1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 23 #include <net/sock.h> 24 #include <net/netlink.h> 25 #include <net/net_namespace.h> 26 #include <net/netns/generic.h> 27 28 /* 29 * Our network namespace constructor/destructor lists 30 */ 31 32 static LIST_HEAD(pernet_list); 33 static struct list_head *first_device = &pernet_list; 34 35 LIST_HEAD(net_namespace_list); 36 EXPORT_SYMBOL_GPL(net_namespace_list); 37 38 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 39 DECLARE_RWSEM(net_rwsem); 40 EXPORT_SYMBOL_GPL(net_rwsem); 41 42 struct net init_net = { 43 .count = REFCOUNT_INIT(1), 44 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 45 }; 46 EXPORT_SYMBOL(init_net); 47 48 static bool init_net_initialized; 49 /* 50 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 51 * init_net_initialized and first_device pointer. 52 * This is internal net namespace object. Please, don't use it 53 * outside. 54 */ 55 DECLARE_RWSEM(pernet_ops_rwsem); 56 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 57 58 #define MIN_PERNET_OPS_ID \ 59 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 60 61 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 62 63 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 64 65 static struct net_generic *net_alloc_generic(void) 66 { 67 struct net_generic *ng; 68 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 69 70 ng = kzalloc(generic_size, GFP_KERNEL); 71 if (ng) 72 ng->s.len = max_gen_ptrs; 73 74 return ng; 75 } 76 77 static int net_assign_generic(struct net *net, unsigned int id, void *data) 78 { 79 struct net_generic *ng, *old_ng; 80 81 BUG_ON(id < MIN_PERNET_OPS_ID); 82 83 old_ng = rcu_dereference_protected(net->gen, 84 lockdep_is_held(&pernet_ops_rwsem)); 85 if (old_ng->s.len > id) { 86 old_ng->ptr[id] = data; 87 return 0; 88 } 89 90 ng = net_alloc_generic(); 91 if (ng == NULL) 92 return -ENOMEM; 93 94 /* 95 * Some synchronisation notes: 96 * 97 * The net_generic explores the net->gen array inside rcu 98 * read section. Besides once set the net->gen->ptr[x] 99 * pointer never changes (see rules in netns/generic.h). 100 * 101 * That said, we simply duplicate this array and schedule 102 * the old copy for kfree after a grace period. 103 */ 104 105 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 106 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 107 ng->ptr[id] = data; 108 109 rcu_assign_pointer(net->gen, ng); 110 kfree_rcu(old_ng, s.rcu); 111 return 0; 112 } 113 114 static int ops_init(const struct pernet_operations *ops, struct net *net) 115 { 116 int err = -ENOMEM; 117 void *data = NULL; 118 119 if (ops->id && ops->size) { 120 data = kzalloc(ops->size, GFP_KERNEL); 121 if (!data) 122 goto out; 123 124 err = net_assign_generic(net, *ops->id, data); 125 if (err) 126 goto cleanup; 127 } 128 err = 0; 129 if (ops->init) 130 err = ops->init(net); 131 if (!err) 132 return 0; 133 134 cleanup: 135 kfree(data); 136 137 out: 138 return err; 139 } 140 141 static void ops_free(const struct pernet_operations *ops, struct net *net) 142 { 143 if (ops->id && ops->size) { 144 kfree(net_generic(net, *ops->id)); 145 } 146 } 147 148 static void ops_pre_exit_list(const struct pernet_operations *ops, 149 struct list_head *net_exit_list) 150 { 151 struct net *net; 152 153 if (ops->pre_exit) { 154 list_for_each_entry(net, net_exit_list, exit_list) 155 ops->pre_exit(net); 156 } 157 } 158 159 static void ops_exit_list(const struct pernet_operations *ops, 160 struct list_head *net_exit_list) 161 { 162 struct net *net; 163 if (ops->exit) { 164 list_for_each_entry(net, net_exit_list, exit_list) 165 ops->exit(net); 166 } 167 if (ops->exit_batch) 168 ops->exit_batch(net_exit_list); 169 } 170 171 static void ops_free_list(const struct pernet_operations *ops, 172 struct list_head *net_exit_list) 173 { 174 struct net *net; 175 if (ops->size && ops->id) { 176 list_for_each_entry(net, net_exit_list, exit_list) 177 ops_free(ops, net); 178 } 179 } 180 181 /* should be called with nsid_lock held */ 182 static int alloc_netid(struct net *net, struct net *peer, int reqid) 183 { 184 int min = 0, max = 0; 185 186 if (reqid >= 0) { 187 min = reqid; 188 max = reqid + 1; 189 } 190 191 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 192 } 193 194 /* This function is used by idr_for_each(). If net is equal to peer, the 195 * function returns the id so that idr_for_each() stops. Because we cannot 196 * returns the id 0 (idr_for_each() will not stop), we return the magic value 197 * NET_ID_ZERO (-1) for it. 198 */ 199 #define NET_ID_ZERO -1 200 static int net_eq_idr(int id, void *net, void *peer) 201 { 202 if (net_eq(net, peer)) 203 return id ? : NET_ID_ZERO; 204 return 0; 205 } 206 207 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 208 * is set to true, thus the caller knows that the new id must be notified via 209 * rtnl. 210 */ 211 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 212 { 213 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 214 bool alloc_it = *alloc; 215 216 *alloc = false; 217 218 /* Magic value for id 0. */ 219 if (id == NET_ID_ZERO) 220 return 0; 221 if (id > 0) 222 return id; 223 224 if (alloc_it) { 225 id = alloc_netid(net, peer, -1); 226 *alloc = true; 227 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 228 } 229 230 return NETNSA_NSID_NOT_ASSIGNED; 231 } 232 233 /* should be called with nsid_lock held */ 234 static int __peernet2id(struct net *net, struct net *peer) 235 { 236 bool no = false; 237 238 return __peernet2id_alloc(net, peer, &no); 239 } 240 241 static void rtnl_net_notifyid(struct net *net, int cmd, int id); 242 /* This function returns the id of a peer netns. If no id is assigned, one will 243 * be allocated and returned. 244 */ 245 int peernet2id_alloc(struct net *net, struct net *peer) 246 { 247 bool alloc = false, alive = false; 248 int id; 249 250 if (refcount_read(&net->count) == 0) 251 return NETNSA_NSID_NOT_ASSIGNED; 252 spin_lock_bh(&net->nsid_lock); 253 /* 254 * When peer is obtained from RCU lists, we may race with 255 * its cleanup. Check whether it's alive, and this guarantees 256 * we never hash a peer back to net->netns_ids, after it has 257 * just been idr_remove()'d from there in cleanup_net(). 258 */ 259 if (maybe_get_net(peer)) 260 alive = alloc = true; 261 id = __peernet2id_alloc(net, peer, &alloc); 262 spin_unlock_bh(&net->nsid_lock); 263 if (alloc && id >= 0) 264 rtnl_net_notifyid(net, RTM_NEWNSID, id); 265 if (alive) 266 put_net(peer); 267 return id; 268 } 269 EXPORT_SYMBOL_GPL(peernet2id_alloc); 270 271 /* This function returns, if assigned, the id of a peer netns. */ 272 int peernet2id(struct net *net, struct net *peer) 273 { 274 int id; 275 276 spin_lock_bh(&net->nsid_lock); 277 id = __peernet2id(net, peer); 278 spin_unlock_bh(&net->nsid_lock); 279 return id; 280 } 281 EXPORT_SYMBOL(peernet2id); 282 283 /* This function returns true is the peer netns has an id assigned into the 284 * current netns. 285 */ 286 bool peernet_has_id(struct net *net, struct net *peer) 287 { 288 return peernet2id(net, peer) >= 0; 289 } 290 291 struct net *get_net_ns_by_id(struct net *net, int id) 292 { 293 struct net *peer; 294 295 if (id < 0) 296 return NULL; 297 298 rcu_read_lock(); 299 peer = idr_find(&net->netns_ids, id); 300 if (peer) 301 peer = maybe_get_net(peer); 302 rcu_read_unlock(); 303 304 return peer; 305 } 306 307 /* 308 * setup_net runs the initializers for the network namespace object. 309 */ 310 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 311 { 312 /* Must be called with pernet_ops_rwsem held */ 313 const struct pernet_operations *ops, *saved_ops; 314 int error = 0; 315 LIST_HEAD(net_exit_list); 316 317 refcount_set(&net->count, 1); 318 refcount_set(&net->passive, 1); 319 get_random_bytes(&net->hash_mix, sizeof(u32)); 320 net->dev_base_seq = 1; 321 net->user_ns = user_ns; 322 idr_init(&net->netns_ids); 323 spin_lock_init(&net->nsid_lock); 324 mutex_init(&net->ipv4.ra_mutex); 325 326 list_for_each_entry(ops, &pernet_list, list) { 327 error = ops_init(ops, net); 328 if (error < 0) 329 goto out_undo; 330 } 331 down_write(&net_rwsem); 332 list_add_tail_rcu(&net->list, &net_namespace_list); 333 up_write(&net_rwsem); 334 out: 335 return error; 336 337 out_undo: 338 /* Walk through the list backwards calling the exit functions 339 * for the pernet modules whose init functions did not fail. 340 */ 341 list_add(&net->exit_list, &net_exit_list); 342 saved_ops = ops; 343 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 344 ops_pre_exit_list(ops, &net_exit_list); 345 346 synchronize_rcu(); 347 348 ops = saved_ops; 349 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 350 ops_exit_list(ops, &net_exit_list); 351 352 ops = saved_ops; 353 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 354 ops_free_list(ops, &net_exit_list); 355 356 rcu_barrier(); 357 goto out; 358 } 359 360 static int __net_init net_defaults_init_net(struct net *net) 361 { 362 net->core.sysctl_somaxconn = SOMAXCONN; 363 return 0; 364 } 365 366 static struct pernet_operations net_defaults_ops = { 367 .init = net_defaults_init_net, 368 }; 369 370 static __init int net_defaults_init(void) 371 { 372 if (register_pernet_subsys(&net_defaults_ops)) 373 panic("Cannot initialize net default settings"); 374 375 return 0; 376 } 377 378 core_initcall(net_defaults_init); 379 380 #ifdef CONFIG_NET_NS 381 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 382 { 383 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 384 } 385 386 static void dec_net_namespaces(struct ucounts *ucounts) 387 { 388 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 389 } 390 391 static struct kmem_cache *net_cachep __ro_after_init; 392 static struct workqueue_struct *netns_wq; 393 394 static struct net *net_alloc(void) 395 { 396 struct net *net = NULL; 397 struct net_generic *ng; 398 399 ng = net_alloc_generic(); 400 if (!ng) 401 goto out; 402 403 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 404 if (!net) 405 goto out_free; 406 407 rcu_assign_pointer(net->gen, ng); 408 out: 409 return net; 410 411 out_free: 412 kfree(ng); 413 goto out; 414 } 415 416 static void net_free(struct net *net) 417 { 418 kfree(rcu_access_pointer(net->gen)); 419 kmem_cache_free(net_cachep, net); 420 } 421 422 void net_drop_ns(void *p) 423 { 424 struct net *ns = p; 425 if (ns && refcount_dec_and_test(&ns->passive)) 426 net_free(ns); 427 } 428 429 struct net *copy_net_ns(unsigned long flags, 430 struct user_namespace *user_ns, struct net *old_net) 431 { 432 struct ucounts *ucounts; 433 struct net *net; 434 int rv; 435 436 if (!(flags & CLONE_NEWNET)) 437 return get_net(old_net); 438 439 ucounts = inc_net_namespaces(user_ns); 440 if (!ucounts) 441 return ERR_PTR(-ENOSPC); 442 443 net = net_alloc(); 444 if (!net) { 445 rv = -ENOMEM; 446 goto dec_ucounts; 447 } 448 refcount_set(&net->passive, 1); 449 net->ucounts = ucounts; 450 get_user_ns(user_ns); 451 452 rv = down_read_killable(&pernet_ops_rwsem); 453 if (rv < 0) 454 goto put_userns; 455 456 rv = setup_net(net, user_ns); 457 458 up_read(&pernet_ops_rwsem); 459 460 if (rv < 0) { 461 put_userns: 462 put_user_ns(user_ns); 463 net_drop_ns(net); 464 dec_ucounts: 465 dec_net_namespaces(ucounts); 466 return ERR_PTR(rv); 467 } 468 return net; 469 } 470 471 /** 472 * net_ns_get_ownership - get sysfs ownership data for @net 473 * @net: network namespace in question (can be NULL) 474 * @uid: kernel user ID for sysfs objects 475 * @gid: kernel group ID for sysfs objects 476 * 477 * Returns the uid/gid pair of root in the user namespace associated with the 478 * given network namespace. 479 */ 480 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 481 { 482 if (net) { 483 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 484 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 485 486 if (uid_valid(ns_root_uid)) 487 *uid = ns_root_uid; 488 489 if (gid_valid(ns_root_gid)) 490 *gid = ns_root_gid; 491 } else { 492 *uid = GLOBAL_ROOT_UID; 493 *gid = GLOBAL_ROOT_GID; 494 } 495 } 496 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 497 498 static void unhash_nsid(struct net *net, struct net *last) 499 { 500 struct net *tmp; 501 /* This function is only called from cleanup_net() work, 502 * and this work is the only process, that may delete 503 * a net from net_namespace_list. So, when the below 504 * is executing, the list may only grow. Thus, we do not 505 * use for_each_net_rcu() or net_rwsem. 506 */ 507 for_each_net(tmp) { 508 int id; 509 510 spin_lock_bh(&tmp->nsid_lock); 511 id = __peernet2id(tmp, net); 512 if (id >= 0) 513 idr_remove(&tmp->netns_ids, id); 514 spin_unlock_bh(&tmp->nsid_lock); 515 if (id >= 0) 516 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 517 if (tmp == last) 518 break; 519 } 520 spin_lock_bh(&net->nsid_lock); 521 idr_destroy(&net->netns_ids); 522 spin_unlock_bh(&net->nsid_lock); 523 } 524 525 static LLIST_HEAD(cleanup_list); 526 527 static void cleanup_net(struct work_struct *work) 528 { 529 const struct pernet_operations *ops; 530 struct net *net, *tmp, *last; 531 struct llist_node *net_kill_list; 532 LIST_HEAD(net_exit_list); 533 534 /* Atomically snapshot the list of namespaces to cleanup */ 535 net_kill_list = llist_del_all(&cleanup_list); 536 537 down_read(&pernet_ops_rwsem); 538 539 /* Don't let anyone else find us. */ 540 down_write(&net_rwsem); 541 llist_for_each_entry(net, net_kill_list, cleanup_list) 542 list_del_rcu(&net->list); 543 /* Cache last net. After we unlock rtnl, no one new net 544 * added to net_namespace_list can assign nsid pointer 545 * to a net from net_kill_list (see peernet2id_alloc()). 546 * So, we skip them in unhash_nsid(). 547 * 548 * Note, that unhash_nsid() does not delete nsid links 549 * between net_kill_list's nets, as they've already 550 * deleted from net_namespace_list. But, this would be 551 * useless anyway, as netns_ids are destroyed there. 552 */ 553 last = list_last_entry(&net_namespace_list, struct net, list); 554 up_write(&net_rwsem); 555 556 llist_for_each_entry(net, net_kill_list, cleanup_list) { 557 unhash_nsid(net, last); 558 list_add_tail(&net->exit_list, &net_exit_list); 559 } 560 561 /* Run all of the network namespace pre_exit methods */ 562 list_for_each_entry_reverse(ops, &pernet_list, list) 563 ops_pre_exit_list(ops, &net_exit_list); 564 565 /* 566 * Another CPU might be rcu-iterating the list, wait for it. 567 * This needs to be before calling the exit() notifiers, so 568 * the rcu_barrier() below isn't sufficient alone. 569 * Also the pre_exit() and exit() methods need this barrier. 570 */ 571 synchronize_rcu(); 572 573 /* Run all of the network namespace exit methods */ 574 list_for_each_entry_reverse(ops, &pernet_list, list) 575 ops_exit_list(ops, &net_exit_list); 576 577 /* Free the net generic variables */ 578 list_for_each_entry_reverse(ops, &pernet_list, list) 579 ops_free_list(ops, &net_exit_list); 580 581 up_read(&pernet_ops_rwsem); 582 583 /* Ensure there are no outstanding rcu callbacks using this 584 * network namespace. 585 */ 586 rcu_barrier(); 587 588 /* Finally it is safe to free my network namespace structure */ 589 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 590 list_del_init(&net->exit_list); 591 dec_net_namespaces(net->ucounts); 592 put_user_ns(net->user_ns); 593 net_drop_ns(net); 594 } 595 } 596 597 /** 598 * net_ns_barrier - wait until concurrent net_cleanup_work is done 599 * 600 * cleanup_net runs from work queue and will first remove namespaces 601 * from the global list, then run net exit functions. 602 * 603 * Call this in module exit path to make sure that all netns 604 * ->exit ops have been invoked before the function is removed. 605 */ 606 void net_ns_barrier(void) 607 { 608 down_write(&pernet_ops_rwsem); 609 up_write(&pernet_ops_rwsem); 610 } 611 EXPORT_SYMBOL(net_ns_barrier); 612 613 static DECLARE_WORK(net_cleanup_work, cleanup_net); 614 615 void __put_net(struct net *net) 616 { 617 /* Cleanup the network namespace in process context */ 618 if (llist_add(&net->cleanup_list, &cleanup_list)) 619 queue_work(netns_wq, &net_cleanup_work); 620 } 621 EXPORT_SYMBOL_GPL(__put_net); 622 623 struct net *get_net_ns_by_fd(int fd) 624 { 625 struct file *file; 626 struct ns_common *ns; 627 struct net *net; 628 629 file = proc_ns_fget(fd); 630 if (IS_ERR(file)) 631 return ERR_CAST(file); 632 633 ns = get_proc_ns(file_inode(file)); 634 if (ns->ops == &netns_operations) 635 net = get_net(container_of(ns, struct net, ns)); 636 else 637 net = ERR_PTR(-EINVAL); 638 639 fput(file); 640 return net; 641 } 642 643 #else 644 struct net *get_net_ns_by_fd(int fd) 645 { 646 return ERR_PTR(-EINVAL); 647 } 648 #endif 649 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 650 651 struct net *get_net_ns_by_pid(pid_t pid) 652 { 653 struct task_struct *tsk; 654 struct net *net; 655 656 /* Lookup the network namespace */ 657 net = ERR_PTR(-ESRCH); 658 rcu_read_lock(); 659 tsk = find_task_by_vpid(pid); 660 if (tsk) { 661 struct nsproxy *nsproxy; 662 task_lock(tsk); 663 nsproxy = tsk->nsproxy; 664 if (nsproxy) 665 net = get_net(nsproxy->net_ns); 666 task_unlock(tsk); 667 } 668 rcu_read_unlock(); 669 return net; 670 } 671 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 672 673 static __net_init int net_ns_net_init(struct net *net) 674 { 675 #ifdef CONFIG_NET_NS 676 net->ns.ops = &netns_operations; 677 #endif 678 return ns_alloc_inum(&net->ns); 679 } 680 681 static __net_exit void net_ns_net_exit(struct net *net) 682 { 683 ns_free_inum(&net->ns); 684 } 685 686 static struct pernet_operations __net_initdata net_ns_ops = { 687 .init = net_ns_net_init, 688 .exit = net_ns_net_exit, 689 }; 690 691 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 692 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 693 [NETNSA_NSID] = { .type = NLA_S32 }, 694 [NETNSA_PID] = { .type = NLA_U32 }, 695 [NETNSA_FD] = { .type = NLA_U32 }, 696 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 697 }; 698 699 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 700 struct netlink_ext_ack *extack) 701 { 702 struct net *net = sock_net(skb->sk); 703 struct nlattr *tb[NETNSA_MAX + 1]; 704 struct nlattr *nla; 705 struct net *peer; 706 int nsid, err; 707 708 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 709 NETNSA_MAX, rtnl_net_policy, extack); 710 if (err < 0) 711 return err; 712 if (!tb[NETNSA_NSID]) { 713 NL_SET_ERR_MSG(extack, "nsid is missing"); 714 return -EINVAL; 715 } 716 nsid = nla_get_s32(tb[NETNSA_NSID]); 717 718 if (tb[NETNSA_PID]) { 719 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 720 nla = tb[NETNSA_PID]; 721 } else if (tb[NETNSA_FD]) { 722 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 723 nla = tb[NETNSA_FD]; 724 } else { 725 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 726 return -EINVAL; 727 } 728 if (IS_ERR(peer)) { 729 NL_SET_BAD_ATTR(extack, nla); 730 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 731 return PTR_ERR(peer); 732 } 733 734 spin_lock_bh(&net->nsid_lock); 735 if (__peernet2id(net, peer) >= 0) { 736 spin_unlock_bh(&net->nsid_lock); 737 err = -EEXIST; 738 NL_SET_BAD_ATTR(extack, nla); 739 NL_SET_ERR_MSG(extack, 740 "Peer netns already has a nsid assigned"); 741 goto out; 742 } 743 744 err = alloc_netid(net, peer, nsid); 745 spin_unlock_bh(&net->nsid_lock); 746 if (err >= 0) { 747 rtnl_net_notifyid(net, RTM_NEWNSID, err); 748 err = 0; 749 } else if (err == -ENOSPC && nsid >= 0) { 750 err = -EEXIST; 751 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 752 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 753 } 754 out: 755 put_net(peer); 756 return err; 757 } 758 759 static int rtnl_net_get_size(void) 760 { 761 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 762 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 763 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 764 ; 765 } 766 767 struct net_fill_args { 768 u32 portid; 769 u32 seq; 770 int flags; 771 int cmd; 772 int nsid; 773 bool add_ref; 774 int ref_nsid; 775 }; 776 777 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 778 { 779 struct nlmsghdr *nlh; 780 struct rtgenmsg *rth; 781 782 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 783 args->flags); 784 if (!nlh) 785 return -EMSGSIZE; 786 787 rth = nlmsg_data(nlh); 788 rth->rtgen_family = AF_UNSPEC; 789 790 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 791 goto nla_put_failure; 792 793 if (args->add_ref && 794 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 795 goto nla_put_failure; 796 797 nlmsg_end(skb, nlh); 798 return 0; 799 800 nla_put_failure: 801 nlmsg_cancel(skb, nlh); 802 return -EMSGSIZE; 803 } 804 805 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 806 const struct nlmsghdr *nlh, 807 struct nlattr **tb, 808 struct netlink_ext_ack *extack) 809 { 810 int i, err; 811 812 if (!netlink_strict_get_check(skb)) 813 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 814 tb, NETNSA_MAX, rtnl_net_policy, 815 extack); 816 817 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 818 NETNSA_MAX, rtnl_net_policy, 819 extack); 820 if (err) 821 return err; 822 823 for (i = 0; i <= NETNSA_MAX; i++) { 824 if (!tb[i]) 825 continue; 826 827 switch (i) { 828 case NETNSA_PID: 829 case NETNSA_FD: 830 case NETNSA_NSID: 831 case NETNSA_TARGET_NSID: 832 break; 833 default: 834 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 835 return -EINVAL; 836 } 837 } 838 839 return 0; 840 } 841 842 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 843 struct netlink_ext_ack *extack) 844 { 845 struct net *net = sock_net(skb->sk); 846 struct nlattr *tb[NETNSA_MAX + 1]; 847 struct net_fill_args fillargs = { 848 .portid = NETLINK_CB(skb).portid, 849 .seq = nlh->nlmsg_seq, 850 .cmd = RTM_NEWNSID, 851 }; 852 struct net *peer, *target = net; 853 struct nlattr *nla; 854 struct sk_buff *msg; 855 int err; 856 857 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 858 if (err < 0) 859 return err; 860 if (tb[NETNSA_PID]) { 861 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 862 nla = tb[NETNSA_PID]; 863 } else if (tb[NETNSA_FD]) { 864 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 865 nla = tb[NETNSA_FD]; 866 } else if (tb[NETNSA_NSID]) { 867 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 868 if (!peer) 869 peer = ERR_PTR(-ENOENT); 870 nla = tb[NETNSA_NSID]; 871 } else { 872 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 873 return -EINVAL; 874 } 875 876 if (IS_ERR(peer)) { 877 NL_SET_BAD_ATTR(extack, nla); 878 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 879 return PTR_ERR(peer); 880 } 881 882 if (tb[NETNSA_TARGET_NSID]) { 883 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 884 885 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 886 if (IS_ERR(target)) { 887 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 888 NL_SET_ERR_MSG(extack, 889 "Target netns reference is invalid"); 890 err = PTR_ERR(target); 891 goto out; 892 } 893 fillargs.add_ref = true; 894 fillargs.ref_nsid = peernet2id(net, peer); 895 } 896 897 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 898 if (!msg) { 899 err = -ENOMEM; 900 goto out; 901 } 902 903 fillargs.nsid = peernet2id(target, peer); 904 err = rtnl_net_fill(msg, &fillargs); 905 if (err < 0) 906 goto err_out; 907 908 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 909 goto out; 910 911 err_out: 912 nlmsg_free(msg); 913 out: 914 if (fillargs.add_ref) 915 put_net(target); 916 put_net(peer); 917 return err; 918 } 919 920 struct rtnl_net_dump_cb { 921 struct net *tgt_net; 922 struct net *ref_net; 923 struct sk_buff *skb; 924 struct net_fill_args fillargs; 925 int idx; 926 int s_idx; 927 }; 928 929 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 930 { 931 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 932 int ret; 933 934 if (net_cb->idx < net_cb->s_idx) 935 goto cont; 936 937 net_cb->fillargs.nsid = id; 938 if (net_cb->fillargs.add_ref) 939 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 940 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 941 if (ret < 0) 942 return ret; 943 944 cont: 945 net_cb->idx++; 946 return 0; 947 } 948 949 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 950 struct rtnl_net_dump_cb *net_cb, 951 struct netlink_callback *cb) 952 { 953 struct netlink_ext_ack *extack = cb->extack; 954 struct nlattr *tb[NETNSA_MAX + 1]; 955 int err, i; 956 957 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 958 NETNSA_MAX, rtnl_net_policy, 959 extack); 960 if (err < 0) 961 return err; 962 963 for (i = 0; i <= NETNSA_MAX; i++) { 964 if (!tb[i]) 965 continue; 966 967 if (i == NETNSA_TARGET_NSID) { 968 struct net *net; 969 970 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 971 if (IS_ERR(net)) { 972 NL_SET_BAD_ATTR(extack, tb[i]); 973 NL_SET_ERR_MSG(extack, 974 "Invalid target network namespace id"); 975 return PTR_ERR(net); 976 } 977 net_cb->fillargs.add_ref = true; 978 net_cb->ref_net = net_cb->tgt_net; 979 net_cb->tgt_net = net; 980 } else { 981 NL_SET_BAD_ATTR(extack, tb[i]); 982 NL_SET_ERR_MSG(extack, 983 "Unsupported attribute in dump request"); 984 return -EINVAL; 985 } 986 } 987 988 return 0; 989 } 990 991 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 992 { 993 struct rtnl_net_dump_cb net_cb = { 994 .tgt_net = sock_net(skb->sk), 995 .skb = skb, 996 .fillargs = { 997 .portid = NETLINK_CB(cb->skb).portid, 998 .seq = cb->nlh->nlmsg_seq, 999 .flags = NLM_F_MULTI, 1000 .cmd = RTM_NEWNSID, 1001 }, 1002 .idx = 0, 1003 .s_idx = cb->args[0], 1004 }; 1005 int err = 0; 1006 1007 if (cb->strict_check) { 1008 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1009 if (err < 0) 1010 goto end; 1011 } 1012 1013 spin_lock_bh(&net_cb.tgt_net->nsid_lock); 1014 if (net_cb.fillargs.add_ref && 1015 !net_eq(net_cb.ref_net, net_cb.tgt_net) && 1016 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) { 1017 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1018 err = -EAGAIN; 1019 goto end; 1020 } 1021 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1022 if (net_cb.fillargs.add_ref && 1023 !net_eq(net_cb.ref_net, net_cb.tgt_net)) 1024 spin_unlock_bh(&net_cb.ref_net->nsid_lock); 1025 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1026 1027 cb->args[0] = net_cb.idx; 1028 end: 1029 if (net_cb.fillargs.add_ref) 1030 put_net(net_cb.tgt_net); 1031 return err < 0 ? err : skb->len; 1032 } 1033 1034 static void rtnl_net_notifyid(struct net *net, int cmd, int id) 1035 { 1036 struct net_fill_args fillargs = { 1037 .cmd = cmd, 1038 .nsid = id, 1039 }; 1040 struct sk_buff *msg; 1041 int err = -ENOMEM; 1042 1043 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1044 if (!msg) 1045 goto out; 1046 1047 err = rtnl_net_fill(msg, &fillargs); 1048 if (err < 0) 1049 goto err_out; 1050 1051 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 1052 return; 1053 1054 err_out: 1055 nlmsg_free(msg); 1056 out: 1057 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1058 } 1059 1060 static int __init net_ns_init(void) 1061 { 1062 struct net_generic *ng; 1063 1064 #ifdef CONFIG_NET_NS 1065 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1066 SMP_CACHE_BYTES, 1067 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1068 1069 /* Create workqueue for cleanup */ 1070 netns_wq = create_singlethread_workqueue("netns"); 1071 if (!netns_wq) 1072 panic("Could not create netns workq"); 1073 #endif 1074 1075 ng = net_alloc_generic(); 1076 if (!ng) 1077 panic("Could not allocate generic netns"); 1078 1079 rcu_assign_pointer(init_net.gen, ng); 1080 1081 down_write(&pernet_ops_rwsem); 1082 if (setup_net(&init_net, &init_user_ns)) 1083 panic("Could not setup the initial network namespace"); 1084 1085 init_net_initialized = true; 1086 up_write(&pernet_ops_rwsem); 1087 1088 if (register_pernet_subsys(&net_ns_ops)) 1089 panic("Could not register network namespace subsystems"); 1090 1091 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1092 RTNL_FLAG_DOIT_UNLOCKED); 1093 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1094 RTNL_FLAG_DOIT_UNLOCKED); 1095 1096 return 0; 1097 } 1098 1099 pure_initcall(net_ns_init); 1100 1101 #ifdef CONFIG_NET_NS 1102 static int __register_pernet_operations(struct list_head *list, 1103 struct pernet_operations *ops) 1104 { 1105 struct net *net; 1106 int error; 1107 LIST_HEAD(net_exit_list); 1108 1109 list_add_tail(&ops->list, list); 1110 if (ops->init || (ops->id && ops->size)) { 1111 /* We held write locked pernet_ops_rwsem, and parallel 1112 * setup_net() and cleanup_net() are not possible. 1113 */ 1114 for_each_net(net) { 1115 error = ops_init(ops, net); 1116 if (error) 1117 goto out_undo; 1118 list_add_tail(&net->exit_list, &net_exit_list); 1119 } 1120 } 1121 return 0; 1122 1123 out_undo: 1124 /* If I have an error cleanup all namespaces I initialized */ 1125 list_del(&ops->list); 1126 ops_pre_exit_list(ops, &net_exit_list); 1127 synchronize_rcu(); 1128 ops_exit_list(ops, &net_exit_list); 1129 ops_free_list(ops, &net_exit_list); 1130 return error; 1131 } 1132 1133 static void __unregister_pernet_operations(struct pernet_operations *ops) 1134 { 1135 struct net *net; 1136 LIST_HEAD(net_exit_list); 1137 1138 list_del(&ops->list); 1139 /* See comment in __register_pernet_operations() */ 1140 for_each_net(net) 1141 list_add_tail(&net->exit_list, &net_exit_list); 1142 ops_pre_exit_list(ops, &net_exit_list); 1143 synchronize_rcu(); 1144 ops_exit_list(ops, &net_exit_list); 1145 ops_free_list(ops, &net_exit_list); 1146 } 1147 1148 #else 1149 1150 static int __register_pernet_operations(struct list_head *list, 1151 struct pernet_operations *ops) 1152 { 1153 if (!init_net_initialized) { 1154 list_add_tail(&ops->list, list); 1155 return 0; 1156 } 1157 1158 return ops_init(ops, &init_net); 1159 } 1160 1161 static void __unregister_pernet_operations(struct pernet_operations *ops) 1162 { 1163 if (!init_net_initialized) { 1164 list_del(&ops->list); 1165 } else { 1166 LIST_HEAD(net_exit_list); 1167 list_add(&init_net.exit_list, &net_exit_list); 1168 ops_pre_exit_list(ops, &net_exit_list); 1169 synchronize_rcu(); 1170 ops_exit_list(ops, &net_exit_list); 1171 ops_free_list(ops, &net_exit_list); 1172 } 1173 } 1174 1175 #endif /* CONFIG_NET_NS */ 1176 1177 static DEFINE_IDA(net_generic_ids); 1178 1179 static int register_pernet_operations(struct list_head *list, 1180 struct pernet_operations *ops) 1181 { 1182 int error; 1183 1184 if (ops->id) { 1185 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1186 GFP_KERNEL); 1187 if (error < 0) 1188 return error; 1189 *ops->id = error; 1190 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1191 } 1192 error = __register_pernet_operations(list, ops); 1193 if (error) { 1194 rcu_barrier(); 1195 if (ops->id) 1196 ida_free(&net_generic_ids, *ops->id); 1197 } 1198 1199 return error; 1200 } 1201 1202 static void unregister_pernet_operations(struct pernet_operations *ops) 1203 { 1204 __unregister_pernet_operations(ops); 1205 rcu_barrier(); 1206 if (ops->id) 1207 ida_free(&net_generic_ids, *ops->id); 1208 } 1209 1210 /** 1211 * register_pernet_subsys - register a network namespace subsystem 1212 * @ops: pernet operations structure for the subsystem 1213 * 1214 * Register a subsystem which has init and exit functions 1215 * that are called when network namespaces are created and 1216 * destroyed respectively. 1217 * 1218 * When registered all network namespace init functions are 1219 * called for every existing network namespace. Allowing kernel 1220 * modules to have a race free view of the set of network namespaces. 1221 * 1222 * When a new network namespace is created all of the init 1223 * methods are called in the order in which they were registered. 1224 * 1225 * When a network namespace is destroyed all of the exit methods 1226 * are called in the reverse of the order with which they were 1227 * registered. 1228 */ 1229 int register_pernet_subsys(struct pernet_operations *ops) 1230 { 1231 int error; 1232 down_write(&pernet_ops_rwsem); 1233 error = register_pernet_operations(first_device, ops); 1234 up_write(&pernet_ops_rwsem); 1235 return error; 1236 } 1237 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1238 1239 /** 1240 * unregister_pernet_subsys - unregister a network namespace subsystem 1241 * @ops: pernet operations structure to manipulate 1242 * 1243 * Remove the pernet operations structure from the list to be 1244 * used when network namespaces are created or destroyed. In 1245 * addition run the exit method for all existing network 1246 * namespaces. 1247 */ 1248 void unregister_pernet_subsys(struct pernet_operations *ops) 1249 { 1250 down_write(&pernet_ops_rwsem); 1251 unregister_pernet_operations(ops); 1252 up_write(&pernet_ops_rwsem); 1253 } 1254 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1255 1256 /** 1257 * register_pernet_device - register a network namespace device 1258 * @ops: pernet operations structure for the subsystem 1259 * 1260 * Register a device which has init and exit functions 1261 * that are called when network namespaces are created and 1262 * destroyed respectively. 1263 * 1264 * When registered all network namespace init functions are 1265 * called for every existing network namespace. Allowing kernel 1266 * modules to have a race free view of the set of network namespaces. 1267 * 1268 * When a new network namespace is created all of the init 1269 * methods are called in the order in which they were registered. 1270 * 1271 * When a network namespace is destroyed all of the exit methods 1272 * are called in the reverse of the order with which they were 1273 * registered. 1274 */ 1275 int register_pernet_device(struct pernet_operations *ops) 1276 { 1277 int error; 1278 down_write(&pernet_ops_rwsem); 1279 error = register_pernet_operations(&pernet_list, ops); 1280 if (!error && (first_device == &pernet_list)) 1281 first_device = &ops->list; 1282 up_write(&pernet_ops_rwsem); 1283 return error; 1284 } 1285 EXPORT_SYMBOL_GPL(register_pernet_device); 1286 1287 /** 1288 * unregister_pernet_device - unregister a network namespace netdevice 1289 * @ops: pernet operations structure to manipulate 1290 * 1291 * Remove the pernet operations structure from the list to be 1292 * used when network namespaces are created or destroyed. In 1293 * addition run the exit method for all existing network 1294 * namespaces. 1295 */ 1296 void unregister_pernet_device(struct pernet_operations *ops) 1297 { 1298 down_write(&pernet_ops_rwsem); 1299 if (&ops->list == first_device) 1300 first_device = first_device->next; 1301 unregister_pernet_operations(ops); 1302 up_write(&pernet_ops_rwsem); 1303 } 1304 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1305 1306 #ifdef CONFIG_NET_NS 1307 static struct ns_common *netns_get(struct task_struct *task) 1308 { 1309 struct net *net = NULL; 1310 struct nsproxy *nsproxy; 1311 1312 task_lock(task); 1313 nsproxy = task->nsproxy; 1314 if (nsproxy) 1315 net = get_net(nsproxy->net_ns); 1316 task_unlock(task); 1317 1318 return net ? &net->ns : NULL; 1319 } 1320 1321 static inline struct net *to_net_ns(struct ns_common *ns) 1322 { 1323 return container_of(ns, struct net, ns); 1324 } 1325 1326 static void netns_put(struct ns_common *ns) 1327 { 1328 put_net(to_net_ns(ns)); 1329 } 1330 1331 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1332 { 1333 struct net *net = to_net_ns(ns); 1334 1335 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1336 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1337 return -EPERM; 1338 1339 put_net(nsproxy->net_ns); 1340 nsproxy->net_ns = get_net(net); 1341 return 0; 1342 } 1343 1344 static struct user_namespace *netns_owner(struct ns_common *ns) 1345 { 1346 return to_net_ns(ns)->user_ns; 1347 } 1348 1349 const struct proc_ns_operations netns_operations = { 1350 .name = "net", 1351 .type = CLONE_NEWNET, 1352 .get = netns_get, 1353 .put = netns_put, 1354 .install = netns_install, 1355 .owner = netns_owner, 1356 }; 1357 #endif 1358