xref: /openbmc/linux/net/core/net_namespace.c (revision 4a7f7bc6)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 struct net init_net = {
38 	.count		= ATOMIC_INIT(1),
39 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42 
43 static bool init_net_initialized;
44 
45 #define MIN_PERNET_OPS_ID	\
46 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47 
48 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
49 
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51 
52 static struct net_generic *net_alloc_generic(void)
53 {
54 	struct net_generic *ng;
55 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56 
57 	ng = kzalloc(generic_size, GFP_KERNEL);
58 	if (ng)
59 		ng->s.len = max_gen_ptrs;
60 
61 	return ng;
62 }
63 
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 	struct net_generic *ng, *old_ng;
67 
68 	BUG_ON(!mutex_is_locked(&net_mutex));
69 	BUG_ON(id < MIN_PERNET_OPS_ID);
70 
71 	old_ng = rcu_dereference_protected(net->gen,
72 					   lockdep_is_held(&net_mutex));
73 	if (old_ng->s.len > id) {
74 		old_ng->ptr[id] = data;
75 		return 0;
76 	}
77 
78 	ng = net_alloc_generic();
79 	if (ng == NULL)
80 		return -ENOMEM;
81 
82 	/*
83 	 * Some synchronisation notes:
84 	 *
85 	 * The net_generic explores the net->gen array inside rcu
86 	 * read section. Besides once set the net->gen->ptr[x]
87 	 * pointer never changes (see rules in netns/generic.h).
88 	 *
89 	 * That said, we simply duplicate this array and schedule
90 	 * the old copy for kfree after a grace period.
91 	 */
92 
93 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 	ng->ptr[id] = data;
96 
97 	rcu_assign_pointer(net->gen, ng);
98 	kfree_rcu(old_ng, s.rcu);
99 	return 0;
100 }
101 
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 	int err = -ENOMEM;
105 	void *data = NULL;
106 
107 	if (ops->id && ops->size) {
108 		data = kzalloc(ops->size, GFP_KERNEL);
109 		if (!data)
110 			goto out;
111 
112 		err = net_assign_generic(net, *ops->id, data);
113 		if (err)
114 			goto cleanup;
115 	}
116 	err = 0;
117 	if (ops->init)
118 		err = ops->init(net);
119 	if (!err)
120 		return 0;
121 
122 cleanup:
123 	kfree(data);
124 
125 out:
126 	return err;
127 }
128 
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 	if (ops->id && ops->size) {
132 		kfree(net_generic(net, *ops->id));
133 	}
134 }
135 
136 static void ops_exit_list(const struct pernet_operations *ops,
137 			  struct list_head *net_exit_list)
138 {
139 	struct net *net;
140 	if (ops->exit) {
141 		list_for_each_entry(net, net_exit_list, exit_list)
142 			ops->exit(net);
143 	}
144 	if (ops->exit_batch)
145 		ops->exit_batch(net_exit_list);
146 }
147 
148 static void ops_free_list(const struct pernet_operations *ops,
149 			  struct list_head *net_exit_list)
150 {
151 	struct net *net;
152 	if (ops->size && ops->id) {
153 		list_for_each_entry(net, net_exit_list, exit_list)
154 			ops_free(ops, net);
155 	}
156 }
157 
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 	int min = 0, max = 0;
162 
163 	if (reqid >= 0) {
164 		min = reqid;
165 		max = reqid + 1;
166 	}
167 
168 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170 
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172  * function returns the id so that idr_for_each() stops. Because we cannot
173  * returns the id 0 (idr_for_each() will not stop), we return the magic value
174  * NET_ID_ZERO (-1) for it.
175  */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 	if (net_eq(net, peer))
180 		return id ? : NET_ID_ZERO;
181 	return 0;
182 }
183 
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185  * is set to true, thus the caller knows that the new id must be notified via
186  * rtnl.
187  */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 	bool alloc_it = *alloc;
192 
193 	*alloc = false;
194 
195 	/* Magic value for id 0. */
196 	if (id == NET_ID_ZERO)
197 		return 0;
198 	if (id > 0)
199 		return id;
200 
201 	if (alloc_it) {
202 		id = alloc_netid(net, peer, -1);
203 		*alloc = true;
204 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 	}
206 
207 	return NETNSA_NSID_NOT_ASSIGNED;
208 }
209 
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 	bool no = false;
214 
215 	return __peernet2id_alloc(net, peer, &no);
216 }
217 
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220  * be allocated and returned.
221  */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 	bool alloc;
225 	int id;
226 
227 	if (atomic_read(&net->count) == 0)
228 		return NETNSA_NSID_NOT_ASSIGNED;
229 	spin_lock_bh(&net->nsid_lock);
230 	alloc = atomic_read(&peer->count) == 0 ? false : true;
231 	id = __peernet2id_alloc(net, peer, &alloc);
232 	spin_unlock_bh(&net->nsid_lock);
233 	if (alloc && id >= 0)
234 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
235 	return id;
236 }
237 
238 /* This function returns, if assigned, the id of a peer netns. */
239 int peernet2id(struct net *net, struct net *peer)
240 {
241 	int id;
242 
243 	spin_lock_bh(&net->nsid_lock);
244 	id = __peernet2id(net, peer);
245 	spin_unlock_bh(&net->nsid_lock);
246 	return id;
247 }
248 EXPORT_SYMBOL(peernet2id);
249 
250 /* This function returns true is the peer netns has an id assigned into the
251  * current netns.
252  */
253 bool peernet_has_id(struct net *net, struct net *peer)
254 {
255 	return peernet2id(net, peer) >= 0;
256 }
257 
258 struct net *get_net_ns_by_id(struct net *net, int id)
259 {
260 	struct net *peer;
261 
262 	if (id < 0)
263 		return NULL;
264 
265 	rcu_read_lock();
266 	spin_lock_bh(&net->nsid_lock);
267 	peer = idr_find(&net->netns_ids, id);
268 	if (peer)
269 		get_net(peer);
270 	spin_unlock_bh(&net->nsid_lock);
271 	rcu_read_unlock();
272 
273 	return peer;
274 }
275 
276 /*
277  * setup_net runs the initializers for the network namespace object.
278  */
279 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
280 {
281 	/* Must be called with net_mutex held */
282 	const struct pernet_operations *ops, *saved_ops;
283 	int error = 0;
284 	LIST_HEAD(net_exit_list);
285 
286 	atomic_set(&net->count, 1);
287 	atomic_set(&net->passive, 1);
288 	net->dev_base_seq = 1;
289 	net->user_ns = user_ns;
290 	idr_init(&net->netns_ids);
291 	spin_lock_init(&net->nsid_lock);
292 
293 	list_for_each_entry(ops, &pernet_list, list) {
294 		error = ops_init(ops, net);
295 		if (error < 0)
296 			goto out_undo;
297 	}
298 out:
299 	return error;
300 
301 out_undo:
302 	/* Walk through the list backwards calling the exit functions
303 	 * for the pernet modules whose init functions did not fail.
304 	 */
305 	list_add(&net->exit_list, &net_exit_list);
306 	saved_ops = ops;
307 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
308 		ops_exit_list(ops, &net_exit_list);
309 
310 	ops = saved_ops;
311 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
312 		ops_free_list(ops, &net_exit_list);
313 
314 	rcu_barrier();
315 	goto out;
316 }
317 
318 static int __net_init net_defaults_init_net(struct net *net)
319 {
320 	net->core.sysctl_somaxconn = SOMAXCONN;
321 	return 0;
322 }
323 
324 static struct pernet_operations net_defaults_ops = {
325 	.init = net_defaults_init_net,
326 };
327 
328 static __init int net_defaults_init(void)
329 {
330 	if (register_pernet_subsys(&net_defaults_ops))
331 		panic("Cannot initialize net default settings");
332 
333 	return 0;
334 }
335 
336 core_initcall(net_defaults_init);
337 
338 #ifdef CONFIG_NET_NS
339 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
340 {
341 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
342 }
343 
344 static void dec_net_namespaces(struct ucounts *ucounts)
345 {
346 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
347 }
348 
349 static struct kmem_cache *net_cachep;
350 static struct workqueue_struct *netns_wq;
351 
352 static struct net *net_alloc(void)
353 {
354 	struct net *net = NULL;
355 	struct net_generic *ng;
356 
357 	ng = net_alloc_generic();
358 	if (!ng)
359 		goto out;
360 
361 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
362 	if (!net)
363 		goto out_free;
364 
365 	rcu_assign_pointer(net->gen, ng);
366 out:
367 	return net;
368 
369 out_free:
370 	kfree(ng);
371 	goto out;
372 }
373 
374 static void net_free(struct net *net)
375 {
376 	kfree(rcu_access_pointer(net->gen));
377 	kmem_cache_free(net_cachep, net);
378 }
379 
380 void net_drop_ns(void *p)
381 {
382 	struct net *ns = p;
383 	if (ns && atomic_dec_and_test(&ns->passive))
384 		net_free(ns);
385 }
386 
387 struct net *copy_net_ns(unsigned long flags,
388 			struct user_namespace *user_ns, struct net *old_net)
389 {
390 	struct ucounts *ucounts;
391 	struct net *net;
392 	int rv;
393 
394 	if (!(flags & CLONE_NEWNET))
395 		return get_net(old_net);
396 
397 	ucounts = inc_net_namespaces(user_ns);
398 	if (!ucounts)
399 		return ERR_PTR(-ENOSPC);
400 
401 	net = net_alloc();
402 	if (!net) {
403 		dec_net_namespaces(ucounts);
404 		return ERR_PTR(-ENOMEM);
405 	}
406 
407 	get_user_ns(user_ns);
408 
409 	rv = mutex_lock_killable(&net_mutex);
410 	if (rv < 0) {
411 		net_free(net);
412 		dec_net_namespaces(ucounts);
413 		put_user_ns(user_ns);
414 		return ERR_PTR(rv);
415 	}
416 
417 	net->ucounts = ucounts;
418 	rv = setup_net(net, user_ns);
419 	if (rv == 0) {
420 		rtnl_lock();
421 		list_add_tail_rcu(&net->list, &net_namespace_list);
422 		rtnl_unlock();
423 	}
424 	mutex_unlock(&net_mutex);
425 	if (rv < 0) {
426 		dec_net_namespaces(ucounts);
427 		put_user_ns(user_ns);
428 		net_drop_ns(net);
429 		return ERR_PTR(rv);
430 	}
431 	return net;
432 }
433 
434 static DEFINE_SPINLOCK(cleanup_list_lock);
435 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
436 
437 static void cleanup_net(struct work_struct *work)
438 {
439 	const struct pernet_operations *ops;
440 	struct net *net, *tmp;
441 	struct list_head net_kill_list;
442 	LIST_HEAD(net_exit_list);
443 
444 	/* Atomically snapshot the list of namespaces to cleanup */
445 	spin_lock_irq(&cleanup_list_lock);
446 	list_replace_init(&cleanup_list, &net_kill_list);
447 	spin_unlock_irq(&cleanup_list_lock);
448 
449 	mutex_lock(&net_mutex);
450 
451 	/* Don't let anyone else find us. */
452 	rtnl_lock();
453 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
454 		list_del_rcu(&net->list);
455 		list_add_tail(&net->exit_list, &net_exit_list);
456 		for_each_net(tmp) {
457 			int id;
458 
459 			spin_lock_bh(&tmp->nsid_lock);
460 			id = __peernet2id(tmp, net);
461 			if (id >= 0)
462 				idr_remove(&tmp->netns_ids, id);
463 			spin_unlock_bh(&tmp->nsid_lock);
464 			if (id >= 0)
465 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
466 		}
467 		spin_lock_bh(&net->nsid_lock);
468 		idr_destroy(&net->netns_ids);
469 		spin_unlock_bh(&net->nsid_lock);
470 
471 	}
472 	rtnl_unlock();
473 
474 	/*
475 	 * Another CPU might be rcu-iterating the list, wait for it.
476 	 * This needs to be before calling the exit() notifiers, so
477 	 * the rcu_barrier() below isn't sufficient alone.
478 	 */
479 	synchronize_rcu();
480 
481 	/* Run all of the network namespace exit methods */
482 	list_for_each_entry_reverse(ops, &pernet_list, list)
483 		ops_exit_list(ops, &net_exit_list);
484 
485 	/* Free the net generic variables */
486 	list_for_each_entry_reverse(ops, &pernet_list, list)
487 		ops_free_list(ops, &net_exit_list);
488 
489 	mutex_unlock(&net_mutex);
490 
491 	/* Ensure there are no outstanding rcu callbacks using this
492 	 * network namespace.
493 	 */
494 	rcu_barrier();
495 
496 	/* Finally it is safe to free my network namespace structure */
497 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
498 		list_del_init(&net->exit_list);
499 		dec_net_namespaces(net->ucounts);
500 		put_user_ns(net->user_ns);
501 		net_drop_ns(net);
502 	}
503 }
504 static DECLARE_WORK(net_cleanup_work, cleanup_net);
505 
506 void __put_net(struct net *net)
507 {
508 	/* Cleanup the network namespace in process context */
509 	unsigned long flags;
510 
511 	spin_lock_irqsave(&cleanup_list_lock, flags);
512 	list_add(&net->cleanup_list, &cleanup_list);
513 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
514 
515 	queue_work(netns_wq, &net_cleanup_work);
516 }
517 EXPORT_SYMBOL_GPL(__put_net);
518 
519 struct net *get_net_ns_by_fd(int fd)
520 {
521 	struct file *file;
522 	struct ns_common *ns;
523 	struct net *net;
524 
525 	file = proc_ns_fget(fd);
526 	if (IS_ERR(file))
527 		return ERR_CAST(file);
528 
529 	ns = get_proc_ns(file_inode(file));
530 	if (ns->ops == &netns_operations)
531 		net = get_net(container_of(ns, struct net, ns));
532 	else
533 		net = ERR_PTR(-EINVAL);
534 
535 	fput(file);
536 	return net;
537 }
538 
539 #else
540 struct net *get_net_ns_by_fd(int fd)
541 {
542 	return ERR_PTR(-EINVAL);
543 }
544 #endif
545 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
546 
547 struct net *get_net_ns_by_pid(pid_t pid)
548 {
549 	struct task_struct *tsk;
550 	struct net *net;
551 
552 	/* Lookup the network namespace */
553 	net = ERR_PTR(-ESRCH);
554 	rcu_read_lock();
555 	tsk = find_task_by_vpid(pid);
556 	if (tsk) {
557 		struct nsproxy *nsproxy;
558 		task_lock(tsk);
559 		nsproxy = tsk->nsproxy;
560 		if (nsproxy)
561 			net = get_net(nsproxy->net_ns);
562 		task_unlock(tsk);
563 	}
564 	rcu_read_unlock();
565 	return net;
566 }
567 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
568 
569 static __net_init int net_ns_net_init(struct net *net)
570 {
571 #ifdef CONFIG_NET_NS
572 	net->ns.ops = &netns_operations;
573 #endif
574 	return ns_alloc_inum(&net->ns);
575 }
576 
577 static __net_exit void net_ns_net_exit(struct net *net)
578 {
579 	ns_free_inum(&net->ns);
580 }
581 
582 static struct pernet_operations __net_initdata net_ns_ops = {
583 	.init = net_ns_net_init,
584 	.exit = net_ns_net_exit,
585 };
586 
587 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
588 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
589 	[NETNSA_NSID]		= { .type = NLA_S32 },
590 	[NETNSA_PID]		= { .type = NLA_U32 },
591 	[NETNSA_FD]		= { .type = NLA_U32 },
592 };
593 
594 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
595 			  struct netlink_ext_ack *extack)
596 {
597 	struct net *net = sock_net(skb->sk);
598 	struct nlattr *tb[NETNSA_MAX + 1];
599 	struct nlattr *nla;
600 	struct net *peer;
601 	int nsid, err;
602 
603 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
604 			  rtnl_net_policy, extack);
605 	if (err < 0)
606 		return err;
607 	if (!tb[NETNSA_NSID]) {
608 		NL_SET_ERR_MSG(extack, "nsid is missing");
609 		return -EINVAL;
610 	}
611 	nsid = nla_get_s32(tb[NETNSA_NSID]);
612 
613 	if (tb[NETNSA_PID]) {
614 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
615 		nla = tb[NETNSA_PID];
616 	} else if (tb[NETNSA_FD]) {
617 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
618 		nla = tb[NETNSA_FD];
619 	} else {
620 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
621 		return -EINVAL;
622 	}
623 	if (IS_ERR(peer)) {
624 		NL_SET_BAD_ATTR(extack, nla);
625 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
626 		return PTR_ERR(peer);
627 	}
628 
629 	spin_lock_bh(&net->nsid_lock);
630 	if (__peernet2id(net, peer) >= 0) {
631 		spin_unlock_bh(&net->nsid_lock);
632 		err = -EEXIST;
633 		NL_SET_BAD_ATTR(extack, nla);
634 		NL_SET_ERR_MSG(extack,
635 			       "Peer netns already has a nsid assigned");
636 		goto out;
637 	}
638 
639 	err = alloc_netid(net, peer, nsid);
640 	spin_unlock_bh(&net->nsid_lock);
641 	if (err >= 0) {
642 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
643 		err = 0;
644 	} else if (err == -ENOSPC && nsid >= 0) {
645 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
646 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
647 	}
648 out:
649 	put_net(peer);
650 	return err;
651 }
652 
653 static int rtnl_net_get_size(void)
654 {
655 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
656 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
657 	       ;
658 }
659 
660 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
661 			 int cmd, struct net *net, int nsid)
662 {
663 	struct nlmsghdr *nlh;
664 	struct rtgenmsg *rth;
665 
666 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
667 	if (!nlh)
668 		return -EMSGSIZE;
669 
670 	rth = nlmsg_data(nlh);
671 	rth->rtgen_family = AF_UNSPEC;
672 
673 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
674 		goto nla_put_failure;
675 
676 	nlmsg_end(skb, nlh);
677 	return 0;
678 
679 nla_put_failure:
680 	nlmsg_cancel(skb, nlh);
681 	return -EMSGSIZE;
682 }
683 
684 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
685 			  struct netlink_ext_ack *extack)
686 {
687 	struct net *net = sock_net(skb->sk);
688 	struct nlattr *tb[NETNSA_MAX + 1];
689 	struct nlattr *nla;
690 	struct sk_buff *msg;
691 	struct net *peer;
692 	int err, id;
693 
694 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
695 			  rtnl_net_policy, extack);
696 	if (err < 0)
697 		return err;
698 	if (tb[NETNSA_PID]) {
699 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
700 		nla = tb[NETNSA_PID];
701 	} else if (tb[NETNSA_FD]) {
702 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
703 		nla = tb[NETNSA_FD];
704 	} else {
705 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
706 		return -EINVAL;
707 	}
708 
709 	if (IS_ERR(peer)) {
710 		NL_SET_BAD_ATTR(extack, nla);
711 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
712 		return PTR_ERR(peer);
713 	}
714 
715 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
716 	if (!msg) {
717 		err = -ENOMEM;
718 		goto out;
719 	}
720 
721 	id = peernet2id(net, peer);
722 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
723 			    RTM_NEWNSID, net, id);
724 	if (err < 0)
725 		goto err_out;
726 
727 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
728 	goto out;
729 
730 err_out:
731 	nlmsg_free(msg);
732 out:
733 	put_net(peer);
734 	return err;
735 }
736 
737 struct rtnl_net_dump_cb {
738 	struct net *net;
739 	struct sk_buff *skb;
740 	struct netlink_callback *cb;
741 	int idx;
742 	int s_idx;
743 };
744 
745 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
746 {
747 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
748 	int ret;
749 
750 	if (net_cb->idx < net_cb->s_idx)
751 		goto cont;
752 
753 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
754 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
755 			    RTM_NEWNSID, net_cb->net, id);
756 	if (ret < 0)
757 		return ret;
758 
759 cont:
760 	net_cb->idx++;
761 	return 0;
762 }
763 
764 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
765 {
766 	struct net *net = sock_net(skb->sk);
767 	struct rtnl_net_dump_cb net_cb = {
768 		.net = net,
769 		.skb = skb,
770 		.cb = cb,
771 		.idx = 0,
772 		.s_idx = cb->args[0],
773 	};
774 
775 	spin_lock_bh(&net->nsid_lock);
776 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
777 	spin_unlock_bh(&net->nsid_lock);
778 
779 	cb->args[0] = net_cb.idx;
780 	return skb->len;
781 }
782 
783 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
784 {
785 	struct sk_buff *msg;
786 	int err = -ENOMEM;
787 
788 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
789 	if (!msg)
790 		goto out;
791 
792 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
793 	if (err < 0)
794 		goto err_out;
795 
796 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
797 	return;
798 
799 err_out:
800 	nlmsg_free(msg);
801 out:
802 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
803 }
804 
805 static int __init net_ns_init(void)
806 {
807 	struct net_generic *ng;
808 
809 #ifdef CONFIG_NET_NS
810 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
811 					SMP_CACHE_BYTES,
812 					SLAB_PANIC, NULL);
813 
814 	/* Create workqueue for cleanup */
815 	netns_wq = create_singlethread_workqueue("netns");
816 	if (!netns_wq)
817 		panic("Could not create netns workq");
818 #endif
819 
820 	ng = net_alloc_generic();
821 	if (!ng)
822 		panic("Could not allocate generic netns");
823 
824 	rcu_assign_pointer(init_net.gen, ng);
825 
826 	mutex_lock(&net_mutex);
827 	if (setup_net(&init_net, &init_user_ns))
828 		panic("Could not setup the initial network namespace");
829 
830 	init_net_initialized = true;
831 
832 	rtnl_lock();
833 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
834 	rtnl_unlock();
835 
836 	mutex_unlock(&net_mutex);
837 
838 	register_pernet_subsys(&net_ns_ops);
839 
840 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
841 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
842 		      NULL);
843 
844 	return 0;
845 }
846 
847 pure_initcall(net_ns_init);
848 
849 #ifdef CONFIG_NET_NS
850 static int __register_pernet_operations(struct list_head *list,
851 					struct pernet_operations *ops)
852 {
853 	struct net *net;
854 	int error;
855 	LIST_HEAD(net_exit_list);
856 
857 	list_add_tail(&ops->list, list);
858 	if (ops->init || (ops->id && ops->size)) {
859 		for_each_net(net) {
860 			error = ops_init(ops, net);
861 			if (error)
862 				goto out_undo;
863 			list_add_tail(&net->exit_list, &net_exit_list);
864 		}
865 	}
866 	return 0;
867 
868 out_undo:
869 	/* If I have an error cleanup all namespaces I initialized */
870 	list_del(&ops->list);
871 	ops_exit_list(ops, &net_exit_list);
872 	ops_free_list(ops, &net_exit_list);
873 	return error;
874 }
875 
876 static void __unregister_pernet_operations(struct pernet_operations *ops)
877 {
878 	struct net *net;
879 	LIST_HEAD(net_exit_list);
880 
881 	list_del(&ops->list);
882 	for_each_net(net)
883 		list_add_tail(&net->exit_list, &net_exit_list);
884 	ops_exit_list(ops, &net_exit_list);
885 	ops_free_list(ops, &net_exit_list);
886 }
887 
888 #else
889 
890 static int __register_pernet_operations(struct list_head *list,
891 					struct pernet_operations *ops)
892 {
893 	if (!init_net_initialized) {
894 		list_add_tail(&ops->list, list);
895 		return 0;
896 	}
897 
898 	return ops_init(ops, &init_net);
899 }
900 
901 static void __unregister_pernet_operations(struct pernet_operations *ops)
902 {
903 	if (!init_net_initialized) {
904 		list_del(&ops->list);
905 	} else {
906 		LIST_HEAD(net_exit_list);
907 		list_add(&init_net.exit_list, &net_exit_list);
908 		ops_exit_list(ops, &net_exit_list);
909 		ops_free_list(ops, &net_exit_list);
910 	}
911 }
912 
913 #endif /* CONFIG_NET_NS */
914 
915 static DEFINE_IDA(net_generic_ids);
916 
917 static int register_pernet_operations(struct list_head *list,
918 				      struct pernet_operations *ops)
919 {
920 	int error;
921 
922 	if (ops->id) {
923 again:
924 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
925 		if (error < 0) {
926 			if (error == -EAGAIN) {
927 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
928 				goto again;
929 			}
930 			return error;
931 		}
932 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
933 	}
934 	error = __register_pernet_operations(list, ops);
935 	if (error) {
936 		rcu_barrier();
937 		if (ops->id)
938 			ida_remove(&net_generic_ids, *ops->id);
939 	}
940 
941 	return error;
942 }
943 
944 static void unregister_pernet_operations(struct pernet_operations *ops)
945 {
946 
947 	__unregister_pernet_operations(ops);
948 	rcu_barrier();
949 	if (ops->id)
950 		ida_remove(&net_generic_ids, *ops->id);
951 }
952 
953 /**
954  *      register_pernet_subsys - register a network namespace subsystem
955  *	@ops:  pernet operations structure for the subsystem
956  *
957  *	Register a subsystem which has init and exit functions
958  *	that are called when network namespaces are created and
959  *	destroyed respectively.
960  *
961  *	When registered all network namespace init functions are
962  *	called for every existing network namespace.  Allowing kernel
963  *	modules to have a race free view of the set of network namespaces.
964  *
965  *	When a new network namespace is created all of the init
966  *	methods are called in the order in which they were registered.
967  *
968  *	When a network namespace is destroyed all of the exit methods
969  *	are called in the reverse of the order with which they were
970  *	registered.
971  */
972 int register_pernet_subsys(struct pernet_operations *ops)
973 {
974 	int error;
975 	mutex_lock(&net_mutex);
976 	error =  register_pernet_operations(first_device, ops);
977 	mutex_unlock(&net_mutex);
978 	return error;
979 }
980 EXPORT_SYMBOL_GPL(register_pernet_subsys);
981 
982 /**
983  *      unregister_pernet_subsys - unregister a network namespace subsystem
984  *	@ops: pernet operations structure to manipulate
985  *
986  *	Remove the pernet operations structure from the list to be
987  *	used when network namespaces are created or destroyed.  In
988  *	addition run the exit method for all existing network
989  *	namespaces.
990  */
991 void unregister_pernet_subsys(struct pernet_operations *ops)
992 {
993 	mutex_lock(&net_mutex);
994 	unregister_pernet_operations(ops);
995 	mutex_unlock(&net_mutex);
996 }
997 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
998 
999 /**
1000  *      register_pernet_device - register a network namespace device
1001  *	@ops:  pernet operations structure for the subsystem
1002  *
1003  *	Register a device which has init and exit functions
1004  *	that are called when network namespaces are created and
1005  *	destroyed respectively.
1006  *
1007  *	When registered all network namespace init functions are
1008  *	called for every existing network namespace.  Allowing kernel
1009  *	modules to have a race free view of the set of network namespaces.
1010  *
1011  *	When a new network namespace is created all of the init
1012  *	methods are called in the order in which they were registered.
1013  *
1014  *	When a network namespace is destroyed all of the exit methods
1015  *	are called in the reverse of the order with which they were
1016  *	registered.
1017  */
1018 int register_pernet_device(struct pernet_operations *ops)
1019 {
1020 	int error;
1021 	mutex_lock(&net_mutex);
1022 	error = register_pernet_operations(&pernet_list, ops);
1023 	if (!error && (first_device == &pernet_list))
1024 		first_device = &ops->list;
1025 	mutex_unlock(&net_mutex);
1026 	return error;
1027 }
1028 EXPORT_SYMBOL_GPL(register_pernet_device);
1029 
1030 /**
1031  *      unregister_pernet_device - unregister a network namespace netdevice
1032  *	@ops: pernet operations structure to manipulate
1033  *
1034  *	Remove the pernet operations structure from the list to be
1035  *	used when network namespaces are created or destroyed.  In
1036  *	addition run the exit method for all existing network
1037  *	namespaces.
1038  */
1039 void unregister_pernet_device(struct pernet_operations *ops)
1040 {
1041 	mutex_lock(&net_mutex);
1042 	if (&ops->list == first_device)
1043 		first_device = first_device->next;
1044 	unregister_pernet_operations(ops);
1045 	mutex_unlock(&net_mutex);
1046 }
1047 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1048 
1049 #ifdef CONFIG_NET_NS
1050 static struct ns_common *netns_get(struct task_struct *task)
1051 {
1052 	struct net *net = NULL;
1053 	struct nsproxy *nsproxy;
1054 
1055 	task_lock(task);
1056 	nsproxy = task->nsproxy;
1057 	if (nsproxy)
1058 		net = get_net(nsproxy->net_ns);
1059 	task_unlock(task);
1060 
1061 	return net ? &net->ns : NULL;
1062 }
1063 
1064 static inline struct net *to_net_ns(struct ns_common *ns)
1065 {
1066 	return container_of(ns, struct net, ns);
1067 }
1068 
1069 static void netns_put(struct ns_common *ns)
1070 {
1071 	put_net(to_net_ns(ns));
1072 }
1073 
1074 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1075 {
1076 	struct net *net = to_net_ns(ns);
1077 
1078 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1079 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1080 		return -EPERM;
1081 
1082 	put_net(nsproxy->net_ns);
1083 	nsproxy->net_ns = get_net(net);
1084 	return 0;
1085 }
1086 
1087 static struct user_namespace *netns_owner(struct ns_common *ns)
1088 {
1089 	return to_net_ns(ns)->user_ns;
1090 }
1091 
1092 const struct proc_ns_operations netns_operations = {
1093 	.name		= "net",
1094 	.type		= CLONE_NEWNET,
1095 	.get		= netns_get,
1096 	.put		= netns_put,
1097 	.install	= netns_install,
1098 	.owner		= netns_owner,
1099 };
1100 #endif
1101