xref: /openbmc/linux/net/core/net_namespace.c (revision 38f507f1)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 static bool init_net_initialized;
41 
42 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
43 
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45 
46 static struct net_generic *net_alloc_generic(void)
47 {
48 	struct net_generic *ng;
49 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50 
51 	ng = kzalloc(generic_size, GFP_KERNEL);
52 	if (ng)
53 		ng->len = max_gen_ptrs;
54 
55 	return ng;
56 }
57 
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 	struct net_generic *ng, *old_ng;
61 
62 	BUG_ON(!mutex_is_locked(&net_mutex));
63 	BUG_ON(id == 0);
64 
65 	old_ng = rcu_dereference_protected(net->gen,
66 					   lockdep_is_held(&net_mutex));
67 	ng = old_ng;
68 	if (old_ng->len >= id)
69 		goto assign;
70 
71 	ng = net_alloc_generic();
72 	if (ng == NULL)
73 		return -ENOMEM;
74 
75 	/*
76 	 * Some synchronisation notes:
77 	 *
78 	 * The net_generic explores the net->gen array inside rcu
79 	 * read section. Besides once set the net->gen->ptr[x]
80 	 * pointer never changes (see rules in netns/generic.h).
81 	 *
82 	 * That said, we simply duplicate this array and schedule
83 	 * the old copy for kfree after a grace period.
84 	 */
85 
86 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87 
88 	rcu_assign_pointer(net->gen, ng);
89 	kfree_rcu(old_ng, rcu);
90 assign:
91 	ng->ptr[id - 1] = data;
92 	return 0;
93 }
94 
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 	int err = -ENOMEM;
98 	void *data = NULL;
99 
100 	if (ops->id && ops->size) {
101 		data = kzalloc(ops->size, GFP_KERNEL);
102 		if (!data)
103 			goto out;
104 
105 		err = net_assign_generic(net, *ops->id, data);
106 		if (err)
107 			goto cleanup;
108 	}
109 	err = 0;
110 	if (ops->init)
111 		err = ops->init(net);
112 	if (!err)
113 		return 0;
114 
115 cleanup:
116 	kfree(data);
117 
118 out:
119 	return err;
120 }
121 
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 	if (ops->id && ops->size) {
125 		int id = *ops->id;
126 		kfree(net_generic(net, id));
127 	}
128 }
129 
130 static void ops_exit_list(const struct pernet_operations *ops,
131 			  struct list_head *net_exit_list)
132 {
133 	struct net *net;
134 	if (ops->exit) {
135 		list_for_each_entry(net, net_exit_list, exit_list)
136 			ops->exit(net);
137 	}
138 	if (ops->exit_batch)
139 		ops->exit_batch(net_exit_list);
140 }
141 
142 static void ops_free_list(const struct pernet_operations *ops,
143 			  struct list_head *net_exit_list)
144 {
145 	struct net *net;
146 	if (ops->size && ops->id) {
147 		list_for_each_entry(net, net_exit_list, exit_list)
148 			ops_free(ops, net);
149 	}
150 }
151 
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 	int min = 0, max = 0;
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164 
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166  * function returns the id so that idr_for_each() stops. Because we cannot
167  * returns the id 0 (idr_for_each() will not stop), we return the magic value
168  * NET_ID_ZERO (-1) for it.
169  */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 	if (net_eq(net, peer))
174 		return id ? : NET_ID_ZERO;
175 	return 0;
176 }
177 
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179  * is set to true, thus the caller knows that the new id must be notified via
180  * rtnl.
181  */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 	bool alloc_it = *alloc;
186 
187 	*alloc = false;
188 
189 	/* Magic value for id 0. */
190 	if (id == NET_ID_ZERO)
191 		return 0;
192 	if (id > 0)
193 		return id;
194 
195 	if (alloc_it) {
196 		id = alloc_netid(net, peer, -1);
197 		*alloc = true;
198 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 	}
200 
201 	return NETNSA_NSID_NOT_ASSIGNED;
202 }
203 
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 	bool no = false;
208 
209 	return __peernet2id_alloc(net, peer, &no);
210 }
211 
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214  * be allocated and returned.
215  */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 	unsigned long flags;
219 	bool alloc;
220 	int id;
221 
222 	spin_lock_irqsave(&net->nsid_lock, flags);
223 	alloc = atomic_read(&peer->count) == 0 ? false : true;
224 	id = __peernet2id_alloc(net, peer, &alloc);
225 	spin_unlock_irqrestore(&net->nsid_lock, flags);
226 	if (alloc && id >= 0)
227 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
228 	return id;
229 }
230 
231 /* This function returns, if assigned, the id of a peer netns. */
232 int peernet2id(struct net *net, struct net *peer)
233 {
234 	unsigned long flags;
235 	int id;
236 
237 	spin_lock_irqsave(&net->nsid_lock, flags);
238 	id = __peernet2id(net, peer);
239 	spin_unlock_irqrestore(&net->nsid_lock, flags);
240 	return id;
241 }
242 EXPORT_SYMBOL(peernet2id);
243 
244 /* This function returns true is the peer netns has an id assigned into the
245  * current netns.
246  */
247 bool peernet_has_id(struct net *net, struct net *peer)
248 {
249 	return peernet2id(net, peer) >= 0;
250 }
251 
252 struct net *get_net_ns_by_id(struct net *net, int id)
253 {
254 	unsigned long flags;
255 	struct net *peer;
256 
257 	if (id < 0)
258 		return NULL;
259 
260 	rcu_read_lock();
261 	spin_lock_irqsave(&net->nsid_lock, flags);
262 	peer = idr_find(&net->netns_ids, id);
263 	if (peer)
264 		get_net(peer);
265 	spin_unlock_irqrestore(&net->nsid_lock, flags);
266 	rcu_read_unlock();
267 
268 	return peer;
269 }
270 
271 /*
272  * setup_net runs the initializers for the network namespace object.
273  */
274 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
275 {
276 	/* Must be called with net_mutex held */
277 	const struct pernet_operations *ops, *saved_ops;
278 	int error = 0;
279 	LIST_HEAD(net_exit_list);
280 
281 	atomic_set(&net->count, 1);
282 	atomic_set(&net->passive, 1);
283 	net->dev_base_seq = 1;
284 	net->user_ns = user_ns;
285 	idr_init(&net->netns_ids);
286 	spin_lock_init(&net->nsid_lock);
287 
288 	list_for_each_entry(ops, &pernet_list, list) {
289 		error = ops_init(ops, net);
290 		if (error < 0)
291 			goto out_undo;
292 	}
293 out:
294 	return error;
295 
296 out_undo:
297 	/* Walk through the list backwards calling the exit functions
298 	 * for the pernet modules whose init functions did not fail.
299 	 */
300 	list_add(&net->exit_list, &net_exit_list);
301 	saved_ops = ops;
302 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
303 		ops_exit_list(ops, &net_exit_list);
304 
305 	ops = saved_ops;
306 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
307 		ops_free_list(ops, &net_exit_list);
308 
309 	rcu_barrier();
310 	goto out;
311 }
312 
313 
314 #ifdef CONFIG_NET_NS
315 static struct kmem_cache *net_cachep;
316 static struct workqueue_struct *netns_wq;
317 
318 static struct net *net_alloc(void)
319 {
320 	struct net *net = NULL;
321 	struct net_generic *ng;
322 
323 	ng = net_alloc_generic();
324 	if (!ng)
325 		goto out;
326 
327 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
328 	if (!net)
329 		goto out_free;
330 
331 	rcu_assign_pointer(net->gen, ng);
332 out:
333 	return net;
334 
335 out_free:
336 	kfree(ng);
337 	goto out;
338 }
339 
340 static void net_free(struct net *net)
341 {
342 	kfree(rcu_access_pointer(net->gen));
343 	kmem_cache_free(net_cachep, net);
344 }
345 
346 void net_drop_ns(void *p)
347 {
348 	struct net *ns = p;
349 	if (ns && atomic_dec_and_test(&ns->passive))
350 		net_free(ns);
351 }
352 
353 struct net *copy_net_ns(unsigned long flags,
354 			struct user_namespace *user_ns, struct net *old_net)
355 {
356 	struct net *net;
357 	int rv;
358 
359 	if (!(flags & CLONE_NEWNET))
360 		return get_net(old_net);
361 
362 	net = net_alloc();
363 	if (!net)
364 		return ERR_PTR(-ENOMEM);
365 
366 	get_user_ns(user_ns);
367 
368 	mutex_lock(&net_mutex);
369 	rv = setup_net(net, user_ns);
370 	if (rv == 0) {
371 		rtnl_lock();
372 		list_add_tail_rcu(&net->list, &net_namespace_list);
373 		rtnl_unlock();
374 	}
375 	mutex_unlock(&net_mutex);
376 	if (rv < 0) {
377 		put_user_ns(user_ns);
378 		net_drop_ns(net);
379 		return ERR_PTR(rv);
380 	}
381 	return net;
382 }
383 
384 static DEFINE_SPINLOCK(cleanup_list_lock);
385 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
386 
387 static void cleanup_net(struct work_struct *work)
388 {
389 	const struct pernet_operations *ops;
390 	struct net *net, *tmp;
391 	struct list_head net_kill_list;
392 	LIST_HEAD(net_exit_list);
393 
394 	/* Atomically snapshot the list of namespaces to cleanup */
395 	spin_lock_irq(&cleanup_list_lock);
396 	list_replace_init(&cleanup_list, &net_kill_list);
397 	spin_unlock_irq(&cleanup_list_lock);
398 
399 	mutex_lock(&net_mutex);
400 
401 	/* Don't let anyone else find us. */
402 	rtnl_lock();
403 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
404 		list_del_rcu(&net->list);
405 		list_add_tail(&net->exit_list, &net_exit_list);
406 		for_each_net(tmp) {
407 			int id;
408 
409 			spin_lock_irq(&tmp->nsid_lock);
410 			id = __peernet2id(tmp, net);
411 			if (id >= 0)
412 				idr_remove(&tmp->netns_ids, id);
413 			spin_unlock_irq(&tmp->nsid_lock);
414 			if (id >= 0)
415 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
416 		}
417 		spin_lock_irq(&net->nsid_lock);
418 		idr_destroy(&net->netns_ids);
419 		spin_unlock_irq(&net->nsid_lock);
420 
421 	}
422 	rtnl_unlock();
423 
424 	/*
425 	 * Another CPU might be rcu-iterating the list, wait for it.
426 	 * This needs to be before calling the exit() notifiers, so
427 	 * the rcu_barrier() below isn't sufficient alone.
428 	 */
429 	synchronize_rcu();
430 
431 	/* Run all of the network namespace exit methods */
432 	list_for_each_entry_reverse(ops, &pernet_list, list)
433 		ops_exit_list(ops, &net_exit_list);
434 
435 	/* Free the net generic variables */
436 	list_for_each_entry_reverse(ops, &pernet_list, list)
437 		ops_free_list(ops, &net_exit_list);
438 
439 	mutex_unlock(&net_mutex);
440 
441 	/* Ensure there are no outstanding rcu callbacks using this
442 	 * network namespace.
443 	 */
444 	rcu_barrier();
445 
446 	/* Finally it is safe to free my network namespace structure */
447 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
448 		list_del_init(&net->exit_list);
449 		put_user_ns(net->user_ns);
450 		net_drop_ns(net);
451 	}
452 }
453 static DECLARE_WORK(net_cleanup_work, cleanup_net);
454 
455 void __put_net(struct net *net)
456 {
457 	/* Cleanup the network namespace in process context */
458 	unsigned long flags;
459 
460 	spin_lock_irqsave(&cleanup_list_lock, flags);
461 	list_add(&net->cleanup_list, &cleanup_list);
462 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
463 
464 	queue_work(netns_wq, &net_cleanup_work);
465 }
466 EXPORT_SYMBOL_GPL(__put_net);
467 
468 struct net *get_net_ns_by_fd(int fd)
469 {
470 	struct file *file;
471 	struct ns_common *ns;
472 	struct net *net;
473 
474 	file = proc_ns_fget(fd);
475 	if (IS_ERR(file))
476 		return ERR_CAST(file);
477 
478 	ns = get_proc_ns(file_inode(file));
479 	if (ns->ops == &netns_operations)
480 		net = get_net(container_of(ns, struct net, ns));
481 	else
482 		net = ERR_PTR(-EINVAL);
483 
484 	fput(file);
485 	return net;
486 }
487 
488 #else
489 struct net *get_net_ns_by_fd(int fd)
490 {
491 	return ERR_PTR(-EINVAL);
492 }
493 #endif
494 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
495 
496 struct net *get_net_ns_by_pid(pid_t pid)
497 {
498 	struct task_struct *tsk;
499 	struct net *net;
500 
501 	/* Lookup the network namespace */
502 	net = ERR_PTR(-ESRCH);
503 	rcu_read_lock();
504 	tsk = find_task_by_vpid(pid);
505 	if (tsk) {
506 		struct nsproxy *nsproxy;
507 		task_lock(tsk);
508 		nsproxy = tsk->nsproxy;
509 		if (nsproxy)
510 			net = get_net(nsproxy->net_ns);
511 		task_unlock(tsk);
512 	}
513 	rcu_read_unlock();
514 	return net;
515 }
516 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
517 
518 static __net_init int net_ns_net_init(struct net *net)
519 {
520 #ifdef CONFIG_NET_NS
521 	net->ns.ops = &netns_operations;
522 #endif
523 	return ns_alloc_inum(&net->ns);
524 }
525 
526 static __net_exit void net_ns_net_exit(struct net *net)
527 {
528 	ns_free_inum(&net->ns);
529 }
530 
531 static struct pernet_operations __net_initdata net_ns_ops = {
532 	.init = net_ns_net_init,
533 	.exit = net_ns_net_exit,
534 };
535 
536 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
537 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
538 	[NETNSA_NSID]		= { .type = NLA_S32 },
539 	[NETNSA_PID]		= { .type = NLA_U32 },
540 	[NETNSA_FD]		= { .type = NLA_U32 },
541 };
542 
543 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
544 {
545 	struct net *net = sock_net(skb->sk);
546 	struct nlattr *tb[NETNSA_MAX + 1];
547 	unsigned long flags;
548 	struct net *peer;
549 	int nsid, err;
550 
551 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
552 			  rtnl_net_policy);
553 	if (err < 0)
554 		return err;
555 	if (!tb[NETNSA_NSID])
556 		return -EINVAL;
557 	nsid = nla_get_s32(tb[NETNSA_NSID]);
558 
559 	if (tb[NETNSA_PID])
560 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
561 	else if (tb[NETNSA_FD])
562 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
563 	else
564 		return -EINVAL;
565 	if (IS_ERR(peer))
566 		return PTR_ERR(peer);
567 
568 	spin_lock_irqsave(&net->nsid_lock, flags);
569 	if (__peernet2id(net, peer) >= 0) {
570 		spin_unlock_irqrestore(&net->nsid_lock, flags);
571 		err = -EEXIST;
572 		goto out;
573 	}
574 
575 	err = alloc_netid(net, peer, nsid);
576 	spin_unlock_irqrestore(&net->nsid_lock, flags);
577 	if (err >= 0) {
578 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
579 		err = 0;
580 	}
581 out:
582 	put_net(peer);
583 	return err;
584 }
585 
586 static int rtnl_net_get_size(void)
587 {
588 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
589 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
590 	       ;
591 }
592 
593 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
594 			 int cmd, struct net *net, int nsid)
595 {
596 	struct nlmsghdr *nlh;
597 	struct rtgenmsg *rth;
598 
599 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
600 	if (!nlh)
601 		return -EMSGSIZE;
602 
603 	rth = nlmsg_data(nlh);
604 	rth->rtgen_family = AF_UNSPEC;
605 
606 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
607 		goto nla_put_failure;
608 
609 	nlmsg_end(skb, nlh);
610 	return 0;
611 
612 nla_put_failure:
613 	nlmsg_cancel(skb, nlh);
614 	return -EMSGSIZE;
615 }
616 
617 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
618 {
619 	struct net *net = sock_net(skb->sk);
620 	struct nlattr *tb[NETNSA_MAX + 1];
621 	struct sk_buff *msg;
622 	struct net *peer;
623 	int err, id;
624 
625 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
626 			  rtnl_net_policy);
627 	if (err < 0)
628 		return err;
629 	if (tb[NETNSA_PID])
630 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
631 	else if (tb[NETNSA_FD])
632 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
633 	else
634 		return -EINVAL;
635 
636 	if (IS_ERR(peer))
637 		return PTR_ERR(peer);
638 
639 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
640 	if (!msg) {
641 		err = -ENOMEM;
642 		goto out;
643 	}
644 
645 	id = peernet2id(net, peer);
646 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
647 			    RTM_NEWNSID, net, id);
648 	if (err < 0)
649 		goto err_out;
650 
651 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
652 	goto out;
653 
654 err_out:
655 	nlmsg_free(msg);
656 out:
657 	put_net(peer);
658 	return err;
659 }
660 
661 struct rtnl_net_dump_cb {
662 	struct net *net;
663 	struct sk_buff *skb;
664 	struct netlink_callback *cb;
665 	int idx;
666 	int s_idx;
667 };
668 
669 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
670 {
671 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
672 	int ret;
673 
674 	if (net_cb->idx < net_cb->s_idx)
675 		goto cont;
676 
677 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
678 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
679 			    RTM_NEWNSID, net_cb->net, id);
680 	if (ret < 0)
681 		return ret;
682 
683 cont:
684 	net_cb->idx++;
685 	return 0;
686 }
687 
688 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
689 {
690 	struct net *net = sock_net(skb->sk);
691 	struct rtnl_net_dump_cb net_cb = {
692 		.net = net,
693 		.skb = skb,
694 		.cb = cb,
695 		.idx = 0,
696 		.s_idx = cb->args[0],
697 	};
698 	unsigned long flags;
699 
700 	spin_lock_irqsave(&net->nsid_lock, flags);
701 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
702 	spin_unlock_irqrestore(&net->nsid_lock, flags);
703 
704 	cb->args[0] = net_cb.idx;
705 	return skb->len;
706 }
707 
708 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
709 {
710 	struct sk_buff *msg;
711 	int err = -ENOMEM;
712 
713 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
714 	if (!msg)
715 		goto out;
716 
717 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
718 	if (err < 0)
719 		goto err_out;
720 
721 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
722 	return;
723 
724 err_out:
725 	nlmsg_free(msg);
726 out:
727 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
728 }
729 
730 static int __init net_ns_init(void)
731 {
732 	struct net_generic *ng;
733 
734 #ifdef CONFIG_NET_NS
735 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
736 					SMP_CACHE_BYTES,
737 					SLAB_PANIC, NULL);
738 
739 	/* Create workqueue for cleanup */
740 	netns_wq = create_singlethread_workqueue("netns");
741 	if (!netns_wq)
742 		panic("Could not create netns workq");
743 #endif
744 
745 	ng = net_alloc_generic();
746 	if (!ng)
747 		panic("Could not allocate generic netns");
748 
749 	rcu_assign_pointer(init_net.gen, ng);
750 
751 	mutex_lock(&net_mutex);
752 	if (setup_net(&init_net, &init_user_ns))
753 		panic("Could not setup the initial network namespace");
754 
755 	init_net_initialized = true;
756 
757 	rtnl_lock();
758 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
759 	rtnl_unlock();
760 
761 	mutex_unlock(&net_mutex);
762 
763 	register_pernet_subsys(&net_ns_ops);
764 
765 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
766 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
767 		      NULL);
768 
769 	return 0;
770 }
771 
772 pure_initcall(net_ns_init);
773 
774 #ifdef CONFIG_NET_NS
775 static int __register_pernet_operations(struct list_head *list,
776 					struct pernet_operations *ops)
777 {
778 	struct net *net;
779 	int error;
780 	LIST_HEAD(net_exit_list);
781 
782 	list_add_tail(&ops->list, list);
783 	if (ops->init || (ops->id && ops->size)) {
784 		for_each_net(net) {
785 			error = ops_init(ops, net);
786 			if (error)
787 				goto out_undo;
788 			list_add_tail(&net->exit_list, &net_exit_list);
789 		}
790 	}
791 	return 0;
792 
793 out_undo:
794 	/* If I have an error cleanup all namespaces I initialized */
795 	list_del(&ops->list);
796 	ops_exit_list(ops, &net_exit_list);
797 	ops_free_list(ops, &net_exit_list);
798 	return error;
799 }
800 
801 static void __unregister_pernet_operations(struct pernet_operations *ops)
802 {
803 	struct net *net;
804 	LIST_HEAD(net_exit_list);
805 
806 	list_del(&ops->list);
807 	for_each_net(net)
808 		list_add_tail(&net->exit_list, &net_exit_list);
809 	ops_exit_list(ops, &net_exit_list);
810 	ops_free_list(ops, &net_exit_list);
811 }
812 
813 #else
814 
815 static int __register_pernet_operations(struct list_head *list,
816 					struct pernet_operations *ops)
817 {
818 	if (!init_net_initialized) {
819 		list_add_tail(&ops->list, list);
820 		return 0;
821 	}
822 
823 	return ops_init(ops, &init_net);
824 }
825 
826 static void __unregister_pernet_operations(struct pernet_operations *ops)
827 {
828 	if (!init_net_initialized) {
829 		list_del(&ops->list);
830 	} else {
831 		LIST_HEAD(net_exit_list);
832 		list_add(&init_net.exit_list, &net_exit_list);
833 		ops_exit_list(ops, &net_exit_list);
834 		ops_free_list(ops, &net_exit_list);
835 	}
836 }
837 
838 #endif /* CONFIG_NET_NS */
839 
840 static DEFINE_IDA(net_generic_ids);
841 
842 static int register_pernet_operations(struct list_head *list,
843 				      struct pernet_operations *ops)
844 {
845 	int error;
846 
847 	if (ops->id) {
848 again:
849 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
850 		if (error < 0) {
851 			if (error == -EAGAIN) {
852 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
853 				goto again;
854 			}
855 			return error;
856 		}
857 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
858 	}
859 	error = __register_pernet_operations(list, ops);
860 	if (error) {
861 		rcu_barrier();
862 		if (ops->id)
863 			ida_remove(&net_generic_ids, *ops->id);
864 	}
865 
866 	return error;
867 }
868 
869 static void unregister_pernet_operations(struct pernet_operations *ops)
870 {
871 
872 	__unregister_pernet_operations(ops);
873 	rcu_barrier();
874 	if (ops->id)
875 		ida_remove(&net_generic_ids, *ops->id);
876 }
877 
878 /**
879  *      register_pernet_subsys - register a network namespace subsystem
880  *	@ops:  pernet operations structure for the subsystem
881  *
882  *	Register a subsystem which has init and exit functions
883  *	that are called when network namespaces are created and
884  *	destroyed respectively.
885  *
886  *	When registered all network namespace init functions are
887  *	called for every existing network namespace.  Allowing kernel
888  *	modules to have a race free view of the set of network namespaces.
889  *
890  *	When a new network namespace is created all of the init
891  *	methods are called in the order in which they were registered.
892  *
893  *	When a network namespace is destroyed all of the exit methods
894  *	are called in the reverse of the order with which they were
895  *	registered.
896  */
897 int register_pernet_subsys(struct pernet_operations *ops)
898 {
899 	int error;
900 	mutex_lock(&net_mutex);
901 	error =  register_pernet_operations(first_device, ops);
902 	mutex_unlock(&net_mutex);
903 	return error;
904 }
905 EXPORT_SYMBOL_GPL(register_pernet_subsys);
906 
907 /**
908  *      unregister_pernet_subsys - unregister a network namespace subsystem
909  *	@ops: pernet operations structure to manipulate
910  *
911  *	Remove the pernet operations structure from the list to be
912  *	used when network namespaces are created or destroyed.  In
913  *	addition run the exit method for all existing network
914  *	namespaces.
915  */
916 void unregister_pernet_subsys(struct pernet_operations *ops)
917 {
918 	mutex_lock(&net_mutex);
919 	unregister_pernet_operations(ops);
920 	mutex_unlock(&net_mutex);
921 }
922 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
923 
924 /**
925  *      register_pernet_device - register a network namespace device
926  *	@ops:  pernet operations structure for the subsystem
927  *
928  *	Register a device which has init and exit functions
929  *	that are called when network namespaces are created and
930  *	destroyed respectively.
931  *
932  *	When registered all network namespace init functions are
933  *	called for every existing network namespace.  Allowing kernel
934  *	modules to have a race free view of the set of network namespaces.
935  *
936  *	When a new network namespace is created all of the init
937  *	methods are called in the order in which they were registered.
938  *
939  *	When a network namespace is destroyed all of the exit methods
940  *	are called in the reverse of the order with which they were
941  *	registered.
942  */
943 int register_pernet_device(struct pernet_operations *ops)
944 {
945 	int error;
946 	mutex_lock(&net_mutex);
947 	error = register_pernet_operations(&pernet_list, ops);
948 	if (!error && (first_device == &pernet_list))
949 		first_device = &ops->list;
950 	mutex_unlock(&net_mutex);
951 	return error;
952 }
953 EXPORT_SYMBOL_GPL(register_pernet_device);
954 
955 /**
956  *      unregister_pernet_device - unregister a network namespace netdevice
957  *	@ops: pernet operations structure to manipulate
958  *
959  *	Remove the pernet operations structure from the list to be
960  *	used when network namespaces are created or destroyed.  In
961  *	addition run the exit method for all existing network
962  *	namespaces.
963  */
964 void unregister_pernet_device(struct pernet_operations *ops)
965 {
966 	mutex_lock(&net_mutex);
967 	if (&ops->list == first_device)
968 		first_device = first_device->next;
969 	unregister_pernet_operations(ops);
970 	mutex_unlock(&net_mutex);
971 }
972 EXPORT_SYMBOL_GPL(unregister_pernet_device);
973 
974 #ifdef CONFIG_NET_NS
975 static struct ns_common *netns_get(struct task_struct *task)
976 {
977 	struct net *net = NULL;
978 	struct nsproxy *nsproxy;
979 
980 	task_lock(task);
981 	nsproxy = task->nsproxy;
982 	if (nsproxy)
983 		net = get_net(nsproxy->net_ns);
984 	task_unlock(task);
985 
986 	return net ? &net->ns : NULL;
987 }
988 
989 static inline struct net *to_net_ns(struct ns_common *ns)
990 {
991 	return container_of(ns, struct net, ns);
992 }
993 
994 static void netns_put(struct ns_common *ns)
995 {
996 	put_net(to_net_ns(ns));
997 }
998 
999 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1000 {
1001 	struct net *net = to_net_ns(ns);
1002 
1003 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1004 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1005 		return -EPERM;
1006 
1007 	put_net(nsproxy->net_ns);
1008 	nsproxy->net_ns = get_net(net);
1009 	return 0;
1010 }
1011 
1012 const struct proc_ns_operations netns_operations = {
1013 	.name		= "net",
1014 	.type		= CLONE_NEWNET,
1015 	.get		= netns_get,
1016 	.put		= netns_put,
1017 	.install	= netns_install,
1018 };
1019 #endif
1020