xref: /openbmc/linux/net/core/net_namespace.c (revision 4abfd597)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 
24 #include <net/sock.h>
25 #include <net/netlink.h>
26 #include <net/net_namespace.h>
27 #include <net/netns/generic.h>
28 
29 /*
30  *	Our network namespace constructor/destructor lists
31  */
32 
33 static LIST_HEAD(pernet_list);
34 static struct list_head *first_device = &pernet_list;
35 
36 LIST_HEAD(net_namespace_list);
37 EXPORT_SYMBOL_GPL(net_namespace_list);
38 
39 /* Protects net_namespace_list. Nests iside rtnl_lock() */
40 DECLARE_RWSEM(net_rwsem);
41 EXPORT_SYMBOL_GPL(net_rwsem);
42 
43 #ifdef CONFIG_KEYS
44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
45 #endif
46 
47 struct net init_net = {
48 	.count		= REFCOUNT_INIT(1),
49 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
50 #ifdef CONFIG_KEYS
51 	.key_domain	= &init_net_key_domain,
52 #endif
53 };
54 EXPORT_SYMBOL(init_net);
55 
56 static bool init_net_initialized;
57 /*
58  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
59  * init_net_initialized and first_device pointer.
60  * This is internal net namespace object. Please, don't use it
61  * outside.
62  */
63 DECLARE_RWSEM(pernet_ops_rwsem);
64 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
65 
66 #define MIN_PERNET_OPS_ID	\
67 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
68 
69 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
70 
71 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
72 
73 DEFINE_COOKIE(net_cookie);
74 
75 u64 __net_gen_cookie(struct net *net)
76 {
77 	while (1) {
78 		u64 res = atomic64_read(&net->net_cookie);
79 
80 		if (res)
81 			return res;
82 		res = gen_cookie_next(&net_cookie);
83 		atomic64_cmpxchg(&net->net_cookie, 0, res);
84 	}
85 }
86 
87 static struct net_generic *net_alloc_generic(void)
88 {
89 	struct net_generic *ng;
90 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
91 
92 	ng = kzalloc(generic_size, GFP_KERNEL);
93 	if (ng)
94 		ng->s.len = max_gen_ptrs;
95 
96 	return ng;
97 }
98 
99 static int net_assign_generic(struct net *net, unsigned int id, void *data)
100 {
101 	struct net_generic *ng, *old_ng;
102 
103 	BUG_ON(id < MIN_PERNET_OPS_ID);
104 
105 	old_ng = rcu_dereference_protected(net->gen,
106 					   lockdep_is_held(&pernet_ops_rwsem));
107 	if (old_ng->s.len > id) {
108 		old_ng->ptr[id] = data;
109 		return 0;
110 	}
111 
112 	ng = net_alloc_generic();
113 	if (ng == NULL)
114 		return -ENOMEM;
115 
116 	/*
117 	 * Some synchronisation notes:
118 	 *
119 	 * The net_generic explores the net->gen array inside rcu
120 	 * read section. Besides once set the net->gen->ptr[x]
121 	 * pointer never changes (see rules in netns/generic.h).
122 	 *
123 	 * That said, we simply duplicate this array and schedule
124 	 * the old copy for kfree after a grace period.
125 	 */
126 
127 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
128 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
129 	ng->ptr[id] = data;
130 
131 	rcu_assign_pointer(net->gen, ng);
132 	kfree_rcu(old_ng, s.rcu);
133 	return 0;
134 }
135 
136 static int ops_init(const struct pernet_operations *ops, struct net *net)
137 {
138 	int err = -ENOMEM;
139 	void *data = NULL;
140 
141 	if (ops->id && ops->size) {
142 		data = kzalloc(ops->size, GFP_KERNEL);
143 		if (!data)
144 			goto out;
145 
146 		err = net_assign_generic(net, *ops->id, data);
147 		if (err)
148 			goto cleanup;
149 	}
150 	err = 0;
151 	if (ops->init)
152 		err = ops->init(net);
153 	if (!err)
154 		return 0;
155 
156 cleanup:
157 	kfree(data);
158 
159 out:
160 	return err;
161 }
162 
163 static void ops_free(const struct pernet_operations *ops, struct net *net)
164 {
165 	if (ops->id && ops->size) {
166 		kfree(net_generic(net, *ops->id));
167 	}
168 }
169 
170 static void ops_pre_exit_list(const struct pernet_operations *ops,
171 			      struct list_head *net_exit_list)
172 {
173 	struct net *net;
174 
175 	if (ops->pre_exit) {
176 		list_for_each_entry(net, net_exit_list, exit_list)
177 			ops->pre_exit(net);
178 	}
179 }
180 
181 static void ops_exit_list(const struct pernet_operations *ops,
182 			  struct list_head *net_exit_list)
183 {
184 	struct net *net;
185 	if (ops->exit) {
186 		list_for_each_entry(net, net_exit_list, exit_list)
187 			ops->exit(net);
188 	}
189 	if (ops->exit_batch)
190 		ops->exit_batch(net_exit_list);
191 }
192 
193 static void ops_free_list(const struct pernet_operations *ops,
194 			  struct list_head *net_exit_list)
195 {
196 	struct net *net;
197 	if (ops->size && ops->id) {
198 		list_for_each_entry(net, net_exit_list, exit_list)
199 			ops_free(ops, net);
200 	}
201 }
202 
203 /* should be called with nsid_lock held */
204 static int alloc_netid(struct net *net, struct net *peer, int reqid)
205 {
206 	int min = 0, max = 0;
207 
208 	if (reqid >= 0) {
209 		min = reqid;
210 		max = reqid + 1;
211 	}
212 
213 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
214 }
215 
216 /* This function is used by idr_for_each(). If net is equal to peer, the
217  * function returns the id so that idr_for_each() stops. Because we cannot
218  * returns the id 0 (idr_for_each() will not stop), we return the magic value
219  * NET_ID_ZERO (-1) for it.
220  */
221 #define NET_ID_ZERO -1
222 static int net_eq_idr(int id, void *net, void *peer)
223 {
224 	if (net_eq(net, peer))
225 		return id ? : NET_ID_ZERO;
226 	return 0;
227 }
228 
229 /* Must be called from RCU-critical section or with nsid_lock held */
230 static int __peernet2id(const struct net *net, struct net *peer)
231 {
232 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
233 
234 	/* Magic value for id 0. */
235 	if (id == NET_ID_ZERO)
236 		return 0;
237 	if (id > 0)
238 		return id;
239 
240 	return NETNSA_NSID_NOT_ASSIGNED;
241 }
242 
243 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
244 			      struct nlmsghdr *nlh, gfp_t gfp);
245 /* This function returns the id of a peer netns. If no id is assigned, one will
246  * be allocated and returned.
247  */
248 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
249 {
250 	int id;
251 
252 	if (refcount_read(&net->count) == 0)
253 		return NETNSA_NSID_NOT_ASSIGNED;
254 
255 	spin_lock_bh(&net->nsid_lock);
256 	id = __peernet2id(net, peer);
257 	if (id >= 0) {
258 		spin_unlock_bh(&net->nsid_lock);
259 		return id;
260 	}
261 
262 	/* When peer is obtained from RCU lists, we may race with
263 	 * its cleanup. Check whether it's alive, and this guarantees
264 	 * we never hash a peer back to net->netns_ids, after it has
265 	 * just been idr_remove()'d from there in cleanup_net().
266 	 */
267 	if (!maybe_get_net(peer)) {
268 		spin_unlock_bh(&net->nsid_lock);
269 		return NETNSA_NSID_NOT_ASSIGNED;
270 	}
271 
272 	id = alloc_netid(net, peer, -1);
273 	spin_unlock_bh(&net->nsid_lock);
274 
275 	put_net(peer);
276 	if (id < 0)
277 		return NETNSA_NSID_NOT_ASSIGNED;
278 
279 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
280 
281 	return id;
282 }
283 EXPORT_SYMBOL_GPL(peernet2id_alloc);
284 
285 /* This function returns, if assigned, the id of a peer netns. */
286 int peernet2id(const struct net *net, struct net *peer)
287 {
288 	int id;
289 
290 	rcu_read_lock();
291 	id = __peernet2id(net, peer);
292 	rcu_read_unlock();
293 
294 	return id;
295 }
296 EXPORT_SYMBOL(peernet2id);
297 
298 /* This function returns true is the peer netns has an id assigned into the
299  * current netns.
300  */
301 bool peernet_has_id(const struct net *net, struct net *peer)
302 {
303 	return peernet2id(net, peer) >= 0;
304 }
305 
306 struct net *get_net_ns_by_id(const struct net *net, int id)
307 {
308 	struct net *peer;
309 
310 	if (id < 0)
311 		return NULL;
312 
313 	rcu_read_lock();
314 	peer = idr_find(&net->netns_ids, id);
315 	if (peer)
316 		peer = maybe_get_net(peer);
317 	rcu_read_unlock();
318 
319 	return peer;
320 }
321 
322 /*
323  * setup_net runs the initializers for the network namespace object.
324  */
325 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
326 {
327 	/* Must be called with pernet_ops_rwsem held */
328 	const struct pernet_operations *ops, *saved_ops;
329 	int error = 0;
330 	LIST_HEAD(net_exit_list);
331 
332 	refcount_set(&net->count, 1);
333 	refcount_set(&net->passive, 1);
334 	get_random_bytes(&net->hash_mix, sizeof(u32));
335 	net->dev_base_seq = 1;
336 	net->user_ns = user_ns;
337 	idr_init(&net->netns_ids);
338 	spin_lock_init(&net->nsid_lock);
339 	mutex_init(&net->ipv4.ra_mutex);
340 
341 	list_for_each_entry(ops, &pernet_list, list) {
342 		error = ops_init(ops, net);
343 		if (error < 0)
344 			goto out_undo;
345 	}
346 	down_write(&net_rwsem);
347 	list_add_tail_rcu(&net->list, &net_namespace_list);
348 	up_write(&net_rwsem);
349 out:
350 	return error;
351 
352 out_undo:
353 	/* Walk through the list backwards calling the exit functions
354 	 * for the pernet modules whose init functions did not fail.
355 	 */
356 	list_add(&net->exit_list, &net_exit_list);
357 	saved_ops = ops;
358 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
359 		ops_pre_exit_list(ops, &net_exit_list);
360 
361 	synchronize_rcu();
362 
363 	ops = saved_ops;
364 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
365 		ops_exit_list(ops, &net_exit_list);
366 
367 	ops = saved_ops;
368 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
369 		ops_free_list(ops, &net_exit_list);
370 
371 	rcu_barrier();
372 	goto out;
373 }
374 
375 static int __net_init net_defaults_init_net(struct net *net)
376 {
377 	net->core.sysctl_somaxconn = SOMAXCONN;
378 	return 0;
379 }
380 
381 static struct pernet_operations net_defaults_ops = {
382 	.init = net_defaults_init_net,
383 };
384 
385 static __init int net_defaults_init(void)
386 {
387 	if (register_pernet_subsys(&net_defaults_ops))
388 		panic("Cannot initialize net default settings");
389 
390 	return 0;
391 }
392 
393 core_initcall(net_defaults_init);
394 
395 #ifdef CONFIG_NET_NS
396 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
397 {
398 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
399 }
400 
401 static void dec_net_namespaces(struct ucounts *ucounts)
402 {
403 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
404 }
405 
406 static struct kmem_cache *net_cachep __ro_after_init;
407 static struct workqueue_struct *netns_wq;
408 
409 static struct net *net_alloc(void)
410 {
411 	struct net *net = NULL;
412 	struct net_generic *ng;
413 
414 	ng = net_alloc_generic();
415 	if (!ng)
416 		goto out;
417 
418 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
419 	if (!net)
420 		goto out_free;
421 
422 #ifdef CONFIG_KEYS
423 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
424 	if (!net->key_domain)
425 		goto out_free_2;
426 	refcount_set(&net->key_domain->usage, 1);
427 #endif
428 
429 	rcu_assign_pointer(net->gen, ng);
430 out:
431 	return net;
432 
433 #ifdef CONFIG_KEYS
434 out_free_2:
435 	kmem_cache_free(net_cachep, net);
436 	net = NULL;
437 #endif
438 out_free:
439 	kfree(ng);
440 	goto out;
441 }
442 
443 static void net_free(struct net *net)
444 {
445 	kfree(rcu_access_pointer(net->gen));
446 	kmem_cache_free(net_cachep, net);
447 }
448 
449 void net_drop_ns(void *p)
450 {
451 	struct net *ns = p;
452 	if (ns && refcount_dec_and_test(&ns->passive))
453 		net_free(ns);
454 }
455 
456 struct net *copy_net_ns(unsigned long flags,
457 			struct user_namespace *user_ns, struct net *old_net)
458 {
459 	struct ucounts *ucounts;
460 	struct net *net;
461 	int rv;
462 
463 	if (!(flags & CLONE_NEWNET))
464 		return get_net(old_net);
465 
466 	ucounts = inc_net_namespaces(user_ns);
467 	if (!ucounts)
468 		return ERR_PTR(-ENOSPC);
469 
470 	net = net_alloc();
471 	if (!net) {
472 		rv = -ENOMEM;
473 		goto dec_ucounts;
474 	}
475 	refcount_set(&net->passive, 1);
476 	net->ucounts = ucounts;
477 	get_user_ns(user_ns);
478 
479 	rv = down_read_killable(&pernet_ops_rwsem);
480 	if (rv < 0)
481 		goto put_userns;
482 
483 	rv = setup_net(net, user_ns);
484 
485 	up_read(&pernet_ops_rwsem);
486 
487 	if (rv < 0) {
488 put_userns:
489 		key_remove_domain(net->key_domain);
490 		put_user_ns(user_ns);
491 		net_drop_ns(net);
492 dec_ucounts:
493 		dec_net_namespaces(ucounts);
494 		return ERR_PTR(rv);
495 	}
496 	return net;
497 }
498 
499 /**
500  * net_ns_get_ownership - get sysfs ownership data for @net
501  * @net: network namespace in question (can be NULL)
502  * @uid: kernel user ID for sysfs objects
503  * @gid: kernel group ID for sysfs objects
504  *
505  * Returns the uid/gid pair of root in the user namespace associated with the
506  * given network namespace.
507  */
508 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
509 {
510 	if (net) {
511 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
512 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
513 
514 		if (uid_valid(ns_root_uid))
515 			*uid = ns_root_uid;
516 
517 		if (gid_valid(ns_root_gid))
518 			*gid = ns_root_gid;
519 	} else {
520 		*uid = GLOBAL_ROOT_UID;
521 		*gid = GLOBAL_ROOT_GID;
522 	}
523 }
524 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
525 
526 static void unhash_nsid(struct net *net, struct net *last)
527 {
528 	struct net *tmp;
529 	/* This function is only called from cleanup_net() work,
530 	 * and this work is the only process, that may delete
531 	 * a net from net_namespace_list. So, when the below
532 	 * is executing, the list may only grow. Thus, we do not
533 	 * use for_each_net_rcu() or net_rwsem.
534 	 */
535 	for_each_net(tmp) {
536 		int id;
537 
538 		spin_lock_bh(&tmp->nsid_lock);
539 		id = __peernet2id(tmp, net);
540 		if (id >= 0)
541 			idr_remove(&tmp->netns_ids, id);
542 		spin_unlock_bh(&tmp->nsid_lock);
543 		if (id >= 0)
544 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
545 					  GFP_KERNEL);
546 		if (tmp == last)
547 			break;
548 	}
549 	spin_lock_bh(&net->nsid_lock);
550 	idr_destroy(&net->netns_ids);
551 	spin_unlock_bh(&net->nsid_lock);
552 }
553 
554 static LLIST_HEAD(cleanup_list);
555 
556 static void cleanup_net(struct work_struct *work)
557 {
558 	const struct pernet_operations *ops;
559 	struct net *net, *tmp, *last;
560 	struct llist_node *net_kill_list;
561 	LIST_HEAD(net_exit_list);
562 
563 	/* Atomically snapshot the list of namespaces to cleanup */
564 	net_kill_list = llist_del_all(&cleanup_list);
565 
566 	down_read(&pernet_ops_rwsem);
567 
568 	/* Don't let anyone else find us. */
569 	down_write(&net_rwsem);
570 	llist_for_each_entry(net, net_kill_list, cleanup_list)
571 		list_del_rcu(&net->list);
572 	/* Cache last net. After we unlock rtnl, no one new net
573 	 * added to net_namespace_list can assign nsid pointer
574 	 * to a net from net_kill_list (see peernet2id_alloc()).
575 	 * So, we skip them in unhash_nsid().
576 	 *
577 	 * Note, that unhash_nsid() does not delete nsid links
578 	 * between net_kill_list's nets, as they've already
579 	 * deleted from net_namespace_list. But, this would be
580 	 * useless anyway, as netns_ids are destroyed there.
581 	 */
582 	last = list_last_entry(&net_namespace_list, struct net, list);
583 	up_write(&net_rwsem);
584 
585 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
586 		unhash_nsid(net, last);
587 		list_add_tail(&net->exit_list, &net_exit_list);
588 	}
589 
590 	/* Run all of the network namespace pre_exit methods */
591 	list_for_each_entry_reverse(ops, &pernet_list, list)
592 		ops_pre_exit_list(ops, &net_exit_list);
593 
594 	/*
595 	 * Another CPU might be rcu-iterating the list, wait for it.
596 	 * This needs to be before calling the exit() notifiers, so
597 	 * the rcu_barrier() below isn't sufficient alone.
598 	 * Also the pre_exit() and exit() methods need this barrier.
599 	 */
600 	synchronize_rcu();
601 
602 	/* Run all of the network namespace exit methods */
603 	list_for_each_entry_reverse(ops, &pernet_list, list)
604 		ops_exit_list(ops, &net_exit_list);
605 
606 	/* Free the net generic variables */
607 	list_for_each_entry_reverse(ops, &pernet_list, list)
608 		ops_free_list(ops, &net_exit_list);
609 
610 	up_read(&pernet_ops_rwsem);
611 
612 	/* Ensure there are no outstanding rcu callbacks using this
613 	 * network namespace.
614 	 */
615 	rcu_barrier();
616 
617 	/* Finally it is safe to free my network namespace structure */
618 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
619 		list_del_init(&net->exit_list);
620 		dec_net_namespaces(net->ucounts);
621 		key_remove_domain(net->key_domain);
622 		put_user_ns(net->user_ns);
623 		net_drop_ns(net);
624 	}
625 }
626 
627 /**
628  * net_ns_barrier - wait until concurrent net_cleanup_work is done
629  *
630  * cleanup_net runs from work queue and will first remove namespaces
631  * from the global list, then run net exit functions.
632  *
633  * Call this in module exit path to make sure that all netns
634  * ->exit ops have been invoked before the function is removed.
635  */
636 void net_ns_barrier(void)
637 {
638 	down_write(&pernet_ops_rwsem);
639 	up_write(&pernet_ops_rwsem);
640 }
641 EXPORT_SYMBOL(net_ns_barrier);
642 
643 static DECLARE_WORK(net_cleanup_work, cleanup_net);
644 
645 void __put_net(struct net *net)
646 {
647 	/* Cleanup the network namespace in process context */
648 	if (llist_add(&net->cleanup_list, &cleanup_list))
649 		queue_work(netns_wq, &net_cleanup_work);
650 }
651 EXPORT_SYMBOL_GPL(__put_net);
652 
653 /**
654  * get_net_ns - increment the refcount of the network namespace
655  * @ns: common namespace (net)
656  *
657  * Returns the net's common namespace.
658  */
659 struct ns_common *get_net_ns(struct ns_common *ns)
660 {
661 	return &get_net(container_of(ns, struct net, ns))->ns;
662 }
663 EXPORT_SYMBOL_GPL(get_net_ns);
664 
665 struct net *get_net_ns_by_fd(int fd)
666 {
667 	struct file *file;
668 	struct ns_common *ns;
669 	struct net *net;
670 
671 	file = proc_ns_fget(fd);
672 	if (IS_ERR(file))
673 		return ERR_CAST(file);
674 
675 	ns = get_proc_ns(file_inode(file));
676 	if (ns->ops == &netns_operations)
677 		net = get_net(container_of(ns, struct net, ns));
678 	else
679 		net = ERR_PTR(-EINVAL);
680 
681 	fput(file);
682 	return net;
683 }
684 
685 #else
686 struct net *get_net_ns_by_fd(int fd)
687 {
688 	return ERR_PTR(-EINVAL);
689 }
690 #endif
691 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
692 
693 struct net *get_net_ns_by_pid(pid_t pid)
694 {
695 	struct task_struct *tsk;
696 	struct net *net;
697 
698 	/* Lookup the network namespace */
699 	net = ERR_PTR(-ESRCH);
700 	rcu_read_lock();
701 	tsk = find_task_by_vpid(pid);
702 	if (tsk) {
703 		struct nsproxy *nsproxy;
704 		task_lock(tsk);
705 		nsproxy = tsk->nsproxy;
706 		if (nsproxy)
707 			net = get_net(nsproxy->net_ns);
708 		task_unlock(tsk);
709 	}
710 	rcu_read_unlock();
711 	return net;
712 }
713 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
714 
715 static __net_init int net_ns_net_init(struct net *net)
716 {
717 #ifdef CONFIG_NET_NS
718 	net->ns.ops = &netns_operations;
719 #endif
720 	return ns_alloc_inum(&net->ns);
721 }
722 
723 static __net_exit void net_ns_net_exit(struct net *net)
724 {
725 	ns_free_inum(&net->ns);
726 }
727 
728 static struct pernet_operations __net_initdata net_ns_ops = {
729 	.init = net_ns_net_init,
730 	.exit = net_ns_net_exit,
731 };
732 
733 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
734 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
735 	[NETNSA_NSID]		= { .type = NLA_S32 },
736 	[NETNSA_PID]		= { .type = NLA_U32 },
737 	[NETNSA_FD]		= { .type = NLA_U32 },
738 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
739 };
740 
741 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
742 			  struct netlink_ext_ack *extack)
743 {
744 	struct net *net = sock_net(skb->sk);
745 	struct nlattr *tb[NETNSA_MAX + 1];
746 	struct nlattr *nla;
747 	struct net *peer;
748 	int nsid, err;
749 
750 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
751 				     NETNSA_MAX, rtnl_net_policy, extack);
752 	if (err < 0)
753 		return err;
754 	if (!tb[NETNSA_NSID]) {
755 		NL_SET_ERR_MSG(extack, "nsid is missing");
756 		return -EINVAL;
757 	}
758 	nsid = nla_get_s32(tb[NETNSA_NSID]);
759 
760 	if (tb[NETNSA_PID]) {
761 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
762 		nla = tb[NETNSA_PID];
763 	} else if (tb[NETNSA_FD]) {
764 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
765 		nla = tb[NETNSA_FD];
766 	} else {
767 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
768 		return -EINVAL;
769 	}
770 	if (IS_ERR(peer)) {
771 		NL_SET_BAD_ATTR(extack, nla);
772 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
773 		return PTR_ERR(peer);
774 	}
775 
776 	spin_lock_bh(&net->nsid_lock);
777 	if (__peernet2id(net, peer) >= 0) {
778 		spin_unlock_bh(&net->nsid_lock);
779 		err = -EEXIST;
780 		NL_SET_BAD_ATTR(extack, nla);
781 		NL_SET_ERR_MSG(extack,
782 			       "Peer netns already has a nsid assigned");
783 		goto out;
784 	}
785 
786 	err = alloc_netid(net, peer, nsid);
787 	spin_unlock_bh(&net->nsid_lock);
788 	if (err >= 0) {
789 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
790 				  nlh, GFP_KERNEL);
791 		err = 0;
792 	} else if (err == -ENOSPC && nsid >= 0) {
793 		err = -EEXIST;
794 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
795 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
796 	}
797 out:
798 	put_net(peer);
799 	return err;
800 }
801 
802 static int rtnl_net_get_size(void)
803 {
804 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
805 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
806 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
807 	       ;
808 }
809 
810 struct net_fill_args {
811 	u32 portid;
812 	u32 seq;
813 	int flags;
814 	int cmd;
815 	int nsid;
816 	bool add_ref;
817 	int ref_nsid;
818 };
819 
820 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
821 {
822 	struct nlmsghdr *nlh;
823 	struct rtgenmsg *rth;
824 
825 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
826 			args->flags);
827 	if (!nlh)
828 		return -EMSGSIZE;
829 
830 	rth = nlmsg_data(nlh);
831 	rth->rtgen_family = AF_UNSPEC;
832 
833 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
834 		goto nla_put_failure;
835 
836 	if (args->add_ref &&
837 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
838 		goto nla_put_failure;
839 
840 	nlmsg_end(skb, nlh);
841 	return 0;
842 
843 nla_put_failure:
844 	nlmsg_cancel(skb, nlh);
845 	return -EMSGSIZE;
846 }
847 
848 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
849 				    const struct nlmsghdr *nlh,
850 				    struct nlattr **tb,
851 				    struct netlink_ext_ack *extack)
852 {
853 	int i, err;
854 
855 	if (!netlink_strict_get_check(skb))
856 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
857 					      tb, NETNSA_MAX, rtnl_net_policy,
858 					      extack);
859 
860 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
861 					    NETNSA_MAX, rtnl_net_policy,
862 					    extack);
863 	if (err)
864 		return err;
865 
866 	for (i = 0; i <= NETNSA_MAX; i++) {
867 		if (!tb[i])
868 			continue;
869 
870 		switch (i) {
871 		case NETNSA_PID:
872 		case NETNSA_FD:
873 		case NETNSA_NSID:
874 		case NETNSA_TARGET_NSID:
875 			break;
876 		default:
877 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
878 			return -EINVAL;
879 		}
880 	}
881 
882 	return 0;
883 }
884 
885 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
886 			  struct netlink_ext_ack *extack)
887 {
888 	struct net *net = sock_net(skb->sk);
889 	struct nlattr *tb[NETNSA_MAX + 1];
890 	struct net_fill_args fillargs = {
891 		.portid = NETLINK_CB(skb).portid,
892 		.seq = nlh->nlmsg_seq,
893 		.cmd = RTM_NEWNSID,
894 	};
895 	struct net *peer, *target = net;
896 	struct nlattr *nla;
897 	struct sk_buff *msg;
898 	int err;
899 
900 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
901 	if (err < 0)
902 		return err;
903 	if (tb[NETNSA_PID]) {
904 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
905 		nla = tb[NETNSA_PID];
906 	} else if (tb[NETNSA_FD]) {
907 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
908 		nla = tb[NETNSA_FD];
909 	} else if (tb[NETNSA_NSID]) {
910 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
911 		if (!peer)
912 			peer = ERR_PTR(-ENOENT);
913 		nla = tb[NETNSA_NSID];
914 	} else {
915 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
916 		return -EINVAL;
917 	}
918 
919 	if (IS_ERR(peer)) {
920 		NL_SET_BAD_ATTR(extack, nla);
921 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
922 		return PTR_ERR(peer);
923 	}
924 
925 	if (tb[NETNSA_TARGET_NSID]) {
926 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
927 
928 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
929 		if (IS_ERR(target)) {
930 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
931 			NL_SET_ERR_MSG(extack,
932 				       "Target netns reference is invalid");
933 			err = PTR_ERR(target);
934 			goto out;
935 		}
936 		fillargs.add_ref = true;
937 		fillargs.ref_nsid = peernet2id(net, peer);
938 	}
939 
940 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
941 	if (!msg) {
942 		err = -ENOMEM;
943 		goto out;
944 	}
945 
946 	fillargs.nsid = peernet2id(target, peer);
947 	err = rtnl_net_fill(msg, &fillargs);
948 	if (err < 0)
949 		goto err_out;
950 
951 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
952 	goto out;
953 
954 err_out:
955 	nlmsg_free(msg);
956 out:
957 	if (fillargs.add_ref)
958 		put_net(target);
959 	put_net(peer);
960 	return err;
961 }
962 
963 struct rtnl_net_dump_cb {
964 	struct net *tgt_net;
965 	struct net *ref_net;
966 	struct sk_buff *skb;
967 	struct net_fill_args fillargs;
968 	int idx;
969 	int s_idx;
970 };
971 
972 /* Runs in RCU-critical section. */
973 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
974 {
975 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
976 	int ret;
977 
978 	if (net_cb->idx < net_cb->s_idx)
979 		goto cont;
980 
981 	net_cb->fillargs.nsid = id;
982 	if (net_cb->fillargs.add_ref)
983 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
984 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
985 	if (ret < 0)
986 		return ret;
987 
988 cont:
989 	net_cb->idx++;
990 	return 0;
991 }
992 
993 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
994 				   struct rtnl_net_dump_cb *net_cb,
995 				   struct netlink_callback *cb)
996 {
997 	struct netlink_ext_ack *extack = cb->extack;
998 	struct nlattr *tb[NETNSA_MAX + 1];
999 	int err, i;
1000 
1001 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1002 					    NETNSA_MAX, rtnl_net_policy,
1003 					    extack);
1004 	if (err < 0)
1005 		return err;
1006 
1007 	for (i = 0; i <= NETNSA_MAX; i++) {
1008 		if (!tb[i])
1009 			continue;
1010 
1011 		if (i == NETNSA_TARGET_NSID) {
1012 			struct net *net;
1013 
1014 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1015 			if (IS_ERR(net)) {
1016 				NL_SET_BAD_ATTR(extack, tb[i]);
1017 				NL_SET_ERR_MSG(extack,
1018 					       "Invalid target network namespace id");
1019 				return PTR_ERR(net);
1020 			}
1021 			net_cb->fillargs.add_ref = true;
1022 			net_cb->ref_net = net_cb->tgt_net;
1023 			net_cb->tgt_net = net;
1024 		} else {
1025 			NL_SET_BAD_ATTR(extack, tb[i]);
1026 			NL_SET_ERR_MSG(extack,
1027 				       "Unsupported attribute in dump request");
1028 			return -EINVAL;
1029 		}
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1036 {
1037 	struct rtnl_net_dump_cb net_cb = {
1038 		.tgt_net = sock_net(skb->sk),
1039 		.skb = skb,
1040 		.fillargs = {
1041 			.portid = NETLINK_CB(cb->skb).portid,
1042 			.seq = cb->nlh->nlmsg_seq,
1043 			.flags = NLM_F_MULTI,
1044 			.cmd = RTM_NEWNSID,
1045 		},
1046 		.idx = 0,
1047 		.s_idx = cb->args[0],
1048 	};
1049 	int err = 0;
1050 
1051 	if (cb->strict_check) {
1052 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1053 		if (err < 0)
1054 			goto end;
1055 	}
1056 
1057 	rcu_read_lock();
1058 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1059 	rcu_read_unlock();
1060 
1061 	cb->args[0] = net_cb.idx;
1062 end:
1063 	if (net_cb.fillargs.add_ref)
1064 		put_net(net_cb.tgt_net);
1065 	return err < 0 ? err : skb->len;
1066 }
1067 
1068 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1069 			      struct nlmsghdr *nlh, gfp_t gfp)
1070 {
1071 	struct net_fill_args fillargs = {
1072 		.portid = portid,
1073 		.seq = nlh ? nlh->nlmsg_seq : 0,
1074 		.cmd = cmd,
1075 		.nsid = id,
1076 	};
1077 	struct sk_buff *msg;
1078 	int err = -ENOMEM;
1079 
1080 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1081 	if (!msg)
1082 		goto out;
1083 
1084 	err = rtnl_net_fill(msg, &fillargs);
1085 	if (err < 0)
1086 		goto err_out;
1087 
1088 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1089 	return;
1090 
1091 err_out:
1092 	nlmsg_free(msg);
1093 out:
1094 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1095 }
1096 
1097 static int __init net_ns_init(void)
1098 {
1099 	struct net_generic *ng;
1100 
1101 #ifdef CONFIG_NET_NS
1102 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1103 					SMP_CACHE_BYTES,
1104 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1105 
1106 	/* Create workqueue for cleanup */
1107 	netns_wq = create_singlethread_workqueue("netns");
1108 	if (!netns_wq)
1109 		panic("Could not create netns workq");
1110 #endif
1111 
1112 	ng = net_alloc_generic();
1113 	if (!ng)
1114 		panic("Could not allocate generic netns");
1115 
1116 	rcu_assign_pointer(init_net.gen, ng);
1117 
1118 	preempt_disable();
1119 	__net_gen_cookie(&init_net);
1120 	preempt_enable();
1121 
1122 	down_write(&pernet_ops_rwsem);
1123 	if (setup_net(&init_net, &init_user_ns))
1124 		panic("Could not setup the initial network namespace");
1125 
1126 	init_net_initialized = true;
1127 	up_write(&pernet_ops_rwsem);
1128 
1129 	if (register_pernet_subsys(&net_ns_ops))
1130 		panic("Could not register network namespace subsystems");
1131 
1132 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1133 		      RTNL_FLAG_DOIT_UNLOCKED);
1134 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1135 		      RTNL_FLAG_DOIT_UNLOCKED);
1136 
1137 	return 0;
1138 }
1139 
1140 pure_initcall(net_ns_init);
1141 
1142 #ifdef CONFIG_NET_NS
1143 static int __register_pernet_operations(struct list_head *list,
1144 					struct pernet_operations *ops)
1145 {
1146 	struct net *net;
1147 	int error;
1148 	LIST_HEAD(net_exit_list);
1149 
1150 	list_add_tail(&ops->list, list);
1151 	if (ops->init || (ops->id && ops->size)) {
1152 		/* We held write locked pernet_ops_rwsem, and parallel
1153 		 * setup_net() and cleanup_net() are not possible.
1154 		 */
1155 		for_each_net(net) {
1156 			error = ops_init(ops, net);
1157 			if (error)
1158 				goto out_undo;
1159 			list_add_tail(&net->exit_list, &net_exit_list);
1160 		}
1161 	}
1162 	return 0;
1163 
1164 out_undo:
1165 	/* If I have an error cleanup all namespaces I initialized */
1166 	list_del(&ops->list);
1167 	ops_pre_exit_list(ops, &net_exit_list);
1168 	synchronize_rcu();
1169 	ops_exit_list(ops, &net_exit_list);
1170 	ops_free_list(ops, &net_exit_list);
1171 	return error;
1172 }
1173 
1174 static void __unregister_pernet_operations(struct pernet_operations *ops)
1175 {
1176 	struct net *net;
1177 	LIST_HEAD(net_exit_list);
1178 
1179 	list_del(&ops->list);
1180 	/* See comment in __register_pernet_operations() */
1181 	for_each_net(net)
1182 		list_add_tail(&net->exit_list, &net_exit_list);
1183 	ops_pre_exit_list(ops, &net_exit_list);
1184 	synchronize_rcu();
1185 	ops_exit_list(ops, &net_exit_list);
1186 	ops_free_list(ops, &net_exit_list);
1187 }
1188 
1189 #else
1190 
1191 static int __register_pernet_operations(struct list_head *list,
1192 					struct pernet_operations *ops)
1193 {
1194 	if (!init_net_initialized) {
1195 		list_add_tail(&ops->list, list);
1196 		return 0;
1197 	}
1198 
1199 	return ops_init(ops, &init_net);
1200 }
1201 
1202 static void __unregister_pernet_operations(struct pernet_operations *ops)
1203 {
1204 	if (!init_net_initialized) {
1205 		list_del(&ops->list);
1206 	} else {
1207 		LIST_HEAD(net_exit_list);
1208 		list_add(&init_net.exit_list, &net_exit_list);
1209 		ops_pre_exit_list(ops, &net_exit_list);
1210 		synchronize_rcu();
1211 		ops_exit_list(ops, &net_exit_list);
1212 		ops_free_list(ops, &net_exit_list);
1213 	}
1214 }
1215 
1216 #endif /* CONFIG_NET_NS */
1217 
1218 static DEFINE_IDA(net_generic_ids);
1219 
1220 static int register_pernet_operations(struct list_head *list,
1221 				      struct pernet_operations *ops)
1222 {
1223 	int error;
1224 
1225 	if (ops->id) {
1226 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1227 				GFP_KERNEL);
1228 		if (error < 0)
1229 			return error;
1230 		*ops->id = error;
1231 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1232 	}
1233 	error = __register_pernet_operations(list, ops);
1234 	if (error) {
1235 		rcu_barrier();
1236 		if (ops->id)
1237 			ida_free(&net_generic_ids, *ops->id);
1238 	}
1239 
1240 	return error;
1241 }
1242 
1243 static void unregister_pernet_operations(struct pernet_operations *ops)
1244 {
1245 	__unregister_pernet_operations(ops);
1246 	rcu_barrier();
1247 	if (ops->id)
1248 		ida_free(&net_generic_ids, *ops->id);
1249 }
1250 
1251 /**
1252  *      register_pernet_subsys - register a network namespace subsystem
1253  *	@ops:  pernet operations structure for the subsystem
1254  *
1255  *	Register a subsystem which has init and exit functions
1256  *	that are called when network namespaces are created and
1257  *	destroyed respectively.
1258  *
1259  *	When registered all network namespace init functions are
1260  *	called for every existing network namespace.  Allowing kernel
1261  *	modules to have a race free view of the set of network namespaces.
1262  *
1263  *	When a new network namespace is created all of the init
1264  *	methods are called in the order in which they were registered.
1265  *
1266  *	When a network namespace is destroyed all of the exit methods
1267  *	are called in the reverse of the order with which they were
1268  *	registered.
1269  */
1270 int register_pernet_subsys(struct pernet_operations *ops)
1271 {
1272 	int error;
1273 	down_write(&pernet_ops_rwsem);
1274 	error =  register_pernet_operations(first_device, ops);
1275 	up_write(&pernet_ops_rwsem);
1276 	return error;
1277 }
1278 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1279 
1280 /**
1281  *      unregister_pernet_subsys - unregister a network namespace subsystem
1282  *	@ops: pernet operations structure to manipulate
1283  *
1284  *	Remove the pernet operations structure from the list to be
1285  *	used when network namespaces are created or destroyed.  In
1286  *	addition run the exit method for all existing network
1287  *	namespaces.
1288  */
1289 void unregister_pernet_subsys(struct pernet_operations *ops)
1290 {
1291 	down_write(&pernet_ops_rwsem);
1292 	unregister_pernet_operations(ops);
1293 	up_write(&pernet_ops_rwsem);
1294 }
1295 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1296 
1297 /**
1298  *      register_pernet_device - register a network namespace device
1299  *	@ops:  pernet operations structure for the subsystem
1300  *
1301  *	Register a device which has init and exit functions
1302  *	that are called when network namespaces are created and
1303  *	destroyed respectively.
1304  *
1305  *	When registered all network namespace init functions are
1306  *	called for every existing network namespace.  Allowing kernel
1307  *	modules to have a race free view of the set of network namespaces.
1308  *
1309  *	When a new network namespace is created all of the init
1310  *	methods are called in the order in which they were registered.
1311  *
1312  *	When a network namespace is destroyed all of the exit methods
1313  *	are called in the reverse of the order with which they were
1314  *	registered.
1315  */
1316 int register_pernet_device(struct pernet_operations *ops)
1317 {
1318 	int error;
1319 	down_write(&pernet_ops_rwsem);
1320 	error = register_pernet_operations(&pernet_list, ops);
1321 	if (!error && (first_device == &pernet_list))
1322 		first_device = &ops->list;
1323 	up_write(&pernet_ops_rwsem);
1324 	return error;
1325 }
1326 EXPORT_SYMBOL_GPL(register_pernet_device);
1327 
1328 /**
1329  *      unregister_pernet_device - unregister a network namespace netdevice
1330  *	@ops: pernet operations structure to manipulate
1331  *
1332  *	Remove the pernet operations structure from the list to be
1333  *	used when network namespaces are created or destroyed.  In
1334  *	addition run the exit method for all existing network
1335  *	namespaces.
1336  */
1337 void unregister_pernet_device(struct pernet_operations *ops)
1338 {
1339 	down_write(&pernet_ops_rwsem);
1340 	if (&ops->list == first_device)
1341 		first_device = first_device->next;
1342 	unregister_pernet_operations(ops);
1343 	up_write(&pernet_ops_rwsem);
1344 }
1345 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1346 
1347 #ifdef CONFIG_NET_NS
1348 static struct ns_common *netns_get(struct task_struct *task)
1349 {
1350 	struct net *net = NULL;
1351 	struct nsproxy *nsproxy;
1352 
1353 	task_lock(task);
1354 	nsproxy = task->nsproxy;
1355 	if (nsproxy)
1356 		net = get_net(nsproxy->net_ns);
1357 	task_unlock(task);
1358 
1359 	return net ? &net->ns : NULL;
1360 }
1361 
1362 static inline struct net *to_net_ns(struct ns_common *ns)
1363 {
1364 	return container_of(ns, struct net, ns);
1365 }
1366 
1367 static void netns_put(struct ns_common *ns)
1368 {
1369 	put_net(to_net_ns(ns));
1370 }
1371 
1372 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1373 {
1374 	struct nsproxy *nsproxy = nsset->nsproxy;
1375 	struct net *net = to_net_ns(ns);
1376 
1377 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1378 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1379 		return -EPERM;
1380 
1381 	put_net(nsproxy->net_ns);
1382 	nsproxy->net_ns = get_net(net);
1383 	return 0;
1384 }
1385 
1386 static struct user_namespace *netns_owner(struct ns_common *ns)
1387 {
1388 	return to_net_ns(ns)->user_ns;
1389 }
1390 
1391 const struct proc_ns_operations netns_operations = {
1392 	.name		= "net",
1393 	.type		= CLONE_NEWNET,
1394 	.get		= netns_get,
1395 	.put		= netns_put,
1396 	.install	= netns_install,
1397 	.owner		= netns_owner,
1398 };
1399 #endif
1400