xref: /openbmc/linux/net/core/net_namespace.c (revision 3ce311af)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 
23 #include <net/sock.h>
24 #include <net/netlink.h>
25 #include <net/net_namespace.h>
26 #include <net/netns/generic.h>
27 
28 /*
29  *	Our network namespace constructor/destructor lists
30  */
31 
32 static LIST_HEAD(pernet_list);
33 static struct list_head *first_device = &pernet_list;
34 
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37 
38 /* Protects net_namespace_list. Nests iside rtnl_lock() */
39 DECLARE_RWSEM(net_rwsem);
40 EXPORT_SYMBOL_GPL(net_rwsem);
41 
42 #ifdef CONFIG_KEYS
43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
44 #endif
45 
46 struct net init_net = {
47 	.count		= REFCOUNT_INIT(1),
48 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
49 #ifdef CONFIG_KEYS
50 	.key_domain	= &init_net_key_domain,
51 #endif
52 };
53 EXPORT_SYMBOL(init_net);
54 
55 static bool init_net_initialized;
56 /*
57  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
58  * init_net_initialized and first_device pointer.
59  * This is internal net namespace object. Please, don't use it
60  * outside.
61  */
62 DECLARE_RWSEM(pernet_ops_rwsem);
63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
64 
65 #define MIN_PERNET_OPS_ID	\
66 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
67 
68 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
69 
70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
71 
72 static struct net_generic *net_alloc_generic(void)
73 {
74 	struct net_generic *ng;
75 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
76 
77 	ng = kzalloc(generic_size, GFP_KERNEL);
78 	if (ng)
79 		ng->s.len = max_gen_ptrs;
80 
81 	return ng;
82 }
83 
84 static int net_assign_generic(struct net *net, unsigned int id, void *data)
85 {
86 	struct net_generic *ng, *old_ng;
87 
88 	BUG_ON(id < MIN_PERNET_OPS_ID);
89 
90 	old_ng = rcu_dereference_protected(net->gen,
91 					   lockdep_is_held(&pernet_ops_rwsem));
92 	if (old_ng->s.len > id) {
93 		old_ng->ptr[id] = data;
94 		return 0;
95 	}
96 
97 	ng = net_alloc_generic();
98 	if (ng == NULL)
99 		return -ENOMEM;
100 
101 	/*
102 	 * Some synchronisation notes:
103 	 *
104 	 * The net_generic explores the net->gen array inside rcu
105 	 * read section. Besides once set the net->gen->ptr[x]
106 	 * pointer never changes (see rules in netns/generic.h).
107 	 *
108 	 * That said, we simply duplicate this array and schedule
109 	 * the old copy for kfree after a grace period.
110 	 */
111 
112 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
113 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
114 	ng->ptr[id] = data;
115 
116 	rcu_assign_pointer(net->gen, ng);
117 	kfree_rcu(old_ng, s.rcu);
118 	return 0;
119 }
120 
121 static int ops_init(const struct pernet_operations *ops, struct net *net)
122 {
123 	int err = -ENOMEM;
124 	void *data = NULL;
125 
126 	if (ops->id && ops->size) {
127 		data = kzalloc(ops->size, GFP_KERNEL);
128 		if (!data)
129 			goto out;
130 
131 		err = net_assign_generic(net, *ops->id, data);
132 		if (err)
133 			goto cleanup;
134 	}
135 	err = 0;
136 	if (ops->init)
137 		err = ops->init(net);
138 	if (!err)
139 		return 0;
140 
141 cleanup:
142 	kfree(data);
143 
144 out:
145 	return err;
146 }
147 
148 static void ops_free(const struct pernet_operations *ops, struct net *net)
149 {
150 	if (ops->id && ops->size) {
151 		kfree(net_generic(net, *ops->id));
152 	}
153 }
154 
155 static void ops_pre_exit_list(const struct pernet_operations *ops,
156 			      struct list_head *net_exit_list)
157 {
158 	struct net *net;
159 
160 	if (ops->pre_exit) {
161 		list_for_each_entry(net, net_exit_list, exit_list)
162 			ops->pre_exit(net);
163 	}
164 }
165 
166 static void ops_exit_list(const struct pernet_operations *ops,
167 			  struct list_head *net_exit_list)
168 {
169 	struct net *net;
170 	if (ops->exit) {
171 		list_for_each_entry(net, net_exit_list, exit_list)
172 			ops->exit(net);
173 	}
174 	if (ops->exit_batch)
175 		ops->exit_batch(net_exit_list);
176 }
177 
178 static void ops_free_list(const struct pernet_operations *ops,
179 			  struct list_head *net_exit_list)
180 {
181 	struct net *net;
182 	if (ops->size && ops->id) {
183 		list_for_each_entry(net, net_exit_list, exit_list)
184 			ops_free(ops, net);
185 	}
186 }
187 
188 /* should be called with nsid_lock held */
189 static int alloc_netid(struct net *net, struct net *peer, int reqid)
190 {
191 	int min = 0, max = 0;
192 
193 	if (reqid >= 0) {
194 		min = reqid;
195 		max = reqid + 1;
196 	}
197 
198 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
199 }
200 
201 /* This function is used by idr_for_each(). If net is equal to peer, the
202  * function returns the id so that idr_for_each() stops. Because we cannot
203  * returns the id 0 (idr_for_each() will not stop), we return the magic value
204  * NET_ID_ZERO (-1) for it.
205  */
206 #define NET_ID_ZERO -1
207 static int net_eq_idr(int id, void *net, void *peer)
208 {
209 	if (net_eq(net, peer))
210 		return id ? : NET_ID_ZERO;
211 	return 0;
212 }
213 
214 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
215  * is set to true, thus the caller knows that the new id must be notified via
216  * rtnl.
217  */
218 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
219 {
220 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
221 	bool alloc_it = *alloc;
222 
223 	*alloc = false;
224 
225 	/* Magic value for id 0. */
226 	if (id == NET_ID_ZERO)
227 		return 0;
228 	if (id > 0)
229 		return id;
230 
231 	if (alloc_it) {
232 		id = alloc_netid(net, peer, -1);
233 		*alloc = true;
234 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
235 	}
236 
237 	return NETNSA_NSID_NOT_ASSIGNED;
238 }
239 
240 /* should be called with nsid_lock held */
241 static int __peernet2id(struct net *net, struct net *peer)
242 {
243 	bool no = false;
244 
245 	return __peernet2id_alloc(net, peer, &no);
246 }
247 
248 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
249 			      struct nlmsghdr *nlh, gfp_t gfp);
250 /* This function returns the id of a peer netns. If no id is assigned, one will
251  * be allocated and returned.
252  */
253 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
254 {
255 	bool alloc = false, alive = false;
256 	int id;
257 
258 	if (refcount_read(&net->count) == 0)
259 		return NETNSA_NSID_NOT_ASSIGNED;
260 	spin_lock_bh(&net->nsid_lock);
261 	/*
262 	 * When peer is obtained from RCU lists, we may race with
263 	 * its cleanup. Check whether it's alive, and this guarantees
264 	 * we never hash a peer back to net->netns_ids, after it has
265 	 * just been idr_remove()'d from there in cleanup_net().
266 	 */
267 	if (maybe_get_net(peer))
268 		alive = alloc = true;
269 	id = __peernet2id_alloc(net, peer, &alloc);
270 	spin_unlock_bh(&net->nsid_lock);
271 	if (alloc && id >= 0)
272 		rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
273 	if (alive)
274 		put_net(peer);
275 	return id;
276 }
277 EXPORT_SYMBOL_GPL(peernet2id_alloc);
278 
279 /* This function returns, if assigned, the id of a peer netns. */
280 int peernet2id(struct net *net, struct net *peer)
281 {
282 	int id;
283 
284 	spin_lock_bh(&net->nsid_lock);
285 	id = __peernet2id(net, peer);
286 	spin_unlock_bh(&net->nsid_lock);
287 	return id;
288 }
289 EXPORT_SYMBOL(peernet2id);
290 
291 /* This function returns true is the peer netns has an id assigned into the
292  * current netns.
293  */
294 bool peernet_has_id(struct net *net, struct net *peer)
295 {
296 	return peernet2id(net, peer) >= 0;
297 }
298 
299 struct net *get_net_ns_by_id(struct net *net, int id)
300 {
301 	struct net *peer;
302 
303 	if (id < 0)
304 		return NULL;
305 
306 	rcu_read_lock();
307 	peer = idr_find(&net->netns_ids, id);
308 	if (peer)
309 		peer = maybe_get_net(peer);
310 	rcu_read_unlock();
311 
312 	return peer;
313 }
314 
315 /*
316  * setup_net runs the initializers for the network namespace object.
317  */
318 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
319 {
320 	/* Must be called with pernet_ops_rwsem held */
321 	const struct pernet_operations *ops, *saved_ops;
322 	int error = 0;
323 	LIST_HEAD(net_exit_list);
324 
325 	refcount_set(&net->count, 1);
326 	refcount_set(&net->passive, 1);
327 	get_random_bytes(&net->hash_mix, sizeof(u32));
328 	net->dev_base_seq = 1;
329 	net->user_ns = user_ns;
330 	idr_init(&net->netns_ids);
331 	spin_lock_init(&net->nsid_lock);
332 	mutex_init(&net->ipv4.ra_mutex);
333 
334 	list_for_each_entry(ops, &pernet_list, list) {
335 		error = ops_init(ops, net);
336 		if (error < 0)
337 			goto out_undo;
338 	}
339 	down_write(&net_rwsem);
340 	list_add_tail_rcu(&net->list, &net_namespace_list);
341 	up_write(&net_rwsem);
342 out:
343 	return error;
344 
345 out_undo:
346 	/* Walk through the list backwards calling the exit functions
347 	 * for the pernet modules whose init functions did not fail.
348 	 */
349 	list_add(&net->exit_list, &net_exit_list);
350 	saved_ops = ops;
351 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
352 		ops_pre_exit_list(ops, &net_exit_list);
353 
354 	synchronize_rcu();
355 
356 	ops = saved_ops;
357 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
358 		ops_exit_list(ops, &net_exit_list);
359 
360 	ops = saved_ops;
361 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
362 		ops_free_list(ops, &net_exit_list);
363 
364 	rcu_barrier();
365 	goto out;
366 }
367 
368 static int __net_init net_defaults_init_net(struct net *net)
369 {
370 	net->core.sysctl_somaxconn = SOMAXCONN;
371 	return 0;
372 }
373 
374 static struct pernet_operations net_defaults_ops = {
375 	.init = net_defaults_init_net,
376 };
377 
378 static __init int net_defaults_init(void)
379 {
380 	if (register_pernet_subsys(&net_defaults_ops))
381 		panic("Cannot initialize net default settings");
382 
383 	return 0;
384 }
385 
386 core_initcall(net_defaults_init);
387 
388 #ifdef CONFIG_NET_NS
389 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
390 {
391 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
392 }
393 
394 static void dec_net_namespaces(struct ucounts *ucounts)
395 {
396 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
397 }
398 
399 static struct kmem_cache *net_cachep __ro_after_init;
400 static struct workqueue_struct *netns_wq;
401 
402 static struct net *net_alloc(void)
403 {
404 	struct net *net = NULL;
405 	struct net_generic *ng;
406 
407 	ng = net_alloc_generic();
408 	if (!ng)
409 		goto out;
410 
411 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
412 	if (!net)
413 		goto out_free;
414 
415 #ifdef CONFIG_KEYS
416 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
417 	if (!net->key_domain)
418 		goto out_free_2;
419 	refcount_set(&net->key_domain->usage, 1);
420 #endif
421 
422 	rcu_assign_pointer(net->gen, ng);
423 out:
424 	return net;
425 
426 #ifdef CONFIG_KEYS
427 out_free_2:
428 	kmem_cache_free(net_cachep, net);
429 	net = NULL;
430 #endif
431 out_free:
432 	kfree(ng);
433 	goto out;
434 }
435 
436 static void net_free(struct net *net)
437 {
438 	kfree(rcu_access_pointer(net->gen));
439 	kmem_cache_free(net_cachep, net);
440 }
441 
442 void net_drop_ns(void *p)
443 {
444 	struct net *ns = p;
445 	if (ns && refcount_dec_and_test(&ns->passive))
446 		net_free(ns);
447 }
448 
449 struct net *copy_net_ns(unsigned long flags,
450 			struct user_namespace *user_ns, struct net *old_net)
451 {
452 	struct ucounts *ucounts;
453 	struct net *net;
454 	int rv;
455 
456 	if (!(flags & CLONE_NEWNET))
457 		return get_net(old_net);
458 
459 	ucounts = inc_net_namespaces(user_ns);
460 	if (!ucounts)
461 		return ERR_PTR(-ENOSPC);
462 
463 	net = net_alloc();
464 	if (!net) {
465 		rv = -ENOMEM;
466 		goto dec_ucounts;
467 	}
468 	refcount_set(&net->passive, 1);
469 	net->ucounts = ucounts;
470 	get_user_ns(user_ns);
471 
472 	rv = down_read_killable(&pernet_ops_rwsem);
473 	if (rv < 0)
474 		goto put_userns;
475 
476 	rv = setup_net(net, user_ns);
477 
478 	up_read(&pernet_ops_rwsem);
479 
480 	if (rv < 0) {
481 put_userns:
482 		key_remove_domain(net->key_domain);
483 		put_user_ns(user_ns);
484 		net_drop_ns(net);
485 dec_ucounts:
486 		dec_net_namespaces(ucounts);
487 		return ERR_PTR(rv);
488 	}
489 	return net;
490 }
491 
492 /**
493  * net_ns_get_ownership - get sysfs ownership data for @net
494  * @net: network namespace in question (can be NULL)
495  * @uid: kernel user ID for sysfs objects
496  * @gid: kernel group ID for sysfs objects
497  *
498  * Returns the uid/gid pair of root in the user namespace associated with the
499  * given network namespace.
500  */
501 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
502 {
503 	if (net) {
504 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
505 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
506 
507 		if (uid_valid(ns_root_uid))
508 			*uid = ns_root_uid;
509 
510 		if (gid_valid(ns_root_gid))
511 			*gid = ns_root_gid;
512 	} else {
513 		*uid = GLOBAL_ROOT_UID;
514 		*gid = GLOBAL_ROOT_GID;
515 	}
516 }
517 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
518 
519 static void unhash_nsid(struct net *net, struct net *last)
520 {
521 	struct net *tmp;
522 	/* This function is only called from cleanup_net() work,
523 	 * and this work is the only process, that may delete
524 	 * a net from net_namespace_list. So, when the below
525 	 * is executing, the list may only grow. Thus, we do not
526 	 * use for_each_net_rcu() or net_rwsem.
527 	 */
528 	for_each_net(tmp) {
529 		int id;
530 
531 		spin_lock_bh(&tmp->nsid_lock);
532 		id = __peernet2id(tmp, net);
533 		if (id >= 0)
534 			idr_remove(&tmp->netns_ids, id);
535 		spin_unlock_bh(&tmp->nsid_lock);
536 		if (id >= 0)
537 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
538 					  GFP_KERNEL);
539 		if (tmp == last)
540 			break;
541 	}
542 	spin_lock_bh(&net->nsid_lock);
543 	idr_destroy(&net->netns_ids);
544 	spin_unlock_bh(&net->nsid_lock);
545 }
546 
547 static LLIST_HEAD(cleanup_list);
548 
549 static void cleanup_net(struct work_struct *work)
550 {
551 	const struct pernet_operations *ops;
552 	struct net *net, *tmp, *last;
553 	struct llist_node *net_kill_list;
554 	LIST_HEAD(net_exit_list);
555 
556 	/* Atomically snapshot the list of namespaces to cleanup */
557 	net_kill_list = llist_del_all(&cleanup_list);
558 
559 	down_read(&pernet_ops_rwsem);
560 
561 	/* Don't let anyone else find us. */
562 	down_write(&net_rwsem);
563 	llist_for_each_entry(net, net_kill_list, cleanup_list)
564 		list_del_rcu(&net->list);
565 	/* Cache last net. After we unlock rtnl, no one new net
566 	 * added to net_namespace_list can assign nsid pointer
567 	 * to a net from net_kill_list (see peernet2id_alloc()).
568 	 * So, we skip them in unhash_nsid().
569 	 *
570 	 * Note, that unhash_nsid() does not delete nsid links
571 	 * between net_kill_list's nets, as they've already
572 	 * deleted from net_namespace_list. But, this would be
573 	 * useless anyway, as netns_ids are destroyed there.
574 	 */
575 	last = list_last_entry(&net_namespace_list, struct net, list);
576 	up_write(&net_rwsem);
577 
578 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
579 		unhash_nsid(net, last);
580 		list_add_tail(&net->exit_list, &net_exit_list);
581 	}
582 
583 	/* Run all of the network namespace pre_exit methods */
584 	list_for_each_entry_reverse(ops, &pernet_list, list)
585 		ops_pre_exit_list(ops, &net_exit_list);
586 
587 	/*
588 	 * Another CPU might be rcu-iterating the list, wait for it.
589 	 * This needs to be before calling the exit() notifiers, so
590 	 * the rcu_barrier() below isn't sufficient alone.
591 	 * Also the pre_exit() and exit() methods need this barrier.
592 	 */
593 	synchronize_rcu();
594 
595 	/* Run all of the network namespace exit methods */
596 	list_for_each_entry_reverse(ops, &pernet_list, list)
597 		ops_exit_list(ops, &net_exit_list);
598 
599 	/* Free the net generic variables */
600 	list_for_each_entry_reverse(ops, &pernet_list, list)
601 		ops_free_list(ops, &net_exit_list);
602 
603 	up_read(&pernet_ops_rwsem);
604 
605 	/* Ensure there are no outstanding rcu callbacks using this
606 	 * network namespace.
607 	 */
608 	rcu_barrier();
609 
610 	/* Finally it is safe to free my network namespace structure */
611 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
612 		list_del_init(&net->exit_list);
613 		dec_net_namespaces(net->ucounts);
614 		key_remove_domain(net->key_domain);
615 		put_user_ns(net->user_ns);
616 		net_drop_ns(net);
617 	}
618 }
619 
620 /**
621  * net_ns_barrier - wait until concurrent net_cleanup_work is done
622  *
623  * cleanup_net runs from work queue and will first remove namespaces
624  * from the global list, then run net exit functions.
625  *
626  * Call this in module exit path to make sure that all netns
627  * ->exit ops have been invoked before the function is removed.
628  */
629 void net_ns_barrier(void)
630 {
631 	down_write(&pernet_ops_rwsem);
632 	up_write(&pernet_ops_rwsem);
633 }
634 EXPORT_SYMBOL(net_ns_barrier);
635 
636 static DECLARE_WORK(net_cleanup_work, cleanup_net);
637 
638 void __put_net(struct net *net)
639 {
640 	/* Cleanup the network namespace in process context */
641 	if (llist_add(&net->cleanup_list, &cleanup_list))
642 		queue_work(netns_wq, &net_cleanup_work);
643 }
644 EXPORT_SYMBOL_GPL(__put_net);
645 
646 struct net *get_net_ns_by_fd(int fd)
647 {
648 	struct file *file;
649 	struct ns_common *ns;
650 	struct net *net;
651 
652 	file = proc_ns_fget(fd);
653 	if (IS_ERR(file))
654 		return ERR_CAST(file);
655 
656 	ns = get_proc_ns(file_inode(file));
657 	if (ns->ops == &netns_operations)
658 		net = get_net(container_of(ns, struct net, ns));
659 	else
660 		net = ERR_PTR(-EINVAL);
661 
662 	fput(file);
663 	return net;
664 }
665 
666 #else
667 struct net *get_net_ns_by_fd(int fd)
668 {
669 	return ERR_PTR(-EINVAL);
670 }
671 #endif
672 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
673 
674 struct net *get_net_ns_by_pid(pid_t pid)
675 {
676 	struct task_struct *tsk;
677 	struct net *net;
678 
679 	/* Lookup the network namespace */
680 	net = ERR_PTR(-ESRCH);
681 	rcu_read_lock();
682 	tsk = find_task_by_vpid(pid);
683 	if (tsk) {
684 		struct nsproxy *nsproxy;
685 		task_lock(tsk);
686 		nsproxy = tsk->nsproxy;
687 		if (nsproxy)
688 			net = get_net(nsproxy->net_ns);
689 		task_unlock(tsk);
690 	}
691 	rcu_read_unlock();
692 	return net;
693 }
694 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
695 
696 static __net_init int net_ns_net_init(struct net *net)
697 {
698 #ifdef CONFIG_NET_NS
699 	net->ns.ops = &netns_operations;
700 #endif
701 	return ns_alloc_inum(&net->ns);
702 }
703 
704 static __net_exit void net_ns_net_exit(struct net *net)
705 {
706 	ns_free_inum(&net->ns);
707 }
708 
709 static struct pernet_operations __net_initdata net_ns_ops = {
710 	.init = net_ns_net_init,
711 	.exit = net_ns_net_exit,
712 };
713 
714 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
715 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
716 	[NETNSA_NSID]		= { .type = NLA_S32 },
717 	[NETNSA_PID]		= { .type = NLA_U32 },
718 	[NETNSA_FD]		= { .type = NLA_U32 },
719 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
720 };
721 
722 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
723 			  struct netlink_ext_ack *extack)
724 {
725 	struct net *net = sock_net(skb->sk);
726 	struct nlattr *tb[NETNSA_MAX + 1];
727 	struct nlattr *nla;
728 	struct net *peer;
729 	int nsid, err;
730 
731 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
732 				     NETNSA_MAX, rtnl_net_policy, extack);
733 	if (err < 0)
734 		return err;
735 	if (!tb[NETNSA_NSID]) {
736 		NL_SET_ERR_MSG(extack, "nsid is missing");
737 		return -EINVAL;
738 	}
739 	nsid = nla_get_s32(tb[NETNSA_NSID]);
740 
741 	if (tb[NETNSA_PID]) {
742 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
743 		nla = tb[NETNSA_PID];
744 	} else if (tb[NETNSA_FD]) {
745 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
746 		nla = tb[NETNSA_FD];
747 	} else {
748 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
749 		return -EINVAL;
750 	}
751 	if (IS_ERR(peer)) {
752 		NL_SET_BAD_ATTR(extack, nla);
753 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
754 		return PTR_ERR(peer);
755 	}
756 
757 	spin_lock_bh(&net->nsid_lock);
758 	if (__peernet2id(net, peer) >= 0) {
759 		spin_unlock_bh(&net->nsid_lock);
760 		err = -EEXIST;
761 		NL_SET_BAD_ATTR(extack, nla);
762 		NL_SET_ERR_MSG(extack,
763 			       "Peer netns already has a nsid assigned");
764 		goto out;
765 	}
766 
767 	err = alloc_netid(net, peer, nsid);
768 	spin_unlock_bh(&net->nsid_lock);
769 	if (err >= 0) {
770 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
771 				  nlh, GFP_KERNEL);
772 		err = 0;
773 	} else if (err == -ENOSPC && nsid >= 0) {
774 		err = -EEXIST;
775 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
776 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
777 	}
778 out:
779 	put_net(peer);
780 	return err;
781 }
782 
783 static int rtnl_net_get_size(void)
784 {
785 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
786 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
787 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
788 	       ;
789 }
790 
791 struct net_fill_args {
792 	u32 portid;
793 	u32 seq;
794 	int flags;
795 	int cmd;
796 	int nsid;
797 	bool add_ref;
798 	int ref_nsid;
799 };
800 
801 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
802 {
803 	struct nlmsghdr *nlh;
804 	struct rtgenmsg *rth;
805 
806 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
807 			args->flags);
808 	if (!nlh)
809 		return -EMSGSIZE;
810 
811 	rth = nlmsg_data(nlh);
812 	rth->rtgen_family = AF_UNSPEC;
813 
814 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
815 		goto nla_put_failure;
816 
817 	if (args->add_ref &&
818 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
819 		goto nla_put_failure;
820 
821 	nlmsg_end(skb, nlh);
822 	return 0;
823 
824 nla_put_failure:
825 	nlmsg_cancel(skb, nlh);
826 	return -EMSGSIZE;
827 }
828 
829 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
830 				    const struct nlmsghdr *nlh,
831 				    struct nlattr **tb,
832 				    struct netlink_ext_ack *extack)
833 {
834 	int i, err;
835 
836 	if (!netlink_strict_get_check(skb))
837 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
838 					      tb, NETNSA_MAX, rtnl_net_policy,
839 					      extack);
840 
841 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
842 					    NETNSA_MAX, rtnl_net_policy,
843 					    extack);
844 	if (err)
845 		return err;
846 
847 	for (i = 0; i <= NETNSA_MAX; i++) {
848 		if (!tb[i])
849 			continue;
850 
851 		switch (i) {
852 		case NETNSA_PID:
853 		case NETNSA_FD:
854 		case NETNSA_NSID:
855 		case NETNSA_TARGET_NSID:
856 			break;
857 		default:
858 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
859 			return -EINVAL;
860 		}
861 	}
862 
863 	return 0;
864 }
865 
866 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
867 			  struct netlink_ext_ack *extack)
868 {
869 	struct net *net = sock_net(skb->sk);
870 	struct nlattr *tb[NETNSA_MAX + 1];
871 	struct net_fill_args fillargs = {
872 		.portid = NETLINK_CB(skb).portid,
873 		.seq = nlh->nlmsg_seq,
874 		.cmd = RTM_NEWNSID,
875 	};
876 	struct net *peer, *target = net;
877 	struct nlattr *nla;
878 	struct sk_buff *msg;
879 	int err;
880 
881 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
882 	if (err < 0)
883 		return err;
884 	if (tb[NETNSA_PID]) {
885 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
886 		nla = tb[NETNSA_PID];
887 	} else if (tb[NETNSA_FD]) {
888 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
889 		nla = tb[NETNSA_FD];
890 	} else if (tb[NETNSA_NSID]) {
891 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
892 		if (!peer)
893 			peer = ERR_PTR(-ENOENT);
894 		nla = tb[NETNSA_NSID];
895 	} else {
896 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
897 		return -EINVAL;
898 	}
899 
900 	if (IS_ERR(peer)) {
901 		NL_SET_BAD_ATTR(extack, nla);
902 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
903 		return PTR_ERR(peer);
904 	}
905 
906 	if (tb[NETNSA_TARGET_NSID]) {
907 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
908 
909 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
910 		if (IS_ERR(target)) {
911 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
912 			NL_SET_ERR_MSG(extack,
913 				       "Target netns reference is invalid");
914 			err = PTR_ERR(target);
915 			goto out;
916 		}
917 		fillargs.add_ref = true;
918 		fillargs.ref_nsid = peernet2id(net, peer);
919 	}
920 
921 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
922 	if (!msg) {
923 		err = -ENOMEM;
924 		goto out;
925 	}
926 
927 	fillargs.nsid = peernet2id(target, peer);
928 	err = rtnl_net_fill(msg, &fillargs);
929 	if (err < 0)
930 		goto err_out;
931 
932 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
933 	goto out;
934 
935 err_out:
936 	nlmsg_free(msg);
937 out:
938 	if (fillargs.add_ref)
939 		put_net(target);
940 	put_net(peer);
941 	return err;
942 }
943 
944 struct rtnl_net_dump_cb {
945 	struct net *tgt_net;
946 	struct net *ref_net;
947 	struct sk_buff *skb;
948 	struct net_fill_args fillargs;
949 	int idx;
950 	int s_idx;
951 };
952 
953 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
954 {
955 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
956 	int ret;
957 
958 	if (net_cb->idx < net_cb->s_idx)
959 		goto cont;
960 
961 	net_cb->fillargs.nsid = id;
962 	if (net_cb->fillargs.add_ref)
963 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
964 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
965 	if (ret < 0)
966 		return ret;
967 
968 cont:
969 	net_cb->idx++;
970 	return 0;
971 }
972 
973 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
974 				   struct rtnl_net_dump_cb *net_cb,
975 				   struct netlink_callback *cb)
976 {
977 	struct netlink_ext_ack *extack = cb->extack;
978 	struct nlattr *tb[NETNSA_MAX + 1];
979 	int err, i;
980 
981 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
982 					    NETNSA_MAX, rtnl_net_policy,
983 					    extack);
984 	if (err < 0)
985 		return err;
986 
987 	for (i = 0; i <= NETNSA_MAX; i++) {
988 		if (!tb[i])
989 			continue;
990 
991 		if (i == NETNSA_TARGET_NSID) {
992 			struct net *net;
993 
994 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
995 			if (IS_ERR(net)) {
996 				NL_SET_BAD_ATTR(extack, tb[i]);
997 				NL_SET_ERR_MSG(extack,
998 					       "Invalid target network namespace id");
999 				return PTR_ERR(net);
1000 			}
1001 			net_cb->fillargs.add_ref = true;
1002 			net_cb->ref_net = net_cb->tgt_net;
1003 			net_cb->tgt_net = net;
1004 		} else {
1005 			NL_SET_BAD_ATTR(extack, tb[i]);
1006 			NL_SET_ERR_MSG(extack,
1007 				       "Unsupported attribute in dump request");
1008 			return -EINVAL;
1009 		}
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1016 {
1017 	struct rtnl_net_dump_cb net_cb = {
1018 		.tgt_net = sock_net(skb->sk),
1019 		.skb = skb,
1020 		.fillargs = {
1021 			.portid = NETLINK_CB(cb->skb).portid,
1022 			.seq = cb->nlh->nlmsg_seq,
1023 			.flags = NLM_F_MULTI,
1024 			.cmd = RTM_NEWNSID,
1025 		},
1026 		.idx = 0,
1027 		.s_idx = cb->args[0],
1028 	};
1029 	int err = 0;
1030 
1031 	if (cb->strict_check) {
1032 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1033 		if (err < 0)
1034 			goto end;
1035 	}
1036 
1037 	spin_lock_bh(&net_cb.tgt_net->nsid_lock);
1038 	if (net_cb.fillargs.add_ref &&
1039 	    !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
1040 	    !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
1041 		spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1042 		err = -EAGAIN;
1043 		goto end;
1044 	}
1045 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1046 	if (net_cb.fillargs.add_ref &&
1047 	    !net_eq(net_cb.ref_net, net_cb.tgt_net))
1048 		spin_unlock_bh(&net_cb.ref_net->nsid_lock);
1049 	spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1050 
1051 	cb->args[0] = net_cb.idx;
1052 end:
1053 	if (net_cb.fillargs.add_ref)
1054 		put_net(net_cb.tgt_net);
1055 	return err < 0 ? err : skb->len;
1056 }
1057 
1058 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1059 			      struct nlmsghdr *nlh, gfp_t gfp)
1060 {
1061 	struct net_fill_args fillargs = {
1062 		.portid = portid,
1063 		.seq = nlh ? nlh->nlmsg_seq : 0,
1064 		.cmd = cmd,
1065 		.nsid = id,
1066 	};
1067 	struct sk_buff *msg;
1068 	int err = -ENOMEM;
1069 
1070 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1071 	if (!msg)
1072 		goto out;
1073 
1074 	err = rtnl_net_fill(msg, &fillargs);
1075 	if (err < 0)
1076 		goto err_out;
1077 
1078 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1079 	return;
1080 
1081 err_out:
1082 	nlmsg_free(msg);
1083 out:
1084 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1085 }
1086 
1087 static int __init net_ns_init(void)
1088 {
1089 	struct net_generic *ng;
1090 
1091 #ifdef CONFIG_NET_NS
1092 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1093 					SMP_CACHE_BYTES,
1094 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1095 
1096 	/* Create workqueue for cleanup */
1097 	netns_wq = create_singlethread_workqueue("netns");
1098 	if (!netns_wq)
1099 		panic("Could not create netns workq");
1100 #endif
1101 
1102 	ng = net_alloc_generic();
1103 	if (!ng)
1104 		panic("Could not allocate generic netns");
1105 
1106 	rcu_assign_pointer(init_net.gen, ng);
1107 
1108 	down_write(&pernet_ops_rwsem);
1109 	if (setup_net(&init_net, &init_user_ns))
1110 		panic("Could not setup the initial network namespace");
1111 
1112 	init_net_initialized = true;
1113 	up_write(&pernet_ops_rwsem);
1114 
1115 	if (register_pernet_subsys(&net_ns_ops))
1116 		panic("Could not register network namespace subsystems");
1117 
1118 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1119 		      RTNL_FLAG_DOIT_UNLOCKED);
1120 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1121 		      RTNL_FLAG_DOIT_UNLOCKED);
1122 
1123 	return 0;
1124 }
1125 
1126 pure_initcall(net_ns_init);
1127 
1128 #ifdef CONFIG_NET_NS
1129 static int __register_pernet_operations(struct list_head *list,
1130 					struct pernet_operations *ops)
1131 {
1132 	struct net *net;
1133 	int error;
1134 	LIST_HEAD(net_exit_list);
1135 
1136 	list_add_tail(&ops->list, list);
1137 	if (ops->init || (ops->id && ops->size)) {
1138 		/* We held write locked pernet_ops_rwsem, and parallel
1139 		 * setup_net() and cleanup_net() are not possible.
1140 		 */
1141 		for_each_net(net) {
1142 			error = ops_init(ops, net);
1143 			if (error)
1144 				goto out_undo;
1145 			list_add_tail(&net->exit_list, &net_exit_list);
1146 		}
1147 	}
1148 	return 0;
1149 
1150 out_undo:
1151 	/* If I have an error cleanup all namespaces I initialized */
1152 	list_del(&ops->list);
1153 	ops_pre_exit_list(ops, &net_exit_list);
1154 	synchronize_rcu();
1155 	ops_exit_list(ops, &net_exit_list);
1156 	ops_free_list(ops, &net_exit_list);
1157 	return error;
1158 }
1159 
1160 static void __unregister_pernet_operations(struct pernet_operations *ops)
1161 {
1162 	struct net *net;
1163 	LIST_HEAD(net_exit_list);
1164 
1165 	list_del(&ops->list);
1166 	/* See comment in __register_pernet_operations() */
1167 	for_each_net(net)
1168 		list_add_tail(&net->exit_list, &net_exit_list);
1169 	ops_pre_exit_list(ops, &net_exit_list);
1170 	synchronize_rcu();
1171 	ops_exit_list(ops, &net_exit_list);
1172 	ops_free_list(ops, &net_exit_list);
1173 }
1174 
1175 #else
1176 
1177 static int __register_pernet_operations(struct list_head *list,
1178 					struct pernet_operations *ops)
1179 {
1180 	if (!init_net_initialized) {
1181 		list_add_tail(&ops->list, list);
1182 		return 0;
1183 	}
1184 
1185 	return ops_init(ops, &init_net);
1186 }
1187 
1188 static void __unregister_pernet_operations(struct pernet_operations *ops)
1189 {
1190 	if (!init_net_initialized) {
1191 		list_del(&ops->list);
1192 	} else {
1193 		LIST_HEAD(net_exit_list);
1194 		list_add(&init_net.exit_list, &net_exit_list);
1195 		ops_pre_exit_list(ops, &net_exit_list);
1196 		synchronize_rcu();
1197 		ops_exit_list(ops, &net_exit_list);
1198 		ops_free_list(ops, &net_exit_list);
1199 	}
1200 }
1201 
1202 #endif /* CONFIG_NET_NS */
1203 
1204 static DEFINE_IDA(net_generic_ids);
1205 
1206 static int register_pernet_operations(struct list_head *list,
1207 				      struct pernet_operations *ops)
1208 {
1209 	int error;
1210 
1211 	if (ops->id) {
1212 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1213 				GFP_KERNEL);
1214 		if (error < 0)
1215 			return error;
1216 		*ops->id = error;
1217 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1218 	}
1219 	error = __register_pernet_operations(list, ops);
1220 	if (error) {
1221 		rcu_barrier();
1222 		if (ops->id)
1223 			ida_free(&net_generic_ids, *ops->id);
1224 	}
1225 
1226 	return error;
1227 }
1228 
1229 static void unregister_pernet_operations(struct pernet_operations *ops)
1230 {
1231 	__unregister_pernet_operations(ops);
1232 	rcu_barrier();
1233 	if (ops->id)
1234 		ida_free(&net_generic_ids, *ops->id);
1235 }
1236 
1237 /**
1238  *      register_pernet_subsys - register a network namespace subsystem
1239  *	@ops:  pernet operations structure for the subsystem
1240  *
1241  *	Register a subsystem which has init and exit functions
1242  *	that are called when network namespaces are created and
1243  *	destroyed respectively.
1244  *
1245  *	When registered all network namespace init functions are
1246  *	called for every existing network namespace.  Allowing kernel
1247  *	modules to have a race free view of the set of network namespaces.
1248  *
1249  *	When a new network namespace is created all of the init
1250  *	methods are called in the order in which they were registered.
1251  *
1252  *	When a network namespace is destroyed all of the exit methods
1253  *	are called in the reverse of the order with which they were
1254  *	registered.
1255  */
1256 int register_pernet_subsys(struct pernet_operations *ops)
1257 {
1258 	int error;
1259 	down_write(&pernet_ops_rwsem);
1260 	error =  register_pernet_operations(first_device, ops);
1261 	up_write(&pernet_ops_rwsem);
1262 	return error;
1263 }
1264 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1265 
1266 /**
1267  *      unregister_pernet_subsys - unregister a network namespace subsystem
1268  *	@ops: pernet operations structure to manipulate
1269  *
1270  *	Remove the pernet operations structure from the list to be
1271  *	used when network namespaces are created or destroyed.  In
1272  *	addition run the exit method for all existing network
1273  *	namespaces.
1274  */
1275 void unregister_pernet_subsys(struct pernet_operations *ops)
1276 {
1277 	down_write(&pernet_ops_rwsem);
1278 	unregister_pernet_operations(ops);
1279 	up_write(&pernet_ops_rwsem);
1280 }
1281 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1282 
1283 /**
1284  *      register_pernet_device - register a network namespace device
1285  *	@ops:  pernet operations structure for the subsystem
1286  *
1287  *	Register a device which has init and exit functions
1288  *	that are called when network namespaces are created and
1289  *	destroyed respectively.
1290  *
1291  *	When registered all network namespace init functions are
1292  *	called for every existing network namespace.  Allowing kernel
1293  *	modules to have a race free view of the set of network namespaces.
1294  *
1295  *	When a new network namespace is created all of the init
1296  *	methods are called in the order in which they were registered.
1297  *
1298  *	When a network namespace is destroyed all of the exit methods
1299  *	are called in the reverse of the order with which they were
1300  *	registered.
1301  */
1302 int register_pernet_device(struct pernet_operations *ops)
1303 {
1304 	int error;
1305 	down_write(&pernet_ops_rwsem);
1306 	error = register_pernet_operations(&pernet_list, ops);
1307 	if (!error && (first_device == &pernet_list))
1308 		first_device = &ops->list;
1309 	up_write(&pernet_ops_rwsem);
1310 	return error;
1311 }
1312 EXPORT_SYMBOL_GPL(register_pernet_device);
1313 
1314 /**
1315  *      unregister_pernet_device - unregister a network namespace netdevice
1316  *	@ops: pernet operations structure to manipulate
1317  *
1318  *	Remove the pernet operations structure from the list to be
1319  *	used when network namespaces are created or destroyed.  In
1320  *	addition run the exit method for all existing network
1321  *	namespaces.
1322  */
1323 void unregister_pernet_device(struct pernet_operations *ops)
1324 {
1325 	down_write(&pernet_ops_rwsem);
1326 	if (&ops->list == first_device)
1327 		first_device = first_device->next;
1328 	unregister_pernet_operations(ops);
1329 	up_write(&pernet_ops_rwsem);
1330 }
1331 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1332 
1333 #ifdef CONFIG_NET_NS
1334 static struct ns_common *netns_get(struct task_struct *task)
1335 {
1336 	struct net *net = NULL;
1337 	struct nsproxy *nsproxy;
1338 
1339 	task_lock(task);
1340 	nsproxy = task->nsproxy;
1341 	if (nsproxy)
1342 		net = get_net(nsproxy->net_ns);
1343 	task_unlock(task);
1344 
1345 	return net ? &net->ns : NULL;
1346 }
1347 
1348 static inline struct net *to_net_ns(struct ns_common *ns)
1349 {
1350 	return container_of(ns, struct net, ns);
1351 }
1352 
1353 static void netns_put(struct ns_common *ns)
1354 {
1355 	put_net(to_net_ns(ns));
1356 }
1357 
1358 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1359 {
1360 	struct net *net = to_net_ns(ns);
1361 
1362 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1363 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1364 		return -EPERM;
1365 
1366 	put_net(nsproxy->net_ns);
1367 	nsproxy->net_ns = get_net(net);
1368 	return 0;
1369 }
1370 
1371 static struct user_namespace *netns_owner(struct ns_common *ns)
1372 {
1373 	return to_net_ns(ns)->user_ns;
1374 }
1375 
1376 const struct proc_ns_operations netns_operations = {
1377 	.name		= "net",
1378 	.type		= CLONE_NEWNET,
1379 	.get		= netns_get,
1380 	.put		= netns_put,
1381 	.install	= netns_install,
1382 	.owner		= netns_owner,
1383 };
1384 #endif
1385