet2id(net, peer);
257 	if (id >= 0) {
258 		spin_unlock_bh(&net->nsid_lock);
259 		return id;
260 	}
261 
262 	/* When peer is obtained from RCU lists, we may race with
263 	 * its cleanup. Check whether it's alive, and this guarantees
264 	 * we never hash a peer back to net->netns_ids, after it has
265 	 * just been idr_remove()'d from there in cleanup_net().
266 	 */
267 	if (!maybe_get_net(peer)) {
268 		spin_unlock_bh(&net->nsid_lock);
269 		return NETNSA_NSID_NOT_ASSIGNED;
270 	}
271 
272 	id = alloc_netid(net, peer, -1);
273 	spin_unlock_bh(&net->nsid_lock);
274 
275 	put_net(peer);
276 	if (id < 0)
277 		return NETNSA_NSID_NOT_ASSIGNED;
278 
279 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
280 
281 	return id;
282 }
283 EXPORT_SYMBOL_GPL(peernet2id_alloc);
284 
285 /* This function returns, if assigned, the id of a peer netns. */
286 int peernet2id(const struct net *net, struct net *peer)
287 {
288 	int id;
289 
290 	rcu_read_lock();
291 	id = __peernet2id(net, peer);
292 	rcu_read_unlock();
293 
294 	return id;
295 }
296 EXPORT_SYMBOL(peernet2id);
297 
298 /* This function returns true is the peer netns has an id assigned into the
299  * current netns.
300  */
301 bool peernet_has_id(const struct net *net, struct net *peer)
302 {
303 	return peernet2id(net, peer) >= 0;
304 }
305 
306 struct net *get_net_ns_by_id(const struct net *net, int id)
307 {
308 	struct net *peer;
309 
310 	if (id < 0)
311 		return NULL;
312 
313 	rcu_read_lock();
314 	peer = idr_find(&net->netns_ids, id);
315 	if (peer)
316 		peer = maybe_get_net(peer);
317 	rcu_read_unlock();
318 
319 	return peer;
320 }
321 
322 /*
323  * setup_net runs the initializers for the network namespace object.
324  */
325 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
326 {
327 	/* Must be called with pernet_ops_rwsem held */
328 	const struct pernet_operations *ops, *saved_ops;
329 	int error = 0;
330 	LIST_HEAD(net_exit_list);
331 
332 	refcount_set(&net->count, 1);
333 	refcount_set(&net->passive, 1);
334 	get_random_bytes(&net->hash_mix, sizeof(u32));
335 	net->dev_base_seq = 1;
336 	net->user_ns = user_ns;
337 	idr_init(&net->netns_ids);
338 	spin_lock_init(&net->nsid_lock);
339 	mutex_init(&net->ipv4.ra_mutex);
340 
341 	list_for_each_entry(ops, &pernet_list, list) {
342 		error = ops_init(ops, net);
343 		if (error < 0)
344 			goto out_undo;
345 	}
346 	down_write(&net_rwsem);
347 	list_add_tail_rcu(&net->list, &net_namespace_list);
348 	up_write(&net_rwsem);
349 out:
350 	return error;
351 
352 out_undo:
353 	/* Walk through the list backwards calling the exit functions
354 	 * for the pernet modules whose init functions did not fail.
355 	 */
356 	list_add(&net->exit_list, &net_exit_list);
357 	saved_ops = ops;
358 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
359 		ops_pre_exit_list(ops, &net_exit_list);
360 
361 	synchronize_rcu();
362 
363 	ops = saved_ops;
364 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
365 		ops_exit_list(ops, &net_exit_list);
366 
367 	ops = saved_ops;
368 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
369 		ops_free_list(ops, &net_exit_list);
370 
371 	rcu_barrier();
372 	goto out;
373 }
374 
375 static int __net_init net_defaults_init_net(struct net *net)
376 {
377 	net->core.sysctl_somaxconn = SOMAXCONN;
378 	return 0;
379 }
380 
381 static struct pernet_operations net_defaults_ops = {
382 	.init = net_defaults_init_net,
383 };
384 
385 static __init int net_defaults_init(void)
386 {
387 	if (register_pernet_subsys(&net_defaults_ops))
388 		panic("Cannot initialize net default settings");
389 
390 	return 0;
391 }
392 
393 core_initcall(net_defaults_init);
394 
395 #ifdef CONFIG_NET_NS
396 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
397 {
398 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
399 }
400 
401 static void dec_net_namespaces(struct ucounts *ucounts)
402 {
403 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
404 }
405 
406 static struct kmem_cache *net_cachep __ro_after_init;
407 static struct workqueue_struct *netns_wq;
408 
409 static struct net *net_alloc(void)
410 {
411 	struct net *net = NULL;
412 	struct net_generic *ng;
413 
414 	ng = net_alloc_generic();
415 	if (!ng)
416 		goto out;
417 
418 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
419 	if (!net)
420 		goto out_free;
421 
422 #ifdef CONFIG_KEYS
423 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
424 	if (!net->key_domain)
425 		goto out_free_2;
426 	refcount_set(&net->key_domain->usage, 1);
427 #endif
428 
429 	rcu_assign_pointer(net->gen, ng);
430 out:
431 	return net;
432 
433 #ifdef CONFIG_KEYS
434 out_free_2:
435 	kmem_cache_free(net_cachep, net);
436 	net = NULL;
437 #endif
438 out_free:
439 	kfree(ng);
440 	goto out;
441 }
442 
443 static void net_free(struct net *net)
444 {
445 	kfree(rcu_access_pointer(net->gen));
446 	kmem_cache_free(net_cachep, net);
447 }
448 
449 void net_drop_ns(void *p)
450 {
451 	struct net *ns = p;
452 	if (ns && refcount_dec_and_test(&ns->passive))
453 		net_free(ns);
454 }
455 
456 struct net *copy_net_ns(unsigned long flags,
457 			struct user_namespace *user_ns, struct net *old_net)
458 {
459 	struct ucounts *ucounts;
460 	struct net *net;
461 	int rv;
462 
463 	if (!(flags & CLONE_NEWNET))
464 		return get_net(old_net);
465 
466 	ucounts = inc_net_namespaces(user_ns);
467 	if (!ucounts)
468 		return ERR_PTR(-ENOSPC);
469 
470 	net = net_alloc();
471 	if (!net) {
472 		rv = -ENOMEM;
473 		goto dec_ucounts;
474 	}
475 	refcount_set(&net->passive, 1);
476 	net->ucounts = ucounts;
477 	get_user_ns(user_ns);
478 
479 	rv = down_read_killable(&pernet_ops_rwsem);
480 	if (rv < 0)
481 		goto put_userns;
482 
483 	rv = setup_net(net, user_ns);
484 
485 	up_read(&pernet_ops_rwsem);
486 
487 	if (rv < 0) {
488 put_userns:
489 		key_remove_domain(net->key_domain);
490 		put_user_ns(user_ns);
491 		net_drop_ns(net);
492 dec_ucounts:
493 		dec_net_namespaces(ucounts);
494 		return ERR_PTR(rv);
495 	}
496 	return net;
497 }
498 
499 /**
500  * net_ns_get_ownership - get sysfs ownership data for @net
501  * @net: network namespace in question (can be NULL)
502  * @uid: kernel user ID for sysfs objects
503  * @gid: kernel group ID for sysfs objects
504  *
505  * Returns the uid/gid pair of root in the user namespace associated with the
506  * given network namespace.
507  */
508 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
509 {
510 	if (net) {
511 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
512 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
513 
514 		if (uid_valid(ns_root_uid))
515 			*uid = ns_root_uid;
516 
517 		if (gid_valid(ns_root_gid))
518 			*gid = ns_root_gid;
519 	} else {
520 		*uid = GLOBAL_ROOT_UID;
521 		*gid = GLOBAL_ROOT_GID;
522 	}
523 }
524 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
525 
526 static void unhash_nsid(struct net *net, struct net *last)
527 {
528 	struct net *tmp;
529 	/* This function is only called from cleanup_net() work,
530 	 * and this work is the only process, that may delete
531 	 * a net from net_namespace_list. So, when the below
532 	 * is executing, the list may only grow. Thus, we do not
533 	 * use for_each_net_rcu() or net_rwsem.
534 	 */
535 	for_each_net(tmp) {
536 		int id;
537 
538 		spin_lock_bh(&tmp->nsid_lock);
539 		id = __peernet2id(tmp, net);
540 		if (id >= 0)
541 			idr_remove(&tmp->netns_ids, id);
542 		spin_unlock_bh(&tmp->nsid_lock);
543 		if (id >= 0)
544 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
545 					  GFP_KERNEL);
546 		if (tmp == last)
547 			break;
548 	}
549 	spin_lock_bh(&net->nsid_lock);
550 	idr_destroy(&net->netns_ids);
551 	spin_unlock_bh(&net->nsid_lock);
552 }
553 
554 static LLIST_HEAD(cleanup_list);
555 
556 static void cleanup_net(struct work_struct *work)
557 {
558 	const struct pernet_operations *ops;
559 	struct net *net, *tmp, *last;
560 	struct llist_node *net_kill_list;
561 	LIST_HEAD(net_exit_list);
562 
563 	/* Atomically snapshot the list of namespaces to cleanup */
564 	net_kill_list = llist_del_all(&cleanup_list);
565 
566 	down_read(&pernet_ops_rwsem);
567 
568 	/* Don't let anyone else find us. */
569 	down_write(&net_rwsem);
570 	llist_for_each_entry(net, net_kill_list, cleanup_list)
571 		list_del_rcu(&net->list);
572 	/* Cache last net. After we unlock rtnl, no one new net
573 	 * added to net_namespace_list can assign nsid pointer
574 	 * to a net from net_kill_list (see peernet2id_alloc()).
575 	 * So, we skip them in unhash_nsid().
576 	 *
577 	 * Note, that unhash_nsid() does not delete nsid links
578 	 * between net_kill_list's nets, as they've already
579 	 * deleted from net_namespace_list. But, this would be
580 	 * useless anyway, as netns_ids are destroyed there.
581 	 */
582 	last = list_last_entry(&net_namespace_list, struct net, list);
583 	up_write(&net_rwsem);
584 
585 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
586 		unhash_nsid(net, last);
587 		list_add_tail(&net->exit_list, &net_exit_list);
588 	}
589 
590 	/* Run all of the network namespace pre_exit methods */
591 	list_for_each_entry_reverse(ops, &pernet_list, list)
592 		ops_pre_exit_list(ops, &net_exit_list);
593 
594 	/*
595 	 * Another CPU might be rcu-iterating the list, wait for it.
596 	 * This needs to be before calling the exit() notifiers, so
597 	 * the rcu_barrier() below isn't sufficient alone.
598 	 * Also the pre_exit() and exit() methods need this barrier.
599 	 */
600 	synchronize_rcu();
601 
602 	/* Run all of the network namespace exit methods */
603 	list_for_each_entry_reverse(ops, &pernet_list, list)
604 		ops_exit_list(ops, &net_exit_list);
605 
606 	/* Free the net generic variables */
607 	list_for_each_entry_reverse(ops, &pernet_list, list)
608 		ops_free_list(ops, &net_exit_list);
609 
610 	up_read(&pernet_ops_rwsem);
611 
612 	/* Ensure there are no outstanding rcu callbacks using this
613 	 * network namespace.
614 	 */
615 	rcu_barrier();
616 
617 	/* Finally it is safe to free my network namespace structure */
618 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
619 		list_del_init(&net->exit_list);
620 		dec_net_namespaces(net->ucounts);
621 		key_remove_domain(net->key_domain);
622 		put_user_ns(net->user_ns);
623 		net_drop_ns(net);
624 	}
625 }
626 
627 /**
628  * net_ns_barrier - wait until concurrent net_cleanup_work is done
629  *
630  * cleanup_net runs from work queue and will first remove namespaces
631  * from the global list, then run net exit functions.
632  *
633  * Call this in module exit path to make sure that all netns
634  * ->exit ops have been invoked before the function is removed.
635  */
636 void net_ns_barrier(void)
637 {
638 	down_write(&pernet_ops_rwsem);
639 	up_write(&pernet_ops_rwsem);
640 }
641 EXPORT_SYMBOL(net_ns_barrier);
642 
643 static DECLARE_WORK(net_cleanup_work, cleanup_net);
644 
645 void __put_net(struct net *net)
646 {
647 	/* Cleanup the network namespace in process context */
648 	if (llist_add(&net->cleanup_list, &cleanup_list))
649 		queue_work(netns_wq, &net_cleanup_work);
650 }
651 EXPORT_SYMBOL_GPL(__put_net);
652 
653 struct net *get_net_ns_by_fd(int fd)
654 {
655 	struct file *file;
656 	struct ns_common *ns;
657 	struct net *net;
658 
659 	file = proc_ns_fget(fd);
660 	if (IS_ERR(file))
661 		return ERR_CAST(file);
662 
663 	ns = get_proc_ns(file_inode(file));
664 	if (ns->ops == &netns_operations)
665 		net = get_net(container_of(ns, struct net, ns));
666 	else
667 		net = ERR_PTR(-EINVAL);
668 
669 	fput(file);
670 	return net;
671 }
672 
673 #else
674 struct net *get_net_ns_by_fd(int fd)
675 {
676 	return ERR_PTR(-EINVAL);
677 }
678 #endif
679 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
680 
681 struct net *get_net_ns_by_pid(pid_t pid)
682 {
683 	struct task_struct *tsk;
684 	struct net *net;
685 
686 	/* Lookup the network namespace */
687 	net = ERR_PTR(-ESRCH);
688 	rcu_read_lock();
689 	tsk = find_task_by_vpid(pid);
690 	if (tsk) {
691 		struct nsproxy *nsproxy;
692 		task_lock(tsk);
693 		nsproxy = tsk->nsproxy;
694 		if (nsproxy)
695 			net = get_net(nsproxy->net_ns);
696 		task_unlock(tsk);
697 	}
698 	rcu_read_unlock();
699 	return net;
700 }
701 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
702 
703 static __net_init int net_ns_net_init(struct net *net)
704 {
705 #ifdef CONFIG_NET_NS
706 	net->ns.ops = &netns_operations;
707 #endif
708 	return ns_alloc_inum(&net->ns);
709 }
710 
711 static __net_exit void net_ns_net_exit(struct net *net)
712 {
713 	ns_free_inum(&net->ns);
714 }
715 
716 static struct pernet_operations __net_initdata net_ns_ops = {
717 	.init = net_ns_net_init,
718 	.exit = net_ns_net_exit,
719 };
720 
721 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
722 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
723 	[NETNSA_NSID]		= { .type = NLA_S32 },
724 	[NETNSA_PID]		= { .type = NLA_U32 },
725 	[NETNSA_FD]		= { .type = NLA_U32 },
726 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
727 };
728 
729 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
730 			  struct netlink_ext_ack *extack)
731 {
732 	struct net *net = sock_net(skb->sk);
733 	struct nlattr *tb[NETNSA_MAX + 1];
734 	struct nlattr *nla;
735 	struct net *peer;
736 	int nsid, err;
737 
738 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
739 				     NETNSA_MAX, rtnl_net_policy, extack);
740 	if (err < 0)
741 		return err;
742 	if (!tb[NETNSA_NSID]) {
743 		NL_SET_ERR_MSG(extack, "nsid is missing");
744 		return -EINVAL;
745 	}
746 	nsid = nla_get_s32(tb[NETNSA_NSID]);
747 
748 	if (tb[NETNSA_PID]) {
749 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
750 		nla = tb[NETNSA_PID];
751 	} else if (tb[NETNSA_FD]) {
752 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
753 		nla = tb[NETNSA_FD];
754 	} else {
755 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
756 		return -EINVAL;
757 	}
758 	if (IS_ERR(peer)) {
759 		NL_SET_BAD_ATTR(extack, nla);
760 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
761 		return PTR_ERR(peer);
762 	}
763 
764 	spin_lock_bh(&net->nsid_lock);
765 	if (__peernet2id(net, peer) >= 0) {
766 		spin_unlock_bh(&net->nsid_lock);
767 		err = -EEXIST;
768 		NL_SET_BAD_ATTR(extack, nla);
769 		NL_SET_ERR_MSG(extack,
770 			       "Peer netns already has a nsid assigned");
771 		goto out;
772 	}
773 
774 	err = alloc_netid(net, peer, nsid);
775 	spin_unlock_bh(&net->nsid_lock);
776 	if (err >= 0) {
777 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
778 				  nlh, GFP_KERNEL);
779 		err = 0;
780 	} else if (err == -ENOSPC && nsid >= 0) {
781 		err = -EEXIST;
782 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
783 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
784 	}
785 out:
786 	put_net(peer);
787 	return err;
788 }
789 
790 static int rtnl_net_get_size(void)
791 {
792 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
793 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
794 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
795 	       ;
796 }
797 
798 struct net_fill_args {
799 	u32 portid;
800 	u32 seq;
801 	int flags;
802 	int cmd;
803 	int nsid;
804 	bool add_ref;
805 	int ref_nsid;
806 };
807 
808 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
809 {
810 	struct nlmsghdr *nlh;
811 	struct rtgenmsg *rth;
812 
813 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
814 			args->flags);
815 	if (!nlh)
816 		return -EMSGSIZE;
817 
818 	rth = nlmsg_data(nlh);
819 	rth->rtgen_family = AF_UNSPEC;
820 
821 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
822 		goto nla_put_failure;
823 
824 	if (args->add_ref &&
825 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
826 		goto nla_put_failure;
827 
828 	nlmsg_end(skb, nlh);
829 	return 0;
830 
831 nla_put_failure:
832 	nlmsg_cancel(skb, nlh);
833 	return -EMSGSIZE;
834 }
835 
836 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
837 				    const struct nlmsghdr *nlh,
838 				    struct nlattr **tb,
839 				    struct netlink_ext_ack *extack)
840 {
841 	int i, err;
842 
843 	if (!netlink_strict_get_check(skb))
844 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
845 					      tb, NETNSA_MAX, rtnl_net_policy,
846 					      extack);
847 
848 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
849 					    NETNSA_MAX, rtnl_net_policy,
850 					    extack);
851 	if (err)
852 		return err;
853 
854 	for (i = 0; i <= NETNSA_MAX; i++) {
855 		if (!tb[i])
856 			continue;
857 
858 		switch (i) {
859 		case NETNSA_PID:
860 		case NETNSA_FD:
861 		case NETNSA_NSID:
862 		case NETNSA_TARGET_NSID:
863 			break;
864 		default:
865 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
866 			return -EINVAL;
867 		}
868 	}
869 
870 	return 0;
871 }
872 
873 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
874 			  struct netlink_ext_ack *extack)
875 {
876 	struct net *net = sock_net(skb->sk);
877 	struct nlattr *tb[NETNSA_MAX + 1];
878 	struct net_fill_args fillargs = {
879 		.portid = NETLINK_CB(skb).portid,
880 		.seq = nlh->nlmsg_seq,
881 		.cmd = RTM_NEWNSID,
882 	};
883 	struct net *peer, *target = net;
884 	struct nlattr *nla;
885 	struct sk_buff *msg;
886 	int err;
887 
888 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
889 	if (err < 0)
890 		return err;
891 	if (tb[NETNSA_PID]) {
892 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
893 		nla = tb[NETNSA_PID];
894 	} else if (tb[NETNSA_FD]) {
895 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
896 		nla = tb[NETNSA_FD];
897 	} else if (tb[NETNSA_NSID]) {
898 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
899 		if (!peer)
900 			peer = ERR_PTR(-ENOENT);
901 		nla = tb[NETNSA_NSID];
902 	} else {
903 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
904 		return -EINVAL;
905 	}
906 
907 	if (IS_ERR(peer)) {
908 		NL_SET_BAD_ATTR(extack, nla);
909 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
910 		return PTR_ERR(peer);
911 	}
912 
913 	if (tb[NETNSA_TARGET_NSID]) {
914 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
915 
916 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
917 		if (IS_ERR(target)) {
918 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
919 			NL_SET_ERR_MSG(extack,
920 				       "Target netns reference is invalid");
921 			err = PTR_ERR(target);
922 			goto out;
923 		}
924 		fillargs.add_ref = true;
925 		fillargs.ref_nsid = peernet2id(net, peer);
926 	}
927 
928 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
929 	if (!msg) {
930 		err = -ENOMEM;
931 		goto out;
932 	}
933 
934 	fillargs.nsid = peernet2id(target, peer);
935 	err = rtnl_net_fill(msg, &fillargs);
936 	if (err < 0)
937 		goto err_out;
938 
939 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
940 	goto out;
941 
942 err_out:
943 	nlmsg_free(msg);
944 out:
945 	if (fillargs.add_ref)
946 		put_net(target);
947 	put_net(peer);
948 	return err;
949 }
950 
951 struct rtnl_net_dump_cb {
952 	struct net *tgt_net;
953 	struct net *ref_net;
954 	struct sk_buff *skb;
955 	struct net_fill_args fillargs;
956 	int idx;
957 	int s_idx;
958 };
959 
960 /* Runs in RCU-critical section. */
961 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
962 {
963 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
964 	int ret;
965 
966 	if (net_cb->idx < net_cb->s_idx)
967 		goto cont;
968 
969 	net_cb->fillargs.nsid = id;
970 	if (net_cb->fillargs.add_ref)
971 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
972 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
973 	if (ret < 0)
974 		return ret;
975 
976 cont:
977 	net_cb->idx++;
978 	return 0;
979 }
980 
981 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
982 				   struct rtnl_net_dump_cb *net_cb,
983 				   struct netlink_callback *cb)
984 {
985 	struct netlink_ext_ack *extack = cb->extack;
986 	struct nlattr *tb[NETNSA_MAX + 1];
987 	int err, i;
988 
989 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
990 					    NETNSA_MAX, rtnl_net_policy,
991 					    extack);
992 	if (err < 0)
993 		return err;
994 
995 	for (i = 0; i <= NETNSA_MAX; i++) {
996 		if (!tb[i])
997 			continue;
998 
999 		if (i == NETNSA_TARGET_NSID) {
1000 			struct net *net;
1001 
1002 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1003 			if (IS_ERR(net)) {
1004 				NL_SET_BAD_ATTR(extack, tb[i]);
1005 				NL_SET_ERR_MSG(extack,
1006 					       "Invalid target network namespace id");
1007 				return PTR_ERR(net);
1008 			}
1009 			net_cb->fillargs.add_ref = true;
1010 			net_cb->ref_net = net_cb->tgt_net;
1011 			net_cb->tgt_net = net;
1012 		} else {
1013 			NL_SET_BAD_ATTR(extack, tb[i]);
1014 			NL_SET_ERR_MSG(extack,
1015 				       "Unsupported attribute in dump request");
1016 			return -EINVAL;
1017 		}
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1024 {
1025 	struct rtnl_net_dump_cb net_cb = {
1026 		.tgt_net = sock_net(skb->sk),
1027 		.skb = skb,
1028 		.fillargs = {
1029 			.portid = NETLINK_CB(cb->skb).portid,
1030 			.seq = cb->nlh->nlmsg_seq,
1031 			.flags = NLM_F_MULTI,
1032 			.cmd = RTM_NEWNSID,
1033 		},
1034 		.idx = 0,
1035 		.s_idx = cb->args[0],
1036 	};
1037 	int err = 0;
1038 
1039 	if (cb->strict_check) {
1040 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1041 		if (err < 0)
1042 			goto end;
1043 	}
1044 
1045 	rcu_read_lock();
1046 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1047 	rcu_read_unlock();
1048 
1049 	cb->args[0] = net_cb.idx;
1050 end:
1051 	if (net_cb.fillargs.add_ref)
1052 		put_net(net_cb.tgt_net);
1053 	return err < 0 ? err : skb->len;
1054 }
1055 
1056 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1057 			      struct nlmsghdr *nlh, gfp_t gfp)
1058 {
1059 	struct net_fill_args fillargs = {
1060 		.portid = portid,
1061 		.seq = nlh ? nlh->nlmsg_seq : 0,
1062 		.cmd = cmd,
1063 		.nsid = id,
1064 	};
1065 	struct sk_buff *msg;
1066 	int err = -ENOMEM;
1067 
1068 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1069 	if (!msg)
1070 		goto out;
1071 
1072 	err = rtnl_net_fill(msg, &fillargs);
1073 	if (err < 0)
1074 		goto err_out;
1075 
1076 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1077 	return;
1078 
1079 err_out:
1080 	nlmsg_free(msg);
1081 out:
1082 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1083 }
1084 
1085 static int __init net_ns_init(void)
1086 {
1087 	struct net_generic *ng;
1088 
1089 #ifdef CONFIG_NET_NS
1090 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1091 					SMP_CACHE_BYTES,
1092 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1093 
1094 	/* Create workqueue for cleanup */
1095 	netns_wq = create_singlethread_workqueue("netns");
1096 	if (!netns_wq)
1097 		panic("Could not create netns workq");
1098 #endif
1099 
1100 	ng = net_alloc_generic();
1101 	if (!ng)
1102 		panic("Could not allocate generic netns");
1103 
1104 	rcu_assign_pointer(init_net.gen, ng);
1105 
1106 	preempt_disable();
1107 	__net_gen_cookie(&init_net);
1108 	preempt_enable();
1109 
1110 	down_write(&pernet_ops_rwsem);
1111 	if (setup_net(&init_net, &init_user_ns))
1112 		panic("Could not setup the initial network namespace");
1113 
1114 	init_net_initialized = true;
1115 	up_write(&pernet_ops_rwsem);
1116 
1117 	if (register_pernet_subsys(&net_ns_ops))
1118 		panic("Could not register network namespace subsystems");
1119 
1120 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1121 		      RTNL_FLAG_DOIT_UNLOCKED);
1122 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1123 		      RTNL_FLAG_DOIT_UNLOCKED);
1124 
1125 	return 0;
1126 }
1127 
1128 pure_initcall(net_ns_init);
1129 
1130 #ifdef CONFIG_NET_NS
1131 static int __register_pernet_operations(struct list_head *list,
1132 					struct pernet_operations *ops)
1133 {
1134 	struct net *net;
1135 	int error;
1136 	LIST_HEAD(net_exit_list);
1137 
1138 	list_add_tail(&ops->list, list);
1139 	if (ops->init || (ops->id && ops->size)) {
1140 		/* We held write locked pernet_ops_rwsem, and parallel
1141 		 * setup_net() and cleanup_net() are not possible.
1142 		 */
1143 		for_each_net(net) {
1144 			error = ops_init(ops, net);
1145 			if (error)
1146 				goto out_undo;
1147 			list_add_tail(&net->exit_list, &net_exit_list);
1148 		}
1149 	}
1150 	return 0;
1151 
1152 out_undo:
1153 	/* If I have an error cleanup all namespaces I initialized */
1154 	list_del(&ops->list);
1155 	ops_pre_exit_list(ops, &net_exit_list);
1156 	synchronize_rcu();
1157 	ops_exit_list(ops, &net_exit_list);
1158 	ops_free_list(ops, &net_exit_list);
1159 	return error;
1160 }
1161 
1162 static void __unregister_pernet_operations(struct pernet_operations *ops)
1163 {
1164 	struct net *net;
1165 	LIST_HEAD(net_exit_list);
1166 
1167 	list_del(&ops->list);
1168 	/* See comment in __register_pernet_operations() */
1169 	for_each_net(net)
1170 		list_add_tail(&net->exit_list, &net_exit_list);
1171 	ops_pre_exit_list(ops, &net_exit_list);
1172 	synchronize_rcu();
1173 	ops_exit_list(ops, &net_exit_list);
1174 	ops_free_list(ops, &net_exit_list);
1175 }
1176 
1177 #else
1178 
1179 static int __register_pernet_operations(struct list_head *list,
1180 					struct pernet_operations *ops)
1181 {
1182 	if (!init_net_initialized) {
1183 		list_add_tail(&ops->list, list);
1184 		return 0;
1185 	}
1186 
1187 	return ops_init(ops, &init_net);
1188 }
1189 
1190 static void __unregister_pernet_operations(struct pernet_operations *ops)
1191 {
1192 	if (!init_net_initialized) {
1193 		list_del(&ops->list);
1194 	} else {
1195 		LIST_HEAD(net_exit_list);
1196 		list_add(&init_net.exit_list, &net_exit_list);
1197 		ops_pre_exit_list(ops, &net_exit_list);
1198 		synchronize_rcu();
1199 		ops_exit_list(ops, &net_exit_list);
1200 		ops_free_list(ops, &net_exit_list);
1201 	}
1202 }
1203 
1204 #endif /* CONFIG_NET_NS */
1205 
1206 static DEFINE_IDA(net_generic_ids);
1207 
1208 static int register_pernet_operations(struct list_head *list,
1209 				      struct pernet_operations *ops)
1210 {
1211 	int error;
1212 
1213 	if (ops->id) {
1214 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1215 				GFP_KERNEL);
1216 		if (error < 0)
1217 			return error;
1218 		*ops->id = error;
1219 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1220 	}
1221 	error = __register_pernet_operations(list, ops);
1222 	if (error) {
1223 		rcu_barrier();
1224 		if (ops->id)
1225 			ida_free(&net_generic_ids, *ops->id);
1226 	}
1227 
1228 	return error;
1229 }
1230 
1231 static void unregister_pernet_operations(struct pernet_operations *ops)
1232 {
1233 	__unregister_pernet_operations(ops);
1234 	rcu_barrier();
1235 	if (ops->id)
1236 		ida_free(&net_generic_ids, *ops->id);
1237 }
1238 
1239 /**
1240  *      register_pernet_subsys - register a network namespace subsystem
1241  *	@ops:  pernet operations structure for the subsystem
1242  *
1243  *	Register a subsystem which has init and exit functions
1244  *	that are called when network namespaces are created and
1245  *	destroyed respectively.
1246  *
1247  *	When registered all network namespace init functions are
1248  *	called for every existing network namespace.  Allowing kernel
1249  *	modules to have a race free view of the set of network namespaces.
1250  *
1251  *	When a new network namespace is created all of the init
1252  *	methods are called in the order in which they were registered.
1253  *
1254  *	When a network namespace is destroyed all of the exit methods
1255  *	are called in the reverse of the order with which they were
1256  *	registered.
1257  */
1258 int register_pernet_subsys(struct pernet_operations *ops)
1259 {
1260 	int error;
1261 	down_write(&pernet_ops_rwsem);
1262 	error =  register_pernet_operations(first_device, ops);
1263 	up_write(&pernet_ops_rwsem);
1264 	return error;
1265 }
1266 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1267 
1268 /**
1269  *      unregister_pernet_subsys - unregister a network namespace subsystem
1270  *	@ops: pernet operations structure to manipulate
1271  *
1272  *	Remove the pernet operations structure from the list to be
1273  *	used when network namespaces are created or destroyed.  In
1274  *	addition run the exit method for all existing network
1275  *	namespaces.
1276  */
1277 void unregister_pernet_subsys(struct pernet_operations *ops)
1278 {
1279 	down_write(&pernet_ops_rwsem);
1280 	unregister_pernet_operations(ops);
1281 	up_write(&pernet_ops_rwsem);
1282 }
1283 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1284 
1285 /**
1286  *      register_pernet_device - register a network namespace device
1287  *	@ops:  pernet operations structure for the subsystem
1288  *
1289  *	Register a device which has init and exit functions
1290  *	that are called when network namespaces are created and
1291  *	destroyed respectively.
1292  *
1293  *	When registered all network namespace init functions are
1294  *	called for every existing network namespace.  Allowing kernel
1295  *	modules to have a race free view of the set of network namespaces.
1296  *
1297  *	When a new network namespace is created all of the init
1298  *	methods are called in the order in which they were registered.
1299  *
1300  *	When a network namespace is destroyed all of the exit methods
1301  *	are called in the reverse of the order with which they were
1302  *	registered.
1303  */
1304 int register_pernet_device(struct pernet_operations *ops)
1305 {
1306 	int error;
1307 	down_write(&pernet_ops_rwsem);
1308 	error = register_pernet_operations(&pernet_list, ops);
1309 	if (!error && (first_device == &pernet_list))
1310 		first_device = &ops->list;
1311 	up_write(&pernet_ops_rwsem);
1312 	return error;
1313 }
1314 EXPORT_SYMBOL_GPL(register_pernet_device);
1315 
1316 /**
1317  *      unregister_pernet_device - unregister a network namespace netdevice
1318  *	@ops: pernet operations structure to manipulate
1319  *
1320  *	Remove the pernet operations structure from the list to be
1321  *	used when network namespaces are created or destroyed.  In
1322  *	addition run the exit method for all existing network
1323  *	namespaces.
1324  */
1325 void unregister_pernet_device(struct pernet_operations *ops)
1326 {
1327 	down_write(&pernet_ops_rwsem);
1328 	if (&ops->list == first_device)
1329 		first_device = first_device->next;
1330 	unregister_pernet_operations(ops);
1331 	up_write(&pernet_ops_rwsem);
1332 }
1333 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1334 
1335 #ifdef CONFIG_NET_NS
1336 static struct ns_common *netns_get(struct task_struct *task)
1337 {
1338 	struct net *net = NULL;
1339 	struct nsproxy *nsproxy;
1340 
1341 	task_lock(task);
1342 	nsproxy = task->nsproxy;
1343 	if (nsproxy)
1344 		net = get_net(nsproxy->net_ns);
1345 	task_unlock(task);
1346 
1347 	return net ? &net->ns : NULL;
1348 }
1349 
1350 static inline struct net *to_net_ns(struct ns_common *ns)
1351 {
1352 	return container_of(ns, struct net, ns);
1353 }
1354 
1355 static void netns_put(struct ns_common *ns)
1356 {
1357 	put_net(to_net_ns(ns));
1358 }
1359 
1360 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1361 {
1362 	struct nsproxy *nsproxy = nsset->nsproxy;
1363 	struct net *net = to_net_ns(ns);
1364 
1365 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1366 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1367 		return -EPERM;
1368 
1369 	put_net(nsproxy->net_ns);
1370 	nsproxy->net_ns = get_net(net);
1371 	return 0;
1372 }
1373 
1374 static struct user_namespace *netns_owner(struct ns_common *ns)
1375 {
1376 	return to_net_ns(ns)->user_ns;
1377 }
1378 
1379 const struct proc_ns_operations netns_operations = {
1380 	.name		= "net",
1381 	.type		= CLONE_NEWNET,
1382 	.get		= netns_get,
1383 	.put		= netns_put,
1384 	.install	= netns_install,
1385 	.owner		= netns_owner,
1386 };
1387 #endif
1388