xref: /openbmc/linux/net/core/net_namespace.c (revision 3138dbf8)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
41 
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43 
44 static struct net_generic *net_alloc_generic(void)
45 {
46 	struct net_generic *ng;
47 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48 
49 	ng = kzalloc(generic_size, GFP_KERNEL);
50 	if (ng)
51 		ng->len = max_gen_ptrs;
52 
53 	return ng;
54 }
55 
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 	struct net_generic *ng, *old_ng;
59 
60 	BUG_ON(!mutex_is_locked(&net_mutex));
61 	BUG_ON(id == 0);
62 
63 	old_ng = rcu_dereference_protected(net->gen,
64 					   lockdep_is_held(&net_mutex));
65 	ng = old_ng;
66 	if (old_ng->len >= id)
67 		goto assign;
68 
69 	ng = net_alloc_generic();
70 	if (ng == NULL)
71 		return -ENOMEM;
72 
73 	/*
74 	 * Some synchronisation notes:
75 	 *
76 	 * The net_generic explores the net->gen array inside rcu
77 	 * read section. Besides once set the net->gen->ptr[x]
78 	 * pointer never changes (see rules in netns/generic.h).
79 	 *
80 	 * That said, we simply duplicate this array and schedule
81 	 * the old copy for kfree after a grace period.
82 	 */
83 
84 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85 
86 	rcu_assign_pointer(net->gen, ng);
87 	kfree_rcu(old_ng, rcu);
88 assign:
89 	ng->ptr[id - 1] = data;
90 	return 0;
91 }
92 
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 	int err = -ENOMEM;
96 	void *data = NULL;
97 
98 	if (ops->id && ops->size) {
99 		data = kzalloc(ops->size, GFP_KERNEL);
100 		if (!data)
101 			goto out;
102 
103 		err = net_assign_generic(net, *ops->id, data);
104 		if (err)
105 			goto cleanup;
106 	}
107 	err = 0;
108 	if (ops->init)
109 		err = ops->init(net);
110 	if (!err)
111 		return 0;
112 
113 cleanup:
114 	kfree(data);
115 
116 out:
117 	return err;
118 }
119 
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 	if (ops->id && ops->size) {
123 		int id = *ops->id;
124 		kfree(net_generic(net, id));
125 	}
126 }
127 
128 static void ops_exit_list(const struct pernet_operations *ops,
129 			  struct list_head *net_exit_list)
130 {
131 	struct net *net;
132 	if (ops->exit) {
133 		list_for_each_entry(net, net_exit_list, exit_list)
134 			ops->exit(net);
135 	}
136 	if (ops->exit_batch)
137 		ops->exit_batch(net_exit_list);
138 }
139 
140 static void ops_free_list(const struct pernet_operations *ops,
141 			  struct list_head *net_exit_list)
142 {
143 	struct net *net;
144 	if (ops->size && ops->id) {
145 		list_for_each_entry(net, net_exit_list, exit_list)
146 			ops_free(ops, net);
147 	}
148 }
149 
150 static int alloc_netid(struct net *net, struct net *peer, int reqid)
151 {
152 	int min = 0, max = 0;
153 
154 	ASSERT_RTNL();
155 
156 	if (reqid >= 0) {
157 		min = reqid;
158 		max = reqid + 1;
159 	}
160 
161 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
162 }
163 
164 /* This function is used by idr_for_each(). If net is equal to peer, the
165  * function returns the id so that idr_for_each() stops. Because we cannot
166  * returns the id 0 (idr_for_each() will not stop), we return the magic value
167  * NET_ID_ZERO (-1) for it.
168  */
169 #define NET_ID_ZERO -1
170 static int net_eq_idr(int id, void *net, void *peer)
171 {
172 	if (net_eq(net, peer))
173 		return id ? : NET_ID_ZERO;
174 	return 0;
175 }
176 
177 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
178 {
179 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
180 	bool alloc_it = *alloc;
181 
182 	ASSERT_RTNL();
183 
184 	*alloc = false;
185 
186 	/* Magic value for id 0. */
187 	if (id == NET_ID_ZERO)
188 		return 0;
189 	if (id > 0)
190 		return id;
191 
192 	if (alloc_it) {
193 		id = alloc_netid(net, peer, -1);
194 		*alloc = true;
195 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
196 	}
197 
198 	return NETNSA_NSID_NOT_ASSIGNED;
199 }
200 
201 static int __peernet2id(struct net *net, struct net *peer)
202 {
203 	bool no = false;
204 
205 	return __peernet2id_alloc(net, peer, &no);
206 }
207 
208 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
209 /* This function returns the id of a peer netns. If no id is assigned, one will
210  * be allocated and returned.
211  */
212 int peernet2id_alloc(struct net *net, struct net *peer)
213 {
214 	bool alloc = atomic_read(&peer->count) == 0 ? false : true;
215 	int id;
216 
217 	id = __peernet2id_alloc(net, peer, &alloc);
218 	if (alloc && id >= 0)
219 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
220 	return id;
221 }
222 EXPORT_SYMBOL(peernet2id_alloc);
223 
224 struct net *get_net_ns_by_id(struct net *net, int id)
225 {
226 	struct net *peer;
227 
228 	if (id < 0)
229 		return NULL;
230 
231 	rcu_read_lock();
232 	peer = idr_find(&net->netns_ids, id);
233 	if (peer)
234 		get_net(peer);
235 	rcu_read_unlock();
236 
237 	return peer;
238 }
239 
240 /*
241  * setup_net runs the initializers for the network namespace object.
242  */
243 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
244 {
245 	/* Must be called with net_mutex held */
246 	const struct pernet_operations *ops, *saved_ops;
247 	int error = 0;
248 	LIST_HEAD(net_exit_list);
249 
250 	atomic_set(&net->count, 1);
251 	atomic_set(&net->passive, 1);
252 	net->dev_base_seq = 1;
253 	net->user_ns = user_ns;
254 	idr_init(&net->netns_ids);
255 
256 	list_for_each_entry(ops, &pernet_list, list) {
257 		error = ops_init(ops, net);
258 		if (error < 0)
259 			goto out_undo;
260 	}
261 out:
262 	return error;
263 
264 out_undo:
265 	/* Walk through the list backwards calling the exit functions
266 	 * for the pernet modules whose init functions did not fail.
267 	 */
268 	list_add(&net->exit_list, &net_exit_list);
269 	saved_ops = ops;
270 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
271 		ops_exit_list(ops, &net_exit_list);
272 
273 	ops = saved_ops;
274 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
275 		ops_free_list(ops, &net_exit_list);
276 
277 	rcu_barrier();
278 	goto out;
279 }
280 
281 
282 #ifdef CONFIG_NET_NS
283 static struct kmem_cache *net_cachep;
284 static struct workqueue_struct *netns_wq;
285 
286 static struct net *net_alloc(void)
287 {
288 	struct net *net = NULL;
289 	struct net_generic *ng;
290 
291 	ng = net_alloc_generic();
292 	if (!ng)
293 		goto out;
294 
295 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
296 	if (!net)
297 		goto out_free;
298 
299 	rcu_assign_pointer(net->gen, ng);
300 out:
301 	return net;
302 
303 out_free:
304 	kfree(ng);
305 	goto out;
306 }
307 
308 static void net_free(struct net *net)
309 {
310 	kfree(rcu_access_pointer(net->gen));
311 	kmem_cache_free(net_cachep, net);
312 }
313 
314 void net_drop_ns(void *p)
315 {
316 	struct net *ns = p;
317 	if (ns && atomic_dec_and_test(&ns->passive))
318 		net_free(ns);
319 }
320 
321 struct net *copy_net_ns(unsigned long flags,
322 			struct user_namespace *user_ns, struct net *old_net)
323 {
324 	struct net *net;
325 	int rv;
326 
327 	if (!(flags & CLONE_NEWNET))
328 		return get_net(old_net);
329 
330 	net = net_alloc();
331 	if (!net)
332 		return ERR_PTR(-ENOMEM);
333 
334 	get_user_ns(user_ns);
335 
336 	mutex_lock(&net_mutex);
337 	rv = setup_net(net, user_ns);
338 	if (rv == 0) {
339 		rtnl_lock();
340 		list_add_tail_rcu(&net->list, &net_namespace_list);
341 		rtnl_unlock();
342 	}
343 	mutex_unlock(&net_mutex);
344 	if (rv < 0) {
345 		put_user_ns(user_ns);
346 		net_drop_ns(net);
347 		return ERR_PTR(rv);
348 	}
349 	return net;
350 }
351 
352 static DEFINE_SPINLOCK(cleanup_list_lock);
353 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
354 
355 static void cleanup_net(struct work_struct *work)
356 {
357 	const struct pernet_operations *ops;
358 	struct net *net, *tmp;
359 	struct list_head net_kill_list;
360 	LIST_HEAD(net_exit_list);
361 
362 	/* Atomically snapshot the list of namespaces to cleanup */
363 	spin_lock_irq(&cleanup_list_lock);
364 	list_replace_init(&cleanup_list, &net_kill_list);
365 	spin_unlock_irq(&cleanup_list_lock);
366 
367 	mutex_lock(&net_mutex);
368 
369 	/* Don't let anyone else find us. */
370 	rtnl_lock();
371 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
372 		list_del_rcu(&net->list);
373 		list_add_tail(&net->exit_list, &net_exit_list);
374 		for_each_net(tmp) {
375 			int id = __peernet2id(tmp, net);
376 
377 			if (id >= 0) {
378 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
379 				idr_remove(&tmp->netns_ids, id);
380 			}
381 		}
382 		idr_destroy(&net->netns_ids);
383 
384 	}
385 	rtnl_unlock();
386 
387 	/*
388 	 * Another CPU might be rcu-iterating the list, wait for it.
389 	 * This needs to be before calling the exit() notifiers, so
390 	 * the rcu_barrier() below isn't sufficient alone.
391 	 */
392 	synchronize_rcu();
393 
394 	/* Run all of the network namespace exit methods */
395 	list_for_each_entry_reverse(ops, &pernet_list, list)
396 		ops_exit_list(ops, &net_exit_list);
397 
398 	/* Free the net generic variables */
399 	list_for_each_entry_reverse(ops, &pernet_list, list)
400 		ops_free_list(ops, &net_exit_list);
401 
402 	mutex_unlock(&net_mutex);
403 
404 	/* Ensure there are no outstanding rcu callbacks using this
405 	 * network namespace.
406 	 */
407 	rcu_barrier();
408 
409 	/* Finally it is safe to free my network namespace structure */
410 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
411 		list_del_init(&net->exit_list);
412 		put_user_ns(net->user_ns);
413 		net_drop_ns(net);
414 	}
415 }
416 static DECLARE_WORK(net_cleanup_work, cleanup_net);
417 
418 void __put_net(struct net *net)
419 {
420 	/* Cleanup the network namespace in process context */
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&cleanup_list_lock, flags);
424 	list_add(&net->cleanup_list, &cleanup_list);
425 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
426 
427 	queue_work(netns_wq, &net_cleanup_work);
428 }
429 EXPORT_SYMBOL_GPL(__put_net);
430 
431 struct net *get_net_ns_by_fd(int fd)
432 {
433 	struct file *file;
434 	struct ns_common *ns;
435 	struct net *net;
436 
437 	file = proc_ns_fget(fd);
438 	if (IS_ERR(file))
439 		return ERR_CAST(file);
440 
441 	ns = get_proc_ns(file_inode(file));
442 	if (ns->ops == &netns_operations)
443 		net = get_net(container_of(ns, struct net, ns));
444 	else
445 		net = ERR_PTR(-EINVAL);
446 
447 	fput(file);
448 	return net;
449 }
450 
451 #else
452 struct net *get_net_ns_by_fd(int fd)
453 {
454 	return ERR_PTR(-EINVAL);
455 }
456 #endif
457 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
458 
459 struct net *get_net_ns_by_pid(pid_t pid)
460 {
461 	struct task_struct *tsk;
462 	struct net *net;
463 
464 	/* Lookup the network namespace */
465 	net = ERR_PTR(-ESRCH);
466 	rcu_read_lock();
467 	tsk = find_task_by_vpid(pid);
468 	if (tsk) {
469 		struct nsproxy *nsproxy;
470 		task_lock(tsk);
471 		nsproxy = tsk->nsproxy;
472 		if (nsproxy)
473 			net = get_net(nsproxy->net_ns);
474 		task_unlock(tsk);
475 	}
476 	rcu_read_unlock();
477 	return net;
478 }
479 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
480 
481 static __net_init int net_ns_net_init(struct net *net)
482 {
483 #ifdef CONFIG_NET_NS
484 	net->ns.ops = &netns_operations;
485 #endif
486 	return ns_alloc_inum(&net->ns);
487 }
488 
489 static __net_exit void net_ns_net_exit(struct net *net)
490 {
491 	ns_free_inum(&net->ns);
492 }
493 
494 static struct pernet_operations __net_initdata net_ns_ops = {
495 	.init = net_ns_net_init,
496 	.exit = net_ns_net_exit,
497 };
498 
499 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
500 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
501 	[NETNSA_NSID]		= { .type = NLA_S32 },
502 	[NETNSA_PID]		= { .type = NLA_U32 },
503 	[NETNSA_FD]		= { .type = NLA_U32 },
504 };
505 
506 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
507 {
508 	struct net *net = sock_net(skb->sk);
509 	struct nlattr *tb[NETNSA_MAX + 1];
510 	struct net *peer;
511 	int nsid, err;
512 
513 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
514 			  rtnl_net_policy);
515 	if (err < 0)
516 		return err;
517 	if (!tb[NETNSA_NSID])
518 		return -EINVAL;
519 	nsid = nla_get_s32(tb[NETNSA_NSID]);
520 
521 	if (tb[NETNSA_PID])
522 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
523 	else if (tb[NETNSA_FD])
524 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
525 	else
526 		return -EINVAL;
527 	if (IS_ERR(peer))
528 		return PTR_ERR(peer);
529 
530 	if (__peernet2id(net, peer) >= 0) {
531 		err = -EEXIST;
532 		goto out;
533 	}
534 
535 	err = alloc_netid(net, peer, nsid);
536 	if (err >= 0) {
537 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
538 		err = 0;
539 	}
540 out:
541 	put_net(peer);
542 	return err;
543 }
544 
545 static int rtnl_net_get_size(void)
546 {
547 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
548 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
549 	       ;
550 }
551 
552 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
553 			 int cmd, struct net *net, int nsid)
554 {
555 	struct nlmsghdr *nlh;
556 	struct rtgenmsg *rth;
557 
558 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
559 	if (!nlh)
560 		return -EMSGSIZE;
561 
562 	rth = nlmsg_data(nlh);
563 	rth->rtgen_family = AF_UNSPEC;
564 
565 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
566 		goto nla_put_failure;
567 
568 	nlmsg_end(skb, nlh);
569 	return 0;
570 
571 nla_put_failure:
572 	nlmsg_cancel(skb, nlh);
573 	return -EMSGSIZE;
574 }
575 
576 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
577 {
578 	struct net *net = sock_net(skb->sk);
579 	struct nlattr *tb[NETNSA_MAX + 1];
580 	struct sk_buff *msg;
581 	struct net *peer;
582 	int err, id;
583 
584 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
585 			  rtnl_net_policy);
586 	if (err < 0)
587 		return err;
588 	if (tb[NETNSA_PID])
589 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
590 	else if (tb[NETNSA_FD])
591 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
592 	else
593 		return -EINVAL;
594 
595 	if (IS_ERR(peer))
596 		return PTR_ERR(peer);
597 
598 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
599 	if (!msg) {
600 		err = -ENOMEM;
601 		goto out;
602 	}
603 
604 	id = __peernet2id(net, peer);
605 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
606 			    RTM_GETNSID, net, id);
607 	if (err < 0)
608 		goto err_out;
609 
610 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
611 	goto out;
612 
613 err_out:
614 	nlmsg_free(msg);
615 out:
616 	put_net(peer);
617 	return err;
618 }
619 
620 struct rtnl_net_dump_cb {
621 	struct net *net;
622 	struct sk_buff *skb;
623 	struct netlink_callback *cb;
624 	int idx;
625 	int s_idx;
626 };
627 
628 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
629 {
630 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
631 	int ret;
632 
633 	if (net_cb->idx < net_cb->s_idx)
634 		goto cont;
635 
636 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
637 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
638 			    RTM_NEWNSID, net_cb->net, id);
639 	if (ret < 0)
640 		return ret;
641 
642 cont:
643 	net_cb->idx++;
644 	return 0;
645 }
646 
647 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
648 {
649 	struct net *net = sock_net(skb->sk);
650 	struct rtnl_net_dump_cb net_cb = {
651 		.net = net,
652 		.skb = skb,
653 		.cb = cb,
654 		.idx = 0,
655 		.s_idx = cb->args[0],
656 	};
657 
658 	ASSERT_RTNL();
659 
660 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
661 
662 	cb->args[0] = net_cb.idx;
663 	return skb->len;
664 }
665 
666 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
667 {
668 	struct sk_buff *msg;
669 	int err = -ENOMEM;
670 
671 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
672 	if (!msg)
673 		goto out;
674 
675 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
676 	if (err < 0)
677 		goto err_out;
678 
679 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
680 	return;
681 
682 err_out:
683 	nlmsg_free(msg);
684 out:
685 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
686 }
687 
688 static int __init net_ns_init(void)
689 {
690 	struct net_generic *ng;
691 
692 #ifdef CONFIG_NET_NS
693 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
694 					SMP_CACHE_BYTES,
695 					SLAB_PANIC, NULL);
696 
697 	/* Create workqueue for cleanup */
698 	netns_wq = create_singlethread_workqueue("netns");
699 	if (!netns_wq)
700 		panic("Could not create netns workq");
701 #endif
702 
703 	ng = net_alloc_generic();
704 	if (!ng)
705 		panic("Could not allocate generic netns");
706 
707 	rcu_assign_pointer(init_net.gen, ng);
708 
709 	mutex_lock(&net_mutex);
710 	if (setup_net(&init_net, &init_user_ns))
711 		panic("Could not setup the initial network namespace");
712 
713 	rtnl_lock();
714 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
715 	rtnl_unlock();
716 
717 	mutex_unlock(&net_mutex);
718 
719 	register_pernet_subsys(&net_ns_ops);
720 
721 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
722 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
723 		      NULL);
724 
725 	return 0;
726 }
727 
728 pure_initcall(net_ns_init);
729 
730 #ifdef CONFIG_NET_NS
731 static int __register_pernet_operations(struct list_head *list,
732 					struct pernet_operations *ops)
733 {
734 	struct net *net;
735 	int error;
736 	LIST_HEAD(net_exit_list);
737 
738 	list_add_tail(&ops->list, list);
739 	if (ops->init || (ops->id && ops->size)) {
740 		for_each_net(net) {
741 			error = ops_init(ops, net);
742 			if (error)
743 				goto out_undo;
744 			list_add_tail(&net->exit_list, &net_exit_list);
745 		}
746 	}
747 	return 0;
748 
749 out_undo:
750 	/* If I have an error cleanup all namespaces I initialized */
751 	list_del(&ops->list);
752 	ops_exit_list(ops, &net_exit_list);
753 	ops_free_list(ops, &net_exit_list);
754 	return error;
755 }
756 
757 static void __unregister_pernet_operations(struct pernet_operations *ops)
758 {
759 	struct net *net;
760 	LIST_HEAD(net_exit_list);
761 
762 	list_del(&ops->list);
763 	for_each_net(net)
764 		list_add_tail(&net->exit_list, &net_exit_list);
765 	ops_exit_list(ops, &net_exit_list);
766 	ops_free_list(ops, &net_exit_list);
767 }
768 
769 #else
770 
771 static int __register_pernet_operations(struct list_head *list,
772 					struct pernet_operations *ops)
773 {
774 	return ops_init(ops, &init_net);
775 }
776 
777 static void __unregister_pernet_operations(struct pernet_operations *ops)
778 {
779 	LIST_HEAD(net_exit_list);
780 	list_add(&init_net.exit_list, &net_exit_list);
781 	ops_exit_list(ops, &net_exit_list);
782 	ops_free_list(ops, &net_exit_list);
783 }
784 
785 #endif /* CONFIG_NET_NS */
786 
787 static DEFINE_IDA(net_generic_ids);
788 
789 static int register_pernet_operations(struct list_head *list,
790 				      struct pernet_operations *ops)
791 {
792 	int error;
793 
794 	if (ops->id) {
795 again:
796 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
797 		if (error < 0) {
798 			if (error == -EAGAIN) {
799 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
800 				goto again;
801 			}
802 			return error;
803 		}
804 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
805 	}
806 	error = __register_pernet_operations(list, ops);
807 	if (error) {
808 		rcu_barrier();
809 		if (ops->id)
810 			ida_remove(&net_generic_ids, *ops->id);
811 	}
812 
813 	return error;
814 }
815 
816 static void unregister_pernet_operations(struct pernet_operations *ops)
817 {
818 
819 	__unregister_pernet_operations(ops);
820 	rcu_barrier();
821 	if (ops->id)
822 		ida_remove(&net_generic_ids, *ops->id);
823 }
824 
825 /**
826  *      register_pernet_subsys - register a network namespace subsystem
827  *	@ops:  pernet operations structure for the subsystem
828  *
829  *	Register a subsystem which has init and exit functions
830  *	that are called when network namespaces are created and
831  *	destroyed respectively.
832  *
833  *	When registered all network namespace init functions are
834  *	called for every existing network namespace.  Allowing kernel
835  *	modules to have a race free view of the set of network namespaces.
836  *
837  *	When a new network namespace is created all of the init
838  *	methods are called in the order in which they were registered.
839  *
840  *	When a network namespace is destroyed all of the exit methods
841  *	are called in the reverse of the order with which they were
842  *	registered.
843  */
844 int register_pernet_subsys(struct pernet_operations *ops)
845 {
846 	int error;
847 	mutex_lock(&net_mutex);
848 	error =  register_pernet_operations(first_device, ops);
849 	mutex_unlock(&net_mutex);
850 	return error;
851 }
852 EXPORT_SYMBOL_GPL(register_pernet_subsys);
853 
854 /**
855  *      unregister_pernet_subsys - unregister a network namespace subsystem
856  *	@ops: pernet operations structure to manipulate
857  *
858  *	Remove the pernet operations structure from the list to be
859  *	used when network namespaces are created or destroyed.  In
860  *	addition run the exit method for all existing network
861  *	namespaces.
862  */
863 void unregister_pernet_subsys(struct pernet_operations *ops)
864 {
865 	mutex_lock(&net_mutex);
866 	unregister_pernet_operations(ops);
867 	mutex_unlock(&net_mutex);
868 }
869 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
870 
871 /**
872  *      register_pernet_device - register a network namespace device
873  *	@ops:  pernet operations structure for the subsystem
874  *
875  *	Register a device which has init and exit functions
876  *	that are called when network namespaces are created and
877  *	destroyed respectively.
878  *
879  *	When registered all network namespace init functions are
880  *	called for every existing network namespace.  Allowing kernel
881  *	modules to have a race free view of the set of network namespaces.
882  *
883  *	When a new network namespace is created all of the init
884  *	methods are called in the order in which they were registered.
885  *
886  *	When a network namespace is destroyed all of the exit methods
887  *	are called in the reverse of the order with which they were
888  *	registered.
889  */
890 int register_pernet_device(struct pernet_operations *ops)
891 {
892 	int error;
893 	mutex_lock(&net_mutex);
894 	error = register_pernet_operations(&pernet_list, ops);
895 	if (!error && (first_device == &pernet_list))
896 		first_device = &ops->list;
897 	mutex_unlock(&net_mutex);
898 	return error;
899 }
900 EXPORT_SYMBOL_GPL(register_pernet_device);
901 
902 /**
903  *      unregister_pernet_device - unregister a network namespace netdevice
904  *	@ops: pernet operations structure to manipulate
905  *
906  *	Remove the pernet operations structure from the list to be
907  *	used when network namespaces are created or destroyed.  In
908  *	addition run the exit method for all existing network
909  *	namespaces.
910  */
911 void unregister_pernet_device(struct pernet_operations *ops)
912 {
913 	mutex_lock(&net_mutex);
914 	if (&ops->list == first_device)
915 		first_device = first_device->next;
916 	unregister_pernet_operations(ops);
917 	mutex_unlock(&net_mutex);
918 }
919 EXPORT_SYMBOL_GPL(unregister_pernet_device);
920 
921 #ifdef CONFIG_NET_NS
922 static struct ns_common *netns_get(struct task_struct *task)
923 {
924 	struct net *net = NULL;
925 	struct nsproxy *nsproxy;
926 
927 	task_lock(task);
928 	nsproxy = task->nsproxy;
929 	if (nsproxy)
930 		net = get_net(nsproxy->net_ns);
931 	task_unlock(task);
932 
933 	return net ? &net->ns : NULL;
934 }
935 
936 static inline struct net *to_net_ns(struct ns_common *ns)
937 {
938 	return container_of(ns, struct net, ns);
939 }
940 
941 static void netns_put(struct ns_common *ns)
942 {
943 	put_net(to_net_ns(ns));
944 }
945 
946 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
947 {
948 	struct net *net = to_net_ns(ns);
949 
950 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
951 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
952 		return -EPERM;
953 
954 	put_net(nsproxy->net_ns);
955 	nsproxy->net_ns = get_net(net);
956 	return 0;
957 }
958 
959 const struct proc_ns_operations netns_operations = {
960 	.name		= "net",
961 	.type		= CLONE_NEWNET,
962 	.get		= netns_get,
963 	.put		= netns_put,
964 	.install	= netns_install,
965 };
966 #endif
967