1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 24 #include <net/sock.h> 25 #include <net/netlink.h> 26 #include <net/net_namespace.h> 27 #include <net/netns/generic.h> 28 29 /* 30 * Our network namespace constructor/destructor lists 31 */ 32 33 static LIST_HEAD(pernet_list); 34 static struct list_head *first_device = &pernet_list; 35 36 LIST_HEAD(net_namespace_list); 37 EXPORT_SYMBOL_GPL(net_namespace_list); 38 39 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 40 DECLARE_RWSEM(net_rwsem); 41 EXPORT_SYMBOL_GPL(net_rwsem); 42 43 #ifdef CONFIG_KEYS 44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 45 #endif 46 47 struct net init_net = { 48 .ns.count = REFCOUNT_INIT(1), 49 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 50 #ifdef CONFIG_KEYS 51 .key_domain = &init_net_key_domain, 52 #endif 53 }; 54 EXPORT_SYMBOL(init_net); 55 56 static bool init_net_initialized; 57 /* 58 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 59 * init_net_initialized and first_device pointer. 60 * This is internal net namespace object. Please, don't use it 61 * outside. 62 */ 63 DECLARE_RWSEM(pernet_ops_rwsem); 64 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 65 66 #define MIN_PERNET_OPS_ID \ 67 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 68 69 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 70 71 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 72 73 DEFINE_COOKIE(net_cookie); 74 75 static struct net_generic *net_alloc_generic(void) 76 { 77 struct net_generic *ng; 78 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 79 80 ng = kzalloc(generic_size, GFP_KERNEL); 81 if (ng) 82 ng->s.len = max_gen_ptrs; 83 84 return ng; 85 } 86 87 static int net_assign_generic(struct net *net, unsigned int id, void *data) 88 { 89 struct net_generic *ng, *old_ng; 90 91 BUG_ON(id < MIN_PERNET_OPS_ID); 92 93 old_ng = rcu_dereference_protected(net->gen, 94 lockdep_is_held(&pernet_ops_rwsem)); 95 if (old_ng->s.len > id) { 96 old_ng->ptr[id] = data; 97 return 0; 98 } 99 100 ng = net_alloc_generic(); 101 if (!ng) 102 return -ENOMEM; 103 104 /* 105 * Some synchronisation notes: 106 * 107 * The net_generic explores the net->gen array inside rcu 108 * read section. Besides once set the net->gen->ptr[x] 109 * pointer never changes (see rules in netns/generic.h). 110 * 111 * That said, we simply duplicate this array and schedule 112 * the old copy for kfree after a grace period. 113 */ 114 115 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 116 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 117 ng->ptr[id] = data; 118 119 rcu_assign_pointer(net->gen, ng); 120 kfree_rcu(old_ng, s.rcu); 121 return 0; 122 } 123 124 static int ops_init(const struct pernet_operations *ops, struct net *net) 125 { 126 int err = -ENOMEM; 127 void *data = NULL; 128 129 if (ops->id && ops->size) { 130 data = kzalloc(ops->size, GFP_KERNEL); 131 if (!data) 132 goto out; 133 134 err = net_assign_generic(net, *ops->id, data); 135 if (err) 136 goto cleanup; 137 } 138 err = 0; 139 if (ops->init) 140 err = ops->init(net); 141 if (!err) 142 return 0; 143 144 cleanup: 145 kfree(data); 146 147 out: 148 return err; 149 } 150 151 static void ops_pre_exit_list(const struct pernet_operations *ops, 152 struct list_head *net_exit_list) 153 { 154 struct net *net; 155 156 if (ops->pre_exit) { 157 list_for_each_entry(net, net_exit_list, exit_list) 158 ops->pre_exit(net); 159 } 160 } 161 162 static void ops_exit_list(const struct pernet_operations *ops, 163 struct list_head *net_exit_list) 164 { 165 struct net *net; 166 if (ops->exit) { 167 list_for_each_entry(net, net_exit_list, exit_list) { 168 ops->exit(net); 169 cond_resched(); 170 } 171 } 172 if (ops->exit_batch) 173 ops->exit_batch(net_exit_list); 174 } 175 176 static void ops_free_list(const struct pernet_operations *ops, 177 struct list_head *net_exit_list) 178 { 179 struct net *net; 180 if (ops->size && ops->id) { 181 list_for_each_entry(net, net_exit_list, exit_list) 182 kfree(net_generic(net, *ops->id)); 183 } 184 } 185 186 /* should be called with nsid_lock held */ 187 static int alloc_netid(struct net *net, struct net *peer, int reqid) 188 { 189 int min = 0, max = 0; 190 191 if (reqid >= 0) { 192 min = reqid; 193 max = reqid + 1; 194 } 195 196 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 197 } 198 199 /* This function is used by idr_for_each(). If net is equal to peer, the 200 * function returns the id so that idr_for_each() stops. Because we cannot 201 * returns the id 0 (idr_for_each() will not stop), we return the magic value 202 * NET_ID_ZERO (-1) for it. 203 */ 204 #define NET_ID_ZERO -1 205 static int net_eq_idr(int id, void *net, void *peer) 206 { 207 if (net_eq(net, peer)) 208 return id ? : NET_ID_ZERO; 209 return 0; 210 } 211 212 /* Must be called from RCU-critical section or with nsid_lock held */ 213 static int __peernet2id(const struct net *net, struct net *peer) 214 { 215 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 216 217 /* Magic value for id 0. */ 218 if (id == NET_ID_ZERO) 219 return 0; 220 if (id > 0) 221 return id; 222 223 return NETNSA_NSID_NOT_ASSIGNED; 224 } 225 226 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 227 struct nlmsghdr *nlh, gfp_t gfp); 228 /* This function returns the id of a peer netns. If no id is assigned, one will 229 * be allocated and returned. 230 */ 231 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 232 { 233 int id; 234 235 if (refcount_read(&net->ns.count) == 0) 236 return NETNSA_NSID_NOT_ASSIGNED; 237 238 spin_lock_bh(&net->nsid_lock); 239 id = __peernet2id(net, peer); 240 if (id >= 0) { 241 spin_unlock_bh(&net->nsid_lock); 242 return id; 243 } 244 245 /* When peer is obtained from RCU lists, we may race with 246 * its cleanup. Check whether it's alive, and this guarantees 247 * we never hash a peer back to net->netns_ids, after it has 248 * just been idr_remove()'d from there in cleanup_net(). 249 */ 250 if (!maybe_get_net(peer)) { 251 spin_unlock_bh(&net->nsid_lock); 252 return NETNSA_NSID_NOT_ASSIGNED; 253 } 254 255 id = alloc_netid(net, peer, -1); 256 spin_unlock_bh(&net->nsid_lock); 257 258 put_net(peer); 259 if (id < 0) 260 return NETNSA_NSID_NOT_ASSIGNED; 261 262 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 263 264 return id; 265 } 266 EXPORT_SYMBOL_GPL(peernet2id_alloc); 267 268 /* This function returns, if assigned, the id of a peer netns. */ 269 int peernet2id(const struct net *net, struct net *peer) 270 { 271 int id; 272 273 rcu_read_lock(); 274 id = __peernet2id(net, peer); 275 rcu_read_unlock(); 276 277 return id; 278 } 279 EXPORT_SYMBOL(peernet2id); 280 281 /* This function returns true is the peer netns has an id assigned into the 282 * current netns. 283 */ 284 bool peernet_has_id(const struct net *net, struct net *peer) 285 { 286 return peernet2id(net, peer) >= 0; 287 } 288 289 struct net *get_net_ns_by_id(const struct net *net, int id) 290 { 291 struct net *peer; 292 293 if (id < 0) 294 return NULL; 295 296 rcu_read_lock(); 297 peer = idr_find(&net->netns_ids, id); 298 if (peer) 299 peer = maybe_get_net(peer); 300 rcu_read_unlock(); 301 302 return peer; 303 } 304 305 /* 306 * setup_net runs the initializers for the network namespace object. 307 */ 308 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 309 { 310 /* Must be called with pernet_ops_rwsem held */ 311 const struct pernet_operations *ops, *saved_ops; 312 int error = 0; 313 LIST_HEAD(net_exit_list); 314 315 refcount_set(&net->ns.count, 1); 316 ref_tracker_dir_init(&net->refcnt_tracker, 128); 317 318 refcount_set(&net->passive, 1); 319 get_random_bytes(&net->hash_mix, sizeof(u32)); 320 preempt_disable(); 321 net->net_cookie = gen_cookie_next(&net_cookie); 322 preempt_enable(); 323 net->dev_base_seq = 1; 324 net->user_ns = user_ns; 325 idr_init(&net->netns_ids); 326 spin_lock_init(&net->nsid_lock); 327 mutex_init(&net->ipv4.ra_mutex); 328 329 list_for_each_entry(ops, &pernet_list, list) { 330 error = ops_init(ops, net); 331 if (error < 0) 332 goto out_undo; 333 } 334 down_write(&net_rwsem); 335 list_add_tail_rcu(&net->list, &net_namespace_list); 336 up_write(&net_rwsem); 337 out: 338 return error; 339 340 out_undo: 341 /* Walk through the list backwards calling the exit functions 342 * for the pernet modules whose init functions did not fail. 343 */ 344 list_add(&net->exit_list, &net_exit_list); 345 saved_ops = ops; 346 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 347 ops_pre_exit_list(ops, &net_exit_list); 348 349 synchronize_rcu(); 350 351 ops = saved_ops; 352 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 353 ops_exit_list(ops, &net_exit_list); 354 355 ops = saved_ops; 356 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 357 ops_free_list(ops, &net_exit_list); 358 359 rcu_barrier(); 360 goto out; 361 } 362 363 static int __net_init net_defaults_init_net(struct net *net) 364 { 365 net->core.sysctl_somaxconn = SOMAXCONN; 366 return 0; 367 } 368 369 static struct pernet_operations net_defaults_ops = { 370 .init = net_defaults_init_net, 371 }; 372 373 static __init int net_defaults_init(void) 374 { 375 if (register_pernet_subsys(&net_defaults_ops)) 376 panic("Cannot initialize net default settings"); 377 378 return 0; 379 } 380 381 core_initcall(net_defaults_init); 382 383 #ifdef CONFIG_NET_NS 384 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 385 { 386 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 387 } 388 389 static void dec_net_namespaces(struct ucounts *ucounts) 390 { 391 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 392 } 393 394 static struct kmem_cache *net_cachep __ro_after_init; 395 static struct workqueue_struct *netns_wq; 396 397 static struct net *net_alloc(void) 398 { 399 struct net *net = NULL; 400 struct net_generic *ng; 401 402 ng = net_alloc_generic(); 403 if (!ng) 404 goto out; 405 406 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 407 if (!net) 408 goto out_free; 409 410 #ifdef CONFIG_KEYS 411 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 412 if (!net->key_domain) 413 goto out_free_2; 414 refcount_set(&net->key_domain->usage, 1); 415 #endif 416 417 rcu_assign_pointer(net->gen, ng); 418 out: 419 return net; 420 421 #ifdef CONFIG_KEYS 422 out_free_2: 423 kmem_cache_free(net_cachep, net); 424 net = NULL; 425 #endif 426 out_free: 427 kfree(ng); 428 goto out; 429 } 430 431 static void net_free(struct net *net) 432 { 433 if (refcount_dec_and_test(&net->passive)) { 434 kfree(rcu_access_pointer(net->gen)); 435 kmem_cache_free(net_cachep, net); 436 } 437 } 438 439 void net_drop_ns(void *p) 440 { 441 struct net *net = (struct net *)p; 442 443 if (net) 444 net_free(net); 445 } 446 447 struct net *copy_net_ns(unsigned long flags, 448 struct user_namespace *user_ns, struct net *old_net) 449 { 450 struct ucounts *ucounts; 451 struct net *net; 452 int rv; 453 454 if (!(flags & CLONE_NEWNET)) 455 return get_net(old_net); 456 457 ucounts = inc_net_namespaces(user_ns); 458 if (!ucounts) 459 return ERR_PTR(-ENOSPC); 460 461 net = net_alloc(); 462 if (!net) { 463 rv = -ENOMEM; 464 goto dec_ucounts; 465 } 466 refcount_set(&net->passive, 1); 467 net->ucounts = ucounts; 468 get_user_ns(user_ns); 469 470 rv = down_read_killable(&pernet_ops_rwsem); 471 if (rv < 0) 472 goto put_userns; 473 474 rv = setup_net(net, user_ns); 475 476 up_read(&pernet_ops_rwsem); 477 478 if (rv < 0) { 479 put_userns: 480 #ifdef CONFIG_KEYS 481 key_remove_domain(net->key_domain); 482 #endif 483 put_user_ns(user_ns); 484 net_free(net); 485 dec_ucounts: 486 dec_net_namespaces(ucounts); 487 return ERR_PTR(rv); 488 } 489 return net; 490 } 491 492 /** 493 * net_ns_get_ownership - get sysfs ownership data for @net 494 * @net: network namespace in question (can be NULL) 495 * @uid: kernel user ID for sysfs objects 496 * @gid: kernel group ID for sysfs objects 497 * 498 * Returns the uid/gid pair of root in the user namespace associated with the 499 * given network namespace. 500 */ 501 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 502 { 503 if (net) { 504 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 505 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 506 507 if (uid_valid(ns_root_uid)) 508 *uid = ns_root_uid; 509 510 if (gid_valid(ns_root_gid)) 511 *gid = ns_root_gid; 512 } else { 513 *uid = GLOBAL_ROOT_UID; 514 *gid = GLOBAL_ROOT_GID; 515 } 516 } 517 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 518 519 static void unhash_nsid(struct net *net, struct net *last) 520 { 521 struct net *tmp; 522 /* This function is only called from cleanup_net() work, 523 * and this work is the only process, that may delete 524 * a net from net_namespace_list. So, when the below 525 * is executing, the list may only grow. Thus, we do not 526 * use for_each_net_rcu() or net_rwsem. 527 */ 528 for_each_net(tmp) { 529 int id; 530 531 spin_lock_bh(&tmp->nsid_lock); 532 id = __peernet2id(tmp, net); 533 if (id >= 0) 534 idr_remove(&tmp->netns_ids, id); 535 spin_unlock_bh(&tmp->nsid_lock); 536 if (id >= 0) 537 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 538 GFP_KERNEL); 539 if (tmp == last) 540 break; 541 } 542 spin_lock_bh(&net->nsid_lock); 543 idr_destroy(&net->netns_ids); 544 spin_unlock_bh(&net->nsid_lock); 545 } 546 547 static LLIST_HEAD(cleanup_list); 548 549 static void cleanup_net(struct work_struct *work) 550 { 551 const struct pernet_operations *ops; 552 struct net *net, *tmp, *last; 553 struct llist_node *net_kill_list; 554 LIST_HEAD(net_exit_list); 555 556 /* Atomically snapshot the list of namespaces to cleanup */ 557 net_kill_list = llist_del_all(&cleanup_list); 558 559 down_read(&pernet_ops_rwsem); 560 561 /* Don't let anyone else find us. */ 562 down_write(&net_rwsem); 563 llist_for_each_entry(net, net_kill_list, cleanup_list) 564 list_del_rcu(&net->list); 565 /* Cache last net. After we unlock rtnl, no one new net 566 * added to net_namespace_list can assign nsid pointer 567 * to a net from net_kill_list (see peernet2id_alloc()). 568 * So, we skip them in unhash_nsid(). 569 * 570 * Note, that unhash_nsid() does not delete nsid links 571 * between net_kill_list's nets, as they've already 572 * deleted from net_namespace_list. But, this would be 573 * useless anyway, as netns_ids are destroyed there. 574 */ 575 last = list_last_entry(&net_namespace_list, struct net, list); 576 up_write(&net_rwsem); 577 578 llist_for_each_entry(net, net_kill_list, cleanup_list) { 579 unhash_nsid(net, last); 580 list_add_tail(&net->exit_list, &net_exit_list); 581 } 582 583 /* Run all of the network namespace pre_exit methods */ 584 list_for_each_entry_reverse(ops, &pernet_list, list) 585 ops_pre_exit_list(ops, &net_exit_list); 586 587 /* 588 * Another CPU might be rcu-iterating the list, wait for it. 589 * This needs to be before calling the exit() notifiers, so 590 * the rcu_barrier() below isn't sufficient alone. 591 * Also the pre_exit() and exit() methods need this barrier. 592 */ 593 synchronize_rcu(); 594 595 /* Run all of the network namespace exit methods */ 596 list_for_each_entry_reverse(ops, &pernet_list, list) 597 ops_exit_list(ops, &net_exit_list); 598 599 /* Free the net generic variables */ 600 list_for_each_entry_reverse(ops, &pernet_list, list) 601 ops_free_list(ops, &net_exit_list); 602 603 up_read(&pernet_ops_rwsem); 604 605 /* Ensure there are no outstanding rcu callbacks using this 606 * network namespace. 607 */ 608 rcu_barrier(); 609 610 /* Finally it is safe to free my network namespace structure */ 611 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 612 list_del_init(&net->exit_list); 613 dec_net_namespaces(net->ucounts); 614 #ifdef CONFIG_KEYS 615 key_remove_domain(net->key_domain); 616 #endif 617 put_user_ns(net->user_ns); 618 net_free(net); 619 } 620 } 621 622 /** 623 * net_ns_barrier - wait until concurrent net_cleanup_work is done 624 * 625 * cleanup_net runs from work queue and will first remove namespaces 626 * from the global list, then run net exit functions. 627 * 628 * Call this in module exit path to make sure that all netns 629 * ->exit ops have been invoked before the function is removed. 630 */ 631 void net_ns_barrier(void) 632 { 633 down_write(&pernet_ops_rwsem); 634 up_write(&pernet_ops_rwsem); 635 } 636 EXPORT_SYMBOL(net_ns_barrier); 637 638 static DECLARE_WORK(net_cleanup_work, cleanup_net); 639 640 void __put_net(struct net *net) 641 { 642 ref_tracker_dir_exit(&net->refcnt_tracker); 643 /* Cleanup the network namespace in process context */ 644 if (llist_add(&net->cleanup_list, &cleanup_list)) 645 queue_work(netns_wq, &net_cleanup_work); 646 } 647 EXPORT_SYMBOL_GPL(__put_net); 648 649 /** 650 * get_net_ns - increment the refcount of the network namespace 651 * @ns: common namespace (net) 652 * 653 * Returns the net's common namespace. 654 */ 655 struct ns_common *get_net_ns(struct ns_common *ns) 656 { 657 return &get_net(container_of(ns, struct net, ns))->ns; 658 } 659 EXPORT_SYMBOL_GPL(get_net_ns); 660 661 struct net *get_net_ns_by_fd(int fd) 662 { 663 struct file *file; 664 struct ns_common *ns; 665 struct net *net; 666 667 file = proc_ns_fget(fd); 668 if (IS_ERR(file)) 669 return ERR_CAST(file); 670 671 ns = get_proc_ns(file_inode(file)); 672 if (ns->ops == &netns_operations) 673 net = get_net(container_of(ns, struct net, ns)); 674 else 675 net = ERR_PTR(-EINVAL); 676 677 fput(file); 678 return net; 679 } 680 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 681 #endif 682 683 struct net *get_net_ns_by_pid(pid_t pid) 684 { 685 struct task_struct *tsk; 686 struct net *net; 687 688 /* Lookup the network namespace */ 689 net = ERR_PTR(-ESRCH); 690 rcu_read_lock(); 691 tsk = find_task_by_vpid(pid); 692 if (tsk) { 693 struct nsproxy *nsproxy; 694 task_lock(tsk); 695 nsproxy = tsk->nsproxy; 696 if (nsproxy) 697 net = get_net(nsproxy->net_ns); 698 task_unlock(tsk); 699 } 700 rcu_read_unlock(); 701 return net; 702 } 703 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 704 705 static __net_init int net_ns_net_init(struct net *net) 706 { 707 #ifdef CONFIG_NET_NS 708 net->ns.ops = &netns_operations; 709 #endif 710 return ns_alloc_inum(&net->ns); 711 } 712 713 static __net_exit void net_ns_net_exit(struct net *net) 714 { 715 ns_free_inum(&net->ns); 716 } 717 718 static struct pernet_operations __net_initdata net_ns_ops = { 719 .init = net_ns_net_init, 720 .exit = net_ns_net_exit, 721 }; 722 723 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 724 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 725 [NETNSA_NSID] = { .type = NLA_S32 }, 726 [NETNSA_PID] = { .type = NLA_U32 }, 727 [NETNSA_FD] = { .type = NLA_U32 }, 728 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 729 }; 730 731 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 732 struct netlink_ext_ack *extack) 733 { 734 struct net *net = sock_net(skb->sk); 735 struct nlattr *tb[NETNSA_MAX + 1]; 736 struct nlattr *nla; 737 struct net *peer; 738 int nsid, err; 739 740 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 741 NETNSA_MAX, rtnl_net_policy, extack); 742 if (err < 0) 743 return err; 744 if (!tb[NETNSA_NSID]) { 745 NL_SET_ERR_MSG(extack, "nsid is missing"); 746 return -EINVAL; 747 } 748 nsid = nla_get_s32(tb[NETNSA_NSID]); 749 750 if (tb[NETNSA_PID]) { 751 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 752 nla = tb[NETNSA_PID]; 753 } else if (tb[NETNSA_FD]) { 754 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 755 nla = tb[NETNSA_FD]; 756 } else { 757 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 758 return -EINVAL; 759 } 760 if (IS_ERR(peer)) { 761 NL_SET_BAD_ATTR(extack, nla); 762 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 763 return PTR_ERR(peer); 764 } 765 766 spin_lock_bh(&net->nsid_lock); 767 if (__peernet2id(net, peer) >= 0) { 768 spin_unlock_bh(&net->nsid_lock); 769 err = -EEXIST; 770 NL_SET_BAD_ATTR(extack, nla); 771 NL_SET_ERR_MSG(extack, 772 "Peer netns already has a nsid assigned"); 773 goto out; 774 } 775 776 err = alloc_netid(net, peer, nsid); 777 spin_unlock_bh(&net->nsid_lock); 778 if (err >= 0) { 779 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 780 nlh, GFP_KERNEL); 781 err = 0; 782 } else if (err == -ENOSPC && nsid >= 0) { 783 err = -EEXIST; 784 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 785 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 786 } 787 out: 788 put_net(peer); 789 return err; 790 } 791 792 static int rtnl_net_get_size(void) 793 { 794 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 795 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 796 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 797 ; 798 } 799 800 struct net_fill_args { 801 u32 portid; 802 u32 seq; 803 int flags; 804 int cmd; 805 int nsid; 806 bool add_ref; 807 int ref_nsid; 808 }; 809 810 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 811 { 812 struct nlmsghdr *nlh; 813 struct rtgenmsg *rth; 814 815 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 816 args->flags); 817 if (!nlh) 818 return -EMSGSIZE; 819 820 rth = nlmsg_data(nlh); 821 rth->rtgen_family = AF_UNSPEC; 822 823 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 824 goto nla_put_failure; 825 826 if (args->add_ref && 827 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 828 goto nla_put_failure; 829 830 nlmsg_end(skb, nlh); 831 return 0; 832 833 nla_put_failure: 834 nlmsg_cancel(skb, nlh); 835 return -EMSGSIZE; 836 } 837 838 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 839 const struct nlmsghdr *nlh, 840 struct nlattr **tb, 841 struct netlink_ext_ack *extack) 842 { 843 int i, err; 844 845 if (!netlink_strict_get_check(skb)) 846 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 847 tb, NETNSA_MAX, rtnl_net_policy, 848 extack); 849 850 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 851 NETNSA_MAX, rtnl_net_policy, 852 extack); 853 if (err) 854 return err; 855 856 for (i = 0; i <= NETNSA_MAX; i++) { 857 if (!tb[i]) 858 continue; 859 860 switch (i) { 861 case NETNSA_PID: 862 case NETNSA_FD: 863 case NETNSA_NSID: 864 case NETNSA_TARGET_NSID: 865 break; 866 default: 867 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 868 return -EINVAL; 869 } 870 } 871 872 return 0; 873 } 874 875 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 876 struct netlink_ext_ack *extack) 877 { 878 struct net *net = sock_net(skb->sk); 879 struct nlattr *tb[NETNSA_MAX + 1]; 880 struct net_fill_args fillargs = { 881 .portid = NETLINK_CB(skb).portid, 882 .seq = nlh->nlmsg_seq, 883 .cmd = RTM_NEWNSID, 884 }; 885 struct net *peer, *target = net; 886 struct nlattr *nla; 887 struct sk_buff *msg; 888 int err; 889 890 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 891 if (err < 0) 892 return err; 893 if (tb[NETNSA_PID]) { 894 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 895 nla = tb[NETNSA_PID]; 896 } else if (tb[NETNSA_FD]) { 897 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 898 nla = tb[NETNSA_FD]; 899 } else if (tb[NETNSA_NSID]) { 900 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 901 if (!peer) 902 peer = ERR_PTR(-ENOENT); 903 nla = tb[NETNSA_NSID]; 904 } else { 905 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 906 return -EINVAL; 907 } 908 909 if (IS_ERR(peer)) { 910 NL_SET_BAD_ATTR(extack, nla); 911 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 912 return PTR_ERR(peer); 913 } 914 915 if (tb[NETNSA_TARGET_NSID]) { 916 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 917 918 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 919 if (IS_ERR(target)) { 920 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 921 NL_SET_ERR_MSG(extack, 922 "Target netns reference is invalid"); 923 err = PTR_ERR(target); 924 goto out; 925 } 926 fillargs.add_ref = true; 927 fillargs.ref_nsid = peernet2id(net, peer); 928 } 929 930 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 931 if (!msg) { 932 err = -ENOMEM; 933 goto out; 934 } 935 936 fillargs.nsid = peernet2id(target, peer); 937 err = rtnl_net_fill(msg, &fillargs); 938 if (err < 0) 939 goto err_out; 940 941 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 942 goto out; 943 944 err_out: 945 nlmsg_free(msg); 946 out: 947 if (fillargs.add_ref) 948 put_net(target); 949 put_net(peer); 950 return err; 951 } 952 953 struct rtnl_net_dump_cb { 954 struct net *tgt_net; 955 struct net *ref_net; 956 struct sk_buff *skb; 957 struct net_fill_args fillargs; 958 int idx; 959 int s_idx; 960 }; 961 962 /* Runs in RCU-critical section. */ 963 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 964 { 965 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 966 int ret; 967 968 if (net_cb->idx < net_cb->s_idx) 969 goto cont; 970 971 net_cb->fillargs.nsid = id; 972 if (net_cb->fillargs.add_ref) 973 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 974 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 975 if (ret < 0) 976 return ret; 977 978 cont: 979 net_cb->idx++; 980 return 0; 981 } 982 983 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 984 struct rtnl_net_dump_cb *net_cb, 985 struct netlink_callback *cb) 986 { 987 struct netlink_ext_ack *extack = cb->extack; 988 struct nlattr *tb[NETNSA_MAX + 1]; 989 int err, i; 990 991 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 992 NETNSA_MAX, rtnl_net_policy, 993 extack); 994 if (err < 0) 995 return err; 996 997 for (i = 0; i <= NETNSA_MAX; i++) { 998 if (!tb[i]) 999 continue; 1000 1001 if (i == NETNSA_TARGET_NSID) { 1002 struct net *net; 1003 1004 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1005 if (IS_ERR(net)) { 1006 NL_SET_BAD_ATTR(extack, tb[i]); 1007 NL_SET_ERR_MSG(extack, 1008 "Invalid target network namespace id"); 1009 return PTR_ERR(net); 1010 } 1011 net_cb->fillargs.add_ref = true; 1012 net_cb->ref_net = net_cb->tgt_net; 1013 net_cb->tgt_net = net; 1014 } else { 1015 NL_SET_BAD_ATTR(extack, tb[i]); 1016 NL_SET_ERR_MSG(extack, 1017 "Unsupported attribute in dump request"); 1018 return -EINVAL; 1019 } 1020 } 1021 1022 return 0; 1023 } 1024 1025 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1026 { 1027 struct rtnl_net_dump_cb net_cb = { 1028 .tgt_net = sock_net(skb->sk), 1029 .skb = skb, 1030 .fillargs = { 1031 .portid = NETLINK_CB(cb->skb).portid, 1032 .seq = cb->nlh->nlmsg_seq, 1033 .flags = NLM_F_MULTI, 1034 .cmd = RTM_NEWNSID, 1035 }, 1036 .idx = 0, 1037 .s_idx = cb->args[0], 1038 }; 1039 int err = 0; 1040 1041 if (cb->strict_check) { 1042 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1043 if (err < 0) 1044 goto end; 1045 } 1046 1047 rcu_read_lock(); 1048 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1049 rcu_read_unlock(); 1050 1051 cb->args[0] = net_cb.idx; 1052 end: 1053 if (net_cb.fillargs.add_ref) 1054 put_net(net_cb.tgt_net); 1055 return err < 0 ? err : skb->len; 1056 } 1057 1058 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1059 struct nlmsghdr *nlh, gfp_t gfp) 1060 { 1061 struct net_fill_args fillargs = { 1062 .portid = portid, 1063 .seq = nlh ? nlh->nlmsg_seq : 0, 1064 .cmd = cmd, 1065 .nsid = id, 1066 }; 1067 struct sk_buff *msg; 1068 int err = -ENOMEM; 1069 1070 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1071 if (!msg) 1072 goto out; 1073 1074 err = rtnl_net_fill(msg, &fillargs); 1075 if (err < 0) 1076 goto err_out; 1077 1078 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1079 return; 1080 1081 err_out: 1082 nlmsg_free(msg); 1083 out: 1084 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1085 } 1086 1087 static int __init net_ns_init(void) 1088 { 1089 struct net_generic *ng; 1090 1091 #ifdef CONFIG_NET_NS 1092 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1093 SMP_CACHE_BYTES, 1094 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1095 1096 /* Create workqueue for cleanup */ 1097 netns_wq = create_singlethread_workqueue("netns"); 1098 if (!netns_wq) 1099 panic("Could not create netns workq"); 1100 #endif 1101 1102 ng = net_alloc_generic(); 1103 if (!ng) 1104 panic("Could not allocate generic netns"); 1105 1106 rcu_assign_pointer(init_net.gen, ng); 1107 1108 down_write(&pernet_ops_rwsem); 1109 if (setup_net(&init_net, &init_user_ns)) 1110 panic("Could not setup the initial network namespace"); 1111 1112 init_net_initialized = true; 1113 up_write(&pernet_ops_rwsem); 1114 1115 if (register_pernet_subsys(&net_ns_ops)) 1116 panic("Could not register network namespace subsystems"); 1117 1118 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1119 RTNL_FLAG_DOIT_UNLOCKED); 1120 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1121 RTNL_FLAG_DOIT_UNLOCKED); 1122 1123 return 0; 1124 } 1125 1126 pure_initcall(net_ns_init); 1127 1128 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1129 { 1130 ops_pre_exit_list(ops, net_exit_list); 1131 synchronize_rcu(); 1132 ops_exit_list(ops, net_exit_list); 1133 ops_free_list(ops, net_exit_list); 1134 } 1135 1136 #ifdef CONFIG_NET_NS 1137 static int __register_pernet_operations(struct list_head *list, 1138 struct pernet_operations *ops) 1139 { 1140 struct net *net; 1141 int error; 1142 LIST_HEAD(net_exit_list); 1143 1144 list_add_tail(&ops->list, list); 1145 if (ops->init || (ops->id && ops->size)) { 1146 /* We held write locked pernet_ops_rwsem, and parallel 1147 * setup_net() and cleanup_net() are not possible. 1148 */ 1149 for_each_net(net) { 1150 error = ops_init(ops, net); 1151 if (error) 1152 goto out_undo; 1153 list_add_tail(&net->exit_list, &net_exit_list); 1154 } 1155 } 1156 return 0; 1157 1158 out_undo: 1159 /* If I have an error cleanup all namespaces I initialized */ 1160 list_del(&ops->list); 1161 free_exit_list(ops, &net_exit_list); 1162 return error; 1163 } 1164 1165 static void __unregister_pernet_operations(struct pernet_operations *ops) 1166 { 1167 struct net *net; 1168 LIST_HEAD(net_exit_list); 1169 1170 list_del(&ops->list); 1171 /* See comment in __register_pernet_operations() */ 1172 for_each_net(net) 1173 list_add_tail(&net->exit_list, &net_exit_list); 1174 1175 free_exit_list(ops, &net_exit_list); 1176 } 1177 1178 #else 1179 1180 static int __register_pernet_operations(struct list_head *list, 1181 struct pernet_operations *ops) 1182 { 1183 if (!init_net_initialized) { 1184 list_add_tail(&ops->list, list); 1185 return 0; 1186 } 1187 1188 return ops_init(ops, &init_net); 1189 } 1190 1191 static void __unregister_pernet_operations(struct pernet_operations *ops) 1192 { 1193 if (!init_net_initialized) { 1194 list_del(&ops->list); 1195 } else { 1196 LIST_HEAD(net_exit_list); 1197 list_add(&init_net.exit_list, &net_exit_list); 1198 free_exit_list(ops, &net_exit_list); 1199 } 1200 } 1201 1202 #endif /* CONFIG_NET_NS */ 1203 1204 static DEFINE_IDA(net_generic_ids); 1205 1206 static int register_pernet_operations(struct list_head *list, 1207 struct pernet_operations *ops) 1208 { 1209 int error; 1210 1211 if (ops->id) { 1212 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1213 GFP_KERNEL); 1214 if (error < 0) 1215 return error; 1216 *ops->id = error; 1217 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1218 } 1219 error = __register_pernet_operations(list, ops); 1220 if (error) { 1221 rcu_barrier(); 1222 if (ops->id) 1223 ida_free(&net_generic_ids, *ops->id); 1224 } 1225 1226 return error; 1227 } 1228 1229 static void unregister_pernet_operations(struct pernet_operations *ops) 1230 { 1231 __unregister_pernet_operations(ops); 1232 rcu_barrier(); 1233 if (ops->id) 1234 ida_free(&net_generic_ids, *ops->id); 1235 } 1236 1237 /** 1238 * register_pernet_subsys - register a network namespace subsystem 1239 * @ops: pernet operations structure for the subsystem 1240 * 1241 * Register a subsystem which has init and exit functions 1242 * that are called when network namespaces are created and 1243 * destroyed respectively. 1244 * 1245 * When registered all network namespace init functions are 1246 * called for every existing network namespace. Allowing kernel 1247 * modules to have a race free view of the set of network namespaces. 1248 * 1249 * When a new network namespace is created all of the init 1250 * methods are called in the order in which they were registered. 1251 * 1252 * When a network namespace is destroyed all of the exit methods 1253 * are called in the reverse of the order with which they were 1254 * registered. 1255 */ 1256 int register_pernet_subsys(struct pernet_operations *ops) 1257 { 1258 int error; 1259 down_write(&pernet_ops_rwsem); 1260 error = register_pernet_operations(first_device, ops); 1261 up_write(&pernet_ops_rwsem); 1262 return error; 1263 } 1264 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1265 1266 /** 1267 * unregister_pernet_subsys - unregister a network namespace subsystem 1268 * @ops: pernet operations structure to manipulate 1269 * 1270 * Remove the pernet operations structure from the list to be 1271 * used when network namespaces are created or destroyed. In 1272 * addition run the exit method for all existing network 1273 * namespaces. 1274 */ 1275 void unregister_pernet_subsys(struct pernet_operations *ops) 1276 { 1277 down_write(&pernet_ops_rwsem); 1278 unregister_pernet_operations(ops); 1279 up_write(&pernet_ops_rwsem); 1280 } 1281 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1282 1283 /** 1284 * register_pernet_device - register a network namespace device 1285 * @ops: pernet operations structure for the subsystem 1286 * 1287 * Register a device which has init and exit functions 1288 * that are called when network namespaces are created and 1289 * destroyed respectively. 1290 * 1291 * When registered all network namespace init functions are 1292 * called for every existing network namespace. Allowing kernel 1293 * modules to have a race free view of the set of network namespaces. 1294 * 1295 * When a new network namespace is created all of the init 1296 * methods are called in the order in which they were registered. 1297 * 1298 * When a network namespace is destroyed all of the exit methods 1299 * are called in the reverse of the order with which they were 1300 * registered. 1301 */ 1302 int register_pernet_device(struct pernet_operations *ops) 1303 { 1304 int error; 1305 down_write(&pernet_ops_rwsem); 1306 error = register_pernet_operations(&pernet_list, ops); 1307 if (!error && (first_device == &pernet_list)) 1308 first_device = &ops->list; 1309 up_write(&pernet_ops_rwsem); 1310 return error; 1311 } 1312 EXPORT_SYMBOL_GPL(register_pernet_device); 1313 1314 /** 1315 * unregister_pernet_device - unregister a network namespace netdevice 1316 * @ops: pernet operations structure to manipulate 1317 * 1318 * Remove the pernet operations structure from the list to be 1319 * used when network namespaces are created or destroyed. In 1320 * addition run the exit method for all existing network 1321 * namespaces. 1322 */ 1323 void unregister_pernet_device(struct pernet_operations *ops) 1324 { 1325 down_write(&pernet_ops_rwsem); 1326 if (&ops->list == first_device) 1327 first_device = first_device->next; 1328 unregister_pernet_operations(ops); 1329 up_write(&pernet_ops_rwsem); 1330 } 1331 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1332 1333 #ifdef CONFIG_NET_NS 1334 static struct ns_common *netns_get(struct task_struct *task) 1335 { 1336 struct net *net = NULL; 1337 struct nsproxy *nsproxy; 1338 1339 task_lock(task); 1340 nsproxy = task->nsproxy; 1341 if (nsproxy) 1342 net = get_net(nsproxy->net_ns); 1343 task_unlock(task); 1344 1345 return net ? &net->ns : NULL; 1346 } 1347 1348 static inline struct net *to_net_ns(struct ns_common *ns) 1349 { 1350 return container_of(ns, struct net, ns); 1351 } 1352 1353 static void netns_put(struct ns_common *ns) 1354 { 1355 put_net(to_net_ns(ns)); 1356 } 1357 1358 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1359 { 1360 struct nsproxy *nsproxy = nsset->nsproxy; 1361 struct net *net = to_net_ns(ns); 1362 1363 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1364 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1365 return -EPERM; 1366 1367 put_net(nsproxy->net_ns); 1368 nsproxy->net_ns = get_net(net); 1369 return 0; 1370 } 1371 1372 static struct user_namespace *netns_owner(struct ns_common *ns) 1373 { 1374 return to_net_ns(ns)->user_ns; 1375 } 1376 1377 const struct proc_ns_operations netns_operations = { 1378 .name = "net", 1379 .type = CLONE_NEWNET, 1380 .get = netns_get, 1381 .put = netns_put, 1382 .install = netns_install, 1383 .owner = netns_owner, 1384 }; 1385 #endif 1386