xref: /openbmc/linux/net/core/net_namespace.c (revision 4f3db074)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
41 
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43 
44 static struct net_generic *net_alloc_generic(void)
45 {
46 	struct net_generic *ng;
47 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48 
49 	ng = kzalloc(generic_size, GFP_KERNEL);
50 	if (ng)
51 		ng->len = max_gen_ptrs;
52 
53 	return ng;
54 }
55 
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 	struct net_generic *ng, *old_ng;
59 
60 	BUG_ON(!mutex_is_locked(&net_mutex));
61 	BUG_ON(id == 0);
62 
63 	old_ng = rcu_dereference_protected(net->gen,
64 					   lockdep_is_held(&net_mutex));
65 	ng = old_ng;
66 	if (old_ng->len >= id)
67 		goto assign;
68 
69 	ng = net_alloc_generic();
70 	if (ng == NULL)
71 		return -ENOMEM;
72 
73 	/*
74 	 * Some synchronisation notes:
75 	 *
76 	 * The net_generic explores the net->gen array inside rcu
77 	 * read section. Besides once set the net->gen->ptr[x]
78 	 * pointer never changes (see rules in netns/generic.h).
79 	 *
80 	 * That said, we simply duplicate this array and schedule
81 	 * the old copy for kfree after a grace period.
82 	 */
83 
84 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85 
86 	rcu_assign_pointer(net->gen, ng);
87 	kfree_rcu(old_ng, rcu);
88 assign:
89 	ng->ptr[id - 1] = data;
90 	return 0;
91 }
92 
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 	int err = -ENOMEM;
96 	void *data = NULL;
97 
98 	if (ops->id && ops->size) {
99 		data = kzalloc(ops->size, GFP_KERNEL);
100 		if (!data)
101 			goto out;
102 
103 		err = net_assign_generic(net, *ops->id, data);
104 		if (err)
105 			goto cleanup;
106 	}
107 	err = 0;
108 	if (ops->init)
109 		err = ops->init(net);
110 	if (!err)
111 		return 0;
112 
113 cleanup:
114 	kfree(data);
115 
116 out:
117 	return err;
118 }
119 
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 	if (ops->id && ops->size) {
123 		int id = *ops->id;
124 		kfree(net_generic(net, id));
125 	}
126 }
127 
128 static void ops_exit_list(const struct pernet_operations *ops,
129 			  struct list_head *net_exit_list)
130 {
131 	struct net *net;
132 	if (ops->exit) {
133 		list_for_each_entry(net, net_exit_list, exit_list)
134 			ops->exit(net);
135 	}
136 	if (ops->exit_batch)
137 		ops->exit_batch(net_exit_list);
138 }
139 
140 static void ops_free_list(const struct pernet_operations *ops,
141 			  struct list_head *net_exit_list)
142 {
143 	struct net *net;
144 	if (ops->size && ops->id) {
145 		list_for_each_entry(net, net_exit_list, exit_list)
146 			ops_free(ops, net);
147 	}
148 }
149 
150 static void rtnl_net_notifyid(struct net *net, struct net *peer, int cmd,
151 			      int id);
152 static int alloc_netid(struct net *net, struct net *peer, int reqid)
153 {
154 	int min = 0, max = 0, id;
155 
156 	ASSERT_RTNL();
157 
158 	if (reqid >= 0) {
159 		min = reqid;
160 		max = reqid + 1;
161 	}
162 
163 	id = idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
164 	if (id >= 0)
165 		rtnl_net_notifyid(net, peer, RTM_NEWNSID, id);
166 
167 	return id;
168 }
169 
170 /* This function is used by idr_for_each(). If net is equal to peer, the
171  * function returns the id so that idr_for_each() stops. Because we cannot
172  * returns the id 0 (idr_for_each() will not stop), we return the magic value
173  * NET_ID_ZERO (-1) for it.
174  */
175 #define NET_ID_ZERO -1
176 static int net_eq_idr(int id, void *net, void *peer)
177 {
178 	if (net_eq(net, peer))
179 		return id ? : NET_ID_ZERO;
180 	return 0;
181 }
182 
183 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
184 {
185 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
186 
187 	ASSERT_RTNL();
188 
189 	/* Magic value for id 0. */
190 	if (id == NET_ID_ZERO)
191 		return 0;
192 	if (id > 0)
193 		return id;
194 
195 	if (alloc)
196 		return alloc_netid(net, peer, -1);
197 
198 	return -ENOENT;
199 }
200 
201 /* This function returns the id of a peer netns. If no id is assigned, one will
202  * be allocated and returned.
203  */
204 int peernet2id(struct net *net, struct net *peer)
205 {
206 	bool alloc = atomic_read(&peer->count) == 0 ? false : true;
207 	int id;
208 
209 	id = __peernet2id(net, peer, alloc);
210 	return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
211 }
212 EXPORT_SYMBOL(peernet2id);
213 
214 struct net *get_net_ns_by_id(struct net *net, int id)
215 {
216 	struct net *peer;
217 
218 	if (id < 0)
219 		return NULL;
220 
221 	rcu_read_lock();
222 	peer = idr_find(&net->netns_ids, id);
223 	if (peer)
224 		get_net(peer);
225 	rcu_read_unlock();
226 
227 	return peer;
228 }
229 
230 /*
231  * setup_net runs the initializers for the network namespace object.
232  */
233 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
234 {
235 	/* Must be called with net_mutex held */
236 	const struct pernet_operations *ops, *saved_ops;
237 	int error = 0;
238 	LIST_HEAD(net_exit_list);
239 
240 	atomic_set(&net->count, 1);
241 	atomic_set(&net->passive, 1);
242 	net->dev_base_seq = 1;
243 	net->user_ns = user_ns;
244 	idr_init(&net->netns_ids);
245 
246 	list_for_each_entry(ops, &pernet_list, list) {
247 		error = ops_init(ops, net);
248 		if (error < 0)
249 			goto out_undo;
250 	}
251 out:
252 	return error;
253 
254 out_undo:
255 	/* Walk through the list backwards calling the exit functions
256 	 * for the pernet modules whose init functions did not fail.
257 	 */
258 	list_add(&net->exit_list, &net_exit_list);
259 	saved_ops = ops;
260 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
261 		ops_exit_list(ops, &net_exit_list);
262 
263 	ops = saved_ops;
264 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
265 		ops_free_list(ops, &net_exit_list);
266 
267 	rcu_barrier();
268 	goto out;
269 }
270 
271 
272 #ifdef CONFIG_NET_NS
273 static struct kmem_cache *net_cachep;
274 static struct workqueue_struct *netns_wq;
275 
276 static struct net *net_alloc(void)
277 {
278 	struct net *net = NULL;
279 	struct net_generic *ng;
280 
281 	ng = net_alloc_generic();
282 	if (!ng)
283 		goto out;
284 
285 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
286 	if (!net)
287 		goto out_free;
288 
289 	rcu_assign_pointer(net->gen, ng);
290 out:
291 	return net;
292 
293 out_free:
294 	kfree(ng);
295 	goto out;
296 }
297 
298 static void net_free(struct net *net)
299 {
300 	kfree(rcu_access_pointer(net->gen));
301 	kmem_cache_free(net_cachep, net);
302 }
303 
304 void net_drop_ns(void *p)
305 {
306 	struct net *ns = p;
307 	if (ns && atomic_dec_and_test(&ns->passive))
308 		net_free(ns);
309 }
310 
311 struct net *copy_net_ns(unsigned long flags,
312 			struct user_namespace *user_ns, struct net *old_net)
313 {
314 	struct net *net;
315 	int rv;
316 
317 	if (!(flags & CLONE_NEWNET))
318 		return get_net(old_net);
319 
320 	net = net_alloc();
321 	if (!net)
322 		return ERR_PTR(-ENOMEM);
323 
324 	get_user_ns(user_ns);
325 
326 	mutex_lock(&net_mutex);
327 	rv = setup_net(net, user_ns);
328 	if (rv == 0) {
329 		rtnl_lock();
330 		list_add_tail_rcu(&net->list, &net_namespace_list);
331 		rtnl_unlock();
332 	}
333 	mutex_unlock(&net_mutex);
334 	if (rv < 0) {
335 		put_user_ns(user_ns);
336 		net_drop_ns(net);
337 		return ERR_PTR(rv);
338 	}
339 	return net;
340 }
341 
342 static DEFINE_SPINLOCK(cleanup_list_lock);
343 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
344 
345 static void cleanup_net(struct work_struct *work)
346 {
347 	const struct pernet_operations *ops;
348 	struct net *net, *tmp;
349 	struct list_head net_kill_list;
350 	LIST_HEAD(net_exit_list);
351 
352 	/* Atomically snapshot the list of namespaces to cleanup */
353 	spin_lock_irq(&cleanup_list_lock);
354 	list_replace_init(&cleanup_list, &net_kill_list);
355 	spin_unlock_irq(&cleanup_list_lock);
356 
357 	mutex_lock(&net_mutex);
358 
359 	/* Don't let anyone else find us. */
360 	rtnl_lock();
361 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
362 		list_del_rcu(&net->list);
363 		list_add_tail(&net->exit_list, &net_exit_list);
364 		for_each_net(tmp) {
365 			int id = __peernet2id(tmp, net, false);
366 
367 			if (id >= 0) {
368 				rtnl_net_notifyid(tmp, net, RTM_DELNSID, id);
369 				idr_remove(&tmp->netns_ids, id);
370 			}
371 		}
372 		idr_destroy(&net->netns_ids);
373 
374 	}
375 	rtnl_unlock();
376 
377 	/*
378 	 * Another CPU might be rcu-iterating the list, wait for it.
379 	 * This needs to be before calling the exit() notifiers, so
380 	 * the rcu_barrier() below isn't sufficient alone.
381 	 */
382 	synchronize_rcu();
383 
384 	/* Run all of the network namespace exit methods */
385 	list_for_each_entry_reverse(ops, &pernet_list, list)
386 		ops_exit_list(ops, &net_exit_list);
387 
388 	/* Free the net generic variables */
389 	list_for_each_entry_reverse(ops, &pernet_list, list)
390 		ops_free_list(ops, &net_exit_list);
391 
392 	mutex_unlock(&net_mutex);
393 
394 	/* Ensure there are no outstanding rcu callbacks using this
395 	 * network namespace.
396 	 */
397 	rcu_barrier();
398 
399 	/* Finally it is safe to free my network namespace structure */
400 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
401 		list_del_init(&net->exit_list);
402 		put_user_ns(net->user_ns);
403 		net_drop_ns(net);
404 	}
405 }
406 static DECLARE_WORK(net_cleanup_work, cleanup_net);
407 
408 void __put_net(struct net *net)
409 {
410 	/* Cleanup the network namespace in process context */
411 	unsigned long flags;
412 
413 	spin_lock_irqsave(&cleanup_list_lock, flags);
414 	list_add(&net->cleanup_list, &cleanup_list);
415 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
416 
417 	queue_work(netns_wq, &net_cleanup_work);
418 }
419 EXPORT_SYMBOL_GPL(__put_net);
420 
421 struct net *get_net_ns_by_fd(int fd)
422 {
423 	struct file *file;
424 	struct ns_common *ns;
425 	struct net *net;
426 
427 	file = proc_ns_fget(fd);
428 	if (IS_ERR(file))
429 		return ERR_CAST(file);
430 
431 	ns = get_proc_ns(file_inode(file));
432 	if (ns->ops == &netns_operations)
433 		net = get_net(container_of(ns, struct net, ns));
434 	else
435 		net = ERR_PTR(-EINVAL);
436 
437 	fput(file);
438 	return net;
439 }
440 
441 #else
442 struct net *get_net_ns_by_fd(int fd)
443 {
444 	return ERR_PTR(-EINVAL);
445 }
446 #endif
447 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
448 
449 struct net *get_net_ns_by_pid(pid_t pid)
450 {
451 	struct task_struct *tsk;
452 	struct net *net;
453 
454 	/* Lookup the network namespace */
455 	net = ERR_PTR(-ESRCH);
456 	rcu_read_lock();
457 	tsk = find_task_by_vpid(pid);
458 	if (tsk) {
459 		struct nsproxy *nsproxy;
460 		task_lock(tsk);
461 		nsproxy = tsk->nsproxy;
462 		if (nsproxy)
463 			net = get_net(nsproxy->net_ns);
464 		task_unlock(tsk);
465 	}
466 	rcu_read_unlock();
467 	return net;
468 }
469 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
470 
471 static __net_init int net_ns_net_init(struct net *net)
472 {
473 #ifdef CONFIG_NET_NS
474 	net->ns.ops = &netns_operations;
475 #endif
476 	return ns_alloc_inum(&net->ns);
477 }
478 
479 static __net_exit void net_ns_net_exit(struct net *net)
480 {
481 	ns_free_inum(&net->ns);
482 }
483 
484 static struct pernet_operations __net_initdata net_ns_ops = {
485 	.init = net_ns_net_init,
486 	.exit = net_ns_net_exit,
487 };
488 
489 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
490 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
491 	[NETNSA_NSID]		= { .type = NLA_S32 },
492 	[NETNSA_PID]		= { .type = NLA_U32 },
493 	[NETNSA_FD]		= { .type = NLA_U32 },
494 };
495 
496 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
497 {
498 	struct net *net = sock_net(skb->sk);
499 	struct nlattr *tb[NETNSA_MAX + 1];
500 	struct net *peer;
501 	int nsid, err;
502 
503 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
504 			  rtnl_net_policy);
505 	if (err < 0)
506 		return err;
507 	if (!tb[NETNSA_NSID])
508 		return -EINVAL;
509 	nsid = nla_get_s32(tb[NETNSA_NSID]);
510 
511 	if (tb[NETNSA_PID])
512 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
513 	else if (tb[NETNSA_FD])
514 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
515 	else
516 		return -EINVAL;
517 	if (IS_ERR(peer))
518 		return PTR_ERR(peer);
519 
520 	if (__peernet2id(net, peer, false) >= 0) {
521 		err = -EEXIST;
522 		goto out;
523 	}
524 
525 	err = alloc_netid(net, peer, nsid);
526 	if (err > 0)
527 		err = 0;
528 out:
529 	put_net(peer);
530 	return err;
531 }
532 
533 static int rtnl_net_get_size(void)
534 {
535 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
536 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
537 	       ;
538 }
539 
540 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
541 			 int cmd, struct net *net, struct net *peer,
542 			 int nsid)
543 {
544 	struct nlmsghdr *nlh;
545 	struct rtgenmsg *rth;
546 	int id;
547 
548 	ASSERT_RTNL();
549 
550 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
551 	if (!nlh)
552 		return -EMSGSIZE;
553 
554 	rth = nlmsg_data(nlh);
555 	rth->rtgen_family = AF_UNSPEC;
556 
557 	if (nsid >= 0) {
558 		id = nsid;
559 	} else {
560 		id = __peernet2id(net, peer, false);
561 		if  (id < 0)
562 			id = NETNSA_NSID_NOT_ASSIGNED;
563 	}
564 	if (nla_put_s32(skb, NETNSA_NSID, id))
565 		goto nla_put_failure;
566 
567 	nlmsg_end(skb, nlh);
568 	return 0;
569 
570 nla_put_failure:
571 	nlmsg_cancel(skb, nlh);
572 	return -EMSGSIZE;
573 }
574 
575 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
576 {
577 	struct net *net = sock_net(skb->sk);
578 	struct nlattr *tb[NETNSA_MAX + 1];
579 	struct sk_buff *msg;
580 	struct net *peer;
581 	int err;
582 
583 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
584 			  rtnl_net_policy);
585 	if (err < 0)
586 		return err;
587 	if (tb[NETNSA_PID])
588 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
589 	else if (tb[NETNSA_FD])
590 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
591 	else
592 		return -EINVAL;
593 
594 	if (IS_ERR(peer))
595 		return PTR_ERR(peer);
596 
597 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
598 	if (!msg) {
599 		err = -ENOMEM;
600 		goto out;
601 	}
602 
603 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
604 			    RTM_GETNSID, net, peer, -1);
605 	if (err < 0)
606 		goto err_out;
607 
608 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
609 	goto out;
610 
611 err_out:
612 	nlmsg_free(msg);
613 out:
614 	put_net(peer);
615 	return err;
616 }
617 
618 struct rtnl_net_dump_cb {
619 	struct net *net;
620 	struct sk_buff *skb;
621 	struct netlink_callback *cb;
622 	int idx;
623 	int s_idx;
624 };
625 
626 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
627 {
628 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
629 	int ret;
630 
631 	if (net_cb->idx < net_cb->s_idx)
632 		goto cont;
633 
634 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
635 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
636 			    RTM_NEWNSID, net_cb->net, peer, id);
637 	if (ret < 0)
638 		return ret;
639 
640 cont:
641 	net_cb->idx++;
642 	return 0;
643 }
644 
645 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
646 {
647 	struct net *net = sock_net(skb->sk);
648 	struct rtnl_net_dump_cb net_cb = {
649 		.net = net,
650 		.skb = skb,
651 		.cb = cb,
652 		.idx = 0,
653 		.s_idx = cb->args[0],
654 	};
655 
656 	ASSERT_RTNL();
657 
658 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
659 
660 	cb->args[0] = net_cb.idx;
661 	return skb->len;
662 }
663 
664 static void rtnl_net_notifyid(struct net *net, struct net *peer, int cmd,
665 			      int id)
666 {
667 	struct sk_buff *msg;
668 	int err = -ENOMEM;
669 
670 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
671 	if (!msg)
672 		goto out;
673 
674 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, peer, id);
675 	if (err < 0)
676 		goto err_out;
677 
678 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
679 	return;
680 
681 err_out:
682 	nlmsg_free(msg);
683 out:
684 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
685 }
686 
687 static int __init net_ns_init(void)
688 {
689 	struct net_generic *ng;
690 
691 #ifdef CONFIG_NET_NS
692 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
693 					SMP_CACHE_BYTES,
694 					SLAB_PANIC, NULL);
695 
696 	/* Create workqueue for cleanup */
697 	netns_wq = create_singlethread_workqueue("netns");
698 	if (!netns_wq)
699 		panic("Could not create netns workq");
700 #endif
701 
702 	ng = net_alloc_generic();
703 	if (!ng)
704 		panic("Could not allocate generic netns");
705 
706 	rcu_assign_pointer(init_net.gen, ng);
707 
708 	mutex_lock(&net_mutex);
709 	if (setup_net(&init_net, &init_user_ns))
710 		panic("Could not setup the initial network namespace");
711 
712 	rtnl_lock();
713 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
714 	rtnl_unlock();
715 
716 	mutex_unlock(&net_mutex);
717 
718 	register_pernet_subsys(&net_ns_ops);
719 
720 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
721 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
722 		      NULL);
723 
724 	return 0;
725 }
726 
727 pure_initcall(net_ns_init);
728 
729 #ifdef CONFIG_NET_NS
730 static int __register_pernet_operations(struct list_head *list,
731 					struct pernet_operations *ops)
732 {
733 	struct net *net;
734 	int error;
735 	LIST_HEAD(net_exit_list);
736 
737 	list_add_tail(&ops->list, list);
738 	if (ops->init || (ops->id && ops->size)) {
739 		for_each_net(net) {
740 			error = ops_init(ops, net);
741 			if (error)
742 				goto out_undo;
743 			list_add_tail(&net->exit_list, &net_exit_list);
744 		}
745 	}
746 	return 0;
747 
748 out_undo:
749 	/* If I have an error cleanup all namespaces I initialized */
750 	list_del(&ops->list);
751 	ops_exit_list(ops, &net_exit_list);
752 	ops_free_list(ops, &net_exit_list);
753 	return error;
754 }
755 
756 static void __unregister_pernet_operations(struct pernet_operations *ops)
757 {
758 	struct net *net;
759 	LIST_HEAD(net_exit_list);
760 
761 	list_del(&ops->list);
762 	for_each_net(net)
763 		list_add_tail(&net->exit_list, &net_exit_list);
764 	ops_exit_list(ops, &net_exit_list);
765 	ops_free_list(ops, &net_exit_list);
766 }
767 
768 #else
769 
770 static int __register_pernet_operations(struct list_head *list,
771 					struct pernet_operations *ops)
772 {
773 	return ops_init(ops, &init_net);
774 }
775 
776 static void __unregister_pernet_operations(struct pernet_operations *ops)
777 {
778 	LIST_HEAD(net_exit_list);
779 	list_add(&init_net.exit_list, &net_exit_list);
780 	ops_exit_list(ops, &net_exit_list);
781 	ops_free_list(ops, &net_exit_list);
782 }
783 
784 #endif /* CONFIG_NET_NS */
785 
786 static DEFINE_IDA(net_generic_ids);
787 
788 static int register_pernet_operations(struct list_head *list,
789 				      struct pernet_operations *ops)
790 {
791 	int error;
792 
793 	if (ops->id) {
794 again:
795 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
796 		if (error < 0) {
797 			if (error == -EAGAIN) {
798 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
799 				goto again;
800 			}
801 			return error;
802 		}
803 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
804 	}
805 	error = __register_pernet_operations(list, ops);
806 	if (error) {
807 		rcu_barrier();
808 		if (ops->id)
809 			ida_remove(&net_generic_ids, *ops->id);
810 	}
811 
812 	return error;
813 }
814 
815 static void unregister_pernet_operations(struct pernet_operations *ops)
816 {
817 
818 	__unregister_pernet_operations(ops);
819 	rcu_barrier();
820 	if (ops->id)
821 		ida_remove(&net_generic_ids, *ops->id);
822 }
823 
824 /**
825  *      register_pernet_subsys - register a network namespace subsystem
826  *	@ops:  pernet operations structure for the subsystem
827  *
828  *	Register a subsystem which has init and exit functions
829  *	that are called when network namespaces are created and
830  *	destroyed respectively.
831  *
832  *	When registered all network namespace init functions are
833  *	called for every existing network namespace.  Allowing kernel
834  *	modules to have a race free view of the set of network namespaces.
835  *
836  *	When a new network namespace is created all of the init
837  *	methods are called in the order in which they were registered.
838  *
839  *	When a network namespace is destroyed all of the exit methods
840  *	are called in the reverse of the order with which they were
841  *	registered.
842  */
843 int register_pernet_subsys(struct pernet_operations *ops)
844 {
845 	int error;
846 	mutex_lock(&net_mutex);
847 	error =  register_pernet_operations(first_device, ops);
848 	mutex_unlock(&net_mutex);
849 	return error;
850 }
851 EXPORT_SYMBOL_GPL(register_pernet_subsys);
852 
853 /**
854  *      unregister_pernet_subsys - unregister a network namespace subsystem
855  *	@ops: pernet operations structure to manipulate
856  *
857  *	Remove the pernet operations structure from the list to be
858  *	used when network namespaces are created or destroyed.  In
859  *	addition run the exit method for all existing network
860  *	namespaces.
861  */
862 void unregister_pernet_subsys(struct pernet_operations *ops)
863 {
864 	mutex_lock(&net_mutex);
865 	unregister_pernet_operations(ops);
866 	mutex_unlock(&net_mutex);
867 }
868 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
869 
870 /**
871  *      register_pernet_device - register a network namespace device
872  *	@ops:  pernet operations structure for the subsystem
873  *
874  *	Register a device which has init and exit functions
875  *	that are called when network namespaces are created and
876  *	destroyed respectively.
877  *
878  *	When registered all network namespace init functions are
879  *	called for every existing network namespace.  Allowing kernel
880  *	modules to have a race free view of the set of network namespaces.
881  *
882  *	When a new network namespace is created all of the init
883  *	methods are called in the order in which they were registered.
884  *
885  *	When a network namespace is destroyed all of the exit methods
886  *	are called in the reverse of the order with which they were
887  *	registered.
888  */
889 int register_pernet_device(struct pernet_operations *ops)
890 {
891 	int error;
892 	mutex_lock(&net_mutex);
893 	error = register_pernet_operations(&pernet_list, ops);
894 	if (!error && (first_device == &pernet_list))
895 		first_device = &ops->list;
896 	mutex_unlock(&net_mutex);
897 	return error;
898 }
899 EXPORT_SYMBOL_GPL(register_pernet_device);
900 
901 /**
902  *      unregister_pernet_device - unregister a network namespace netdevice
903  *	@ops: pernet operations structure to manipulate
904  *
905  *	Remove the pernet operations structure from the list to be
906  *	used when network namespaces are created or destroyed.  In
907  *	addition run the exit method for all existing network
908  *	namespaces.
909  */
910 void unregister_pernet_device(struct pernet_operations *ops)
911 {
912 	mutex_lock(&net_mutex);
913 	if (&ops->list == first_device)
914 		first_device = first_device->next;
915 	unregister_pernet_operations(ops);
916 	mutex_unlock(&net_mutex);
917 }
918 EXPORT_SYMBOL_GPL(unregister_pernet_device);
919 
920 #ifdef CONFIG_NET_NS
921 static struct ns_common *netns_get(struct task_struct *task)
922 {
923 	struct net *net = NULL;
924 	struct nsproxy *nsproxy;
925 
926 	task_lock(task);
927 	nsproxy = task->nsproxy;
928 	if (nsproxy)
929 		net = get_net(nsproxy->net_ns);
930 	task_unlock(task);
931 
932 	return net ? &net->ns : NULL;
933 }
934 
935 static inline struct net *to_net_ns(struct ns_common *ns)
936 {
937 	return container_of(ns, struct net, ns);
938 }
939 
940 static void netns_put(struct ns_common *ns)
941 {
942 	put_net(to_net_ns(ns));
943 }
944 
945 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
946 {
947 	struct net *net = to_net_ns(ns);
948 
949 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
950 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
951 		return -EPERM;
952 
953 	put_net(nsproxy->net_ns);
954 	nsproxy->net_ns = get_net(net);
955 	return 0;
956 }
957 
958 const struct proc_ns_operations netns_operations = {
959 	.name		= "net",
960 	.type		= CLONE_NEWNET,
961 	.get		= netns_get,
962 	.put		= netns_put,
963 	.install	= netns_install,
964 };
965 #endif
966