1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 23 #include <net/sock.h> 24 #include <net/netlink.h> 25 #include <net/net_namespace.h> 26 #include <net/netns/generic.h> 27 28 /* 29 * Our network namespace constructor/destructor lists 30 */ 31 32 static LIST_HEAD(pernet_list); 33 static struct list_head *first_device = &pernet_list; 34 35 LIST_HEAD(net_namespace_list); 36 EXPORT_SYMBOL_GPL(net_namespace_list); 37 38 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 39 DECLARE_RWSEM(net_rwsem); 40 EXPORT_SYMBOL_GPL(net_rwsem); 41 42 #ifdef CONFIG_KEYS 43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 44 #endif 45 46 struct net init_net = { 47 .count = REFCOUNT_INIT(1), 48 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 49 #ifdef CONFIG_KEYS 50 .key_domain = &init_net_key_domain, 51 #endif 52 }; 53 EXPORT_SYMBOL(init_net); 54 55 static bool init_net_initialized; 56 /* 57 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 58 * init_net_initialized and first_device pointer. 59 * This is internal net namespace object. Please, don't use it 60 * outside. 61 */ 62 DECLARE_RWSEM(pernet_ops_rwsem); 63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 64 65 #define MIN_PERNET_OPS_ID \ 66 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 67 68 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 69 70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 71 72 static struct net_generic *net_alloc_generic(void) 73 { 74 struct net_generic *ng; 75 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = max_gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (ng == NULL) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 int err = -ENOMEM; 124 void *data = NULL; 125 126 if (ops->id && ops->size) { 127 data = kzalloc(ops->size, GFP_KERNEL); 128 if (!data) 129 goto out; 130 131 err = net_assign_generic(net, *ops->id, data); 132 if (err) 133 goto cleanup; 134 } 135 err = 0; 136 if (ops->init) 137 err = ops->init(net); 138 if (!err) 139 return 0; 140 141 cleanup: 142 kfree(data); 143 144 out: 145 return err; 146 } 147 148 static void ops_free(const struct pernet_operations *ops, struct net *net) 149 { 150 if (ops->id && ops->size) { 151 kfree(net_generic(net, *ops->id)); 152 } 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_list(const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 struct net *net; 170 if (ops->exit) { 171 list_for_each_entry(net, net_exit_list, exit_list) 172 ops->exit(net); 173 } 174 if (ops->exit_batch) 175 ops->exit_batch(net_exit_list); 176 } 177 178 static void ops_free_list(const struct pernet_operations *ops, 179 struct list_head *net_exit_list) 180 { 181 struct net *net; 182 if (ops->size && ops->id) { 183 list_for_each_entry(net, net_exit_list, exit_list) 184 ops_free(ops, net); 185 } 186 } 187 188 /* should be called with nsid_lock held */ 189 static int alloc_netid(struct net *net, struct net *peer, int reqid) 190 { 191 int min = 0, max = 0; 192 193 if (reqid >= 0) { 194 min = reqid; 195 max = reqid + 1; 196 } 197 198 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 199 } 200 201 /* This function is used by idr_for_each(). If net is equal to peer, the 202 * function returns the id so that idr_for_each() stops. Because we cannot 203 * returns the id 0 (idr_for_each() will not stop), we return the magic value 204 * NET_ID_ZERO (-1) for it. 205 */ 206 #define NET_ID_ZERO -1 207 static int net_eq_idr(int id, void *net, void *peer) 208 { 209 if (net_eq(net, peer)) 210 return id ? : NET_ID_ZERO; 211 return 0; 212 } 213 214 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 215 * is set to true, thus the caller knows that the new id must be notified via 216 * rtnl. 217 */ 218 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 bool alloc_it = *alloc; 222 223 *alloc = false; 224 225 /* Magic value for id 0. */ 226 if (id == NET_ID_ZERO) 227 return 0; 228 if (id > 0) 229 return id; 230 231 if (alloc_it) { 232 id = alloc_netid(net, peer, -1); 233 *alloc = true; 234 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 235 } 236 237 return NETNSA_NSID_NOT_ASSIGNED; 238 } 239 240 /* should be called with nsid_lock held */ 241 static int __peernet2id(struct net *net, struct net *peer) 242 { 243 bool no = false; 244 245 return __peernet2id_alloc(net, peer, &no); 246 } 247 248 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 249 struct nlmsghdr *nlh); 250 /* This function returns the id of a peer netns. If no id is assigned, one will 251 * be allocated and returned. 252 */ 253 int peernet2id_alloc(struct net *net, struct net *peer) 254 { 255 bool alloc = false, alive = false; 256 int id; 257 258 if (refcount_read(&net->count) == 0) 259 return NETNSA_NSID_NOT_ASSIGNED; 260 spin_lock_bh(&net->nsid_lock); 261 /* 262 * When peer is obtained from RCU lists, we may race with 263 * its cleanup. Check whether it's alive, and this guarantees 264 * we never hash a peer back to net->netns_ids, after it has 265 * just been idr_remove()'d from there in cleanup_net(). 266 */ 267 if (maybe_get_net(peer)) 268 alive = alloc = true; 269 id = __peernet2id_alloc(net, peer, &alloc); 270 spin_unlock_bh(&net->nsid_lock); 271 if (alloc && id >= 0) 272 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL); 273 if (alive) 274 put_net(peer); 275 return id; 276 } 277 EXPORT_SYMBOL_GPL(peernet2id_alloc); 278 279 /* This function returns, if assigned, the id of a peer netns. */ 280 int peernet2id(struct net *net, struct net *peer) 281 { 282 int id; 283 284 spin_lock_bh(&net->nsid_lock); 285 id = __peernet2id(net, peer); 286 spin_unlock_bh(&net->nsid_lock); 287 return id; 288 } 289 EXPORT_SYMBOL(peernet2id); 290 291 /* This function returns true is the peer netns has an id assigned into the 292 * current netns. 293 */ 294 bool peernet_has_id(struct net *net, struct net *peer) 295 { 296 return peernet2id(net, peer) >= 0; 297 } 298 299 struct net *get_net_ns_by_id(struct net *net, int id) 300 { 301 struct net *peer; 302 303 if (id < 0) 304 return NULL; 305 306 rcu_read_lock(); 307 peer = idr_find(&net->netns_ids, id); 308 if (peer) 309 peer = maybe_get_net(peer); 310 rcu_read_unlock(); 311 312 return peer; 313 } 314 315 /* 316 * setup_net runs the initializers for the network namespace object. 317 */ 318 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 319 { 320 /* Must be called with pernet_ops_rwsem held */ 321 const struct pernet_operations *ops, *saved_ops; 322 int error = 0; 323 LIST_HEAD(net_exit_list); 324 325 refcount_set(&net->count, 1); 326 refcount_set(&net->passive, 1); 327 get_random_bytes(&net->hash_mix, sizeof(u32)); 328 net->dev_base_seq = 1; 329 net->user_ns = user_ns; 330 idr_init(&net->netns_ids); 331 spin_lock_init(&net->nsid_lock); 332 mutex_init(&net->ipv4.ra_mutex); 333 334 list_for_each_entry(ops, &pernet_list, list) { 335 error = ops_init(ops, net); 336 if (error < 0) 337 goto out_undo; 338 } 339 down_write(&net_rwsem); 340 list_add_tail_rcu(&net->list, &net_namespace_list); 341 up_write(&net_rwsem); 342 out: 343 return error; 344 345 out_undo: 346 /* Walk through the list backwards calling the exit functions 347 * for the pernet modules whose init functions did not fail. 348 */ 349 list_add(&net->exit_list, &net_exit_list); 350 saved_ops = ops; 351 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 352 ops_pre_exit_list(ops, &net_exit_list); 353 354 synchronize_rcu(); 355 356 ops = saved_ops; 357 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 358 ops_exit_list(ops, &net_exit_list); 359 360 ops = saved_ops; 361 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 362 ops_free_list(ops, &net_exit_list); 363 364 rcu_barrier(); 365 goto out; 366 } 367 368 static int __net_init net_defaults_init_net(struct net *net) 369 { 370 net->core.sysctl_somaxconn = SOMAXCONN; 371 return 0; 372 } 373 374 static struct pernet_operations net_defaults_ops = { 375 .init = net_defaults_init_net, 376 }; 377 378 static __init int net_defaults_init(void) 379 { 380 if (register_pernet_subsys(&net_defaults_ops)) 381 panic("Cannot initialize net default settings"); 382 383 return 0; 384 } 385 386 core_initcall(net_defaults_init); 387 388 #ifdef CONFIG_NET_NS 389 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 390 { 391 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 392 } 393 394 static void dec_net_namespaces(struct ucounts *ucounts) 395 { 396 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 397 } 398 399 static struct kmem_cache *net_cachep __ro_after_init; 400 static struct workqueue_struct *netns_wq; 401 402 static struct net *net_alloc(void) 403 { 404 struct net *net = NULL; 405 struct net_generic *ng; 406 407 ng = net_alloc_generic(); 408 if (!ng) 409 goto out; 410 411 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 412 if (!net) 413 goto out_free; 414 415 #ifdef CONFIG_KEYS 416 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 417 if (!net->key_domain) 418 goto out_free_2; 419 refcount_set(&net->key_domain->usage, 1); 420 #endif 421 422 rcu_assign_pointer(net->gen, ng); 423 out: 424 return net; 425 426 #ifdef CONFIG_KEYS 427 out_free_2: 428 kmem_cache_free(net_cachep, net); 429 net = NULL; 430 #endif 431 out_free: 432 kfree(ng); 433 goto out; 434 } 435 436 static void net_free(struct net *net) 437 { 438 kfree(rcu_access_pointer(net->gen)); 439 kmem_cache_free(net_cachep, net); 440 } 441 442 void net_drop_ns(void *p) 443 { 444 struct net *ns = p; 445 if (ns && refcount_dec_and_test(&ns->passive)) 446 net_free(ns); 447 } 448 449 struct net *copy_net_ns(unsigned long flags, 450 struct user_namespace *user_ns, struct net *old_net) 451 { 452 struct ucounts *ucounts; 453 struct net *net; 454 int rv; 455 456 if (!(flags & CLONE_NEWNET)) 457 return get_net(old_net); 458 459 ucounts = inc_net_namespaces(user_ns); 460 if (!ucounts) 461 return ERR_PTR(-ENOSPC); 462 463 net = net_alloc(); 464 if (!net) { 465 rv = -ENOMEM; 466 goto dec_ucounts; 467 } 468 refcount_set(&net->passive, 1); 469 net->ucounts = ucounts; 470 get_user_ns(user_ns); 471 472 rv = down_read_killable(&pernet_ops_rwsem); 473 if (rv < 0) 474 goto put_userns; 475 476 rv = setup_net(net, user_ns); 477 478 up_read(&pernet_ops_rwsem); 479 480 if (rv < 0) { 481 put_userns: 482 put_user_ns(user_ns); 483 net_drop_ns(net); 484 dec_ucounts: 485 dec_net_namespaces(ucounts); 486 return ERR_PTR(rv); 487 } 488 return net; 489 } 490 491 /** 492 * net_ns_get_ownership - get sysfs ownership data for @net 493 * @net: network namespace in question (can be NULL) 494 * @uid: kernel user ID for sysfs objects 495 * @gid: kernel group ID for sysfs objects 496 * 497 * Returns the uid/gid pair of root in the user namespace associated with the 498 * given network namespace. 499 */ 500 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 501 { 502 if (net) { 503 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 504 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 505 506 if (uid_valid(ns_root_uid)) 507 *uid = ns_root_uid; 508 509 if (gid_valid(ns_root_gid)) 510 *gid = ns_root_gid; 511 } else { 512 *uid = GLOBAL_ROOT_UID; 513 *gid = GLOBAL_ROOT_GID; 514 } 515 } 516 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 517 518 static void unhash_nsid(struct net *net, struct net *last) 519 { 520 struct net *tmp; 521 /* This function is only called from cleanup_net() work, 522 * and this work is the only process, that may delete 523 * a net from net_namespace_list. So, when the below 524 * is executing, the list may only grow. Thus, we do not 525 * use for_each_net_rcu() or net_rwsem. 526 */ 527 for_each_net(tmp) { 528 int id; 529 530 spin_lock_bh(&tmp->nsid_lock); 531 id = __peernet2id(tmp, net); 532 if (id >= 0) 533 idr_remove(&tmp->netns_ids, id); 534 spin_unlock_bh(&tmp->nsid_lock); 535 if (id >= 0) 536 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL); 537 if (tmp == last) 538 break; 539 } 540 spin_lock_bh(&net->nsid_lock); 541 idr_destroy(&net->netns_ids); 542 spin_unlock_bh(&net->nsid_lock); 543 } 544 545 static LLIST_HEAD(cleanup_list); 546 547 static void cleanup_net(struct work_struct *work) 548 { 549 const struct pernet_operations *ops; 550 struct net *net, *tmp, *last; 551 struct llist_node *net_kill_list; 552 LIST_HEAD(net_exit_list); 553 554 /* Atomically snapshot the list of namespaces to cleanup */ 555 net_kill_list = llist_del_all(&cleanup_list); 556 557 down_read(&pernet_ops_rwsem); 558 559 /* Don't let anyone else find us. */ 560 down_write(&net_rwsem); 561 llist_for_each_entry(net, net_kill_list, cleanup_list) 562 list_del_rcu(&net->list); 563 /* Cache last net. After we unlock rtnl, no one new net 564 * added to net_namespace_list can assign nsid pointer 565 * to a net from net_kill_list (see peernet2id_alloc()). 566 * So, we skip them in unhash_nsid(). 567 * 568 * Note, that unhash_nsid() does not delete nsid links 569 * between net_kill_list's nets, as they've already 570 * deleted from net_namespace_list. But, this would be 571 * useless anyway, as netns_ids are destroyed there. 572 */ 573 last = list_last_entry(&net_namespace_list, struct net, list); 574 up_write(&net_rwsem); 575 576 llist_for_each_entry(net, net_kill_list, cleanup_list) { 577 unhash_nsid(net, last); 578 list_add_tail(&net->exit_list, &net_exit_list); 579 } 580 581 /* Run all of the network namespace pre_exit methods */ 582 list_for_each_entry_reverse(ops, &pernet_list, list) 583 ops_pre_exit_list(ops, &net_exit_list); 584 585 /* 586 * Another CPU might be rcu-iterating the list, wait for it. 587 * This needs to be before calling the exit() notifiers, so 588 * the rcu_barrier() below isn't sufficient alone. 589 * Also the pre_exit() and exit() methods need this barrier. 590 */ 591 synchronize_rcu(); 592 593 /* Run all of the network namespace exit methods */ 594 list_for_each_entry_reverse(ops, &pernet_list, list) 595 ops_exit_list(ops, &net_exit_list); 596 597 /* Free the net generic variables */ 598 list_for_each_entry_reverse(ops, &pernet_list, list) 599 ops_free_list(ops, &net_exit_list); 600 601 up_read(&pernet_ops_rwsem); 602 603 /* Ensure there are no outstanding rcu callbacks using this 604 * network namespace. 605 */ 606 rcu_barrier(); 607 608 /* Finally it is safe to free my network namespace structure */ 609 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 610 list_del_init(&net->exit_list); 611 dec_net_namespaces(net->ucounts); 612 key_remove_domain(net->key_domain); 613 put_user_ns(net->user_ns); 614 net_drop_ns(net); 615 } 616 } 617 618 /** 619 * net_ns_barrier - wait until concurrent net_cleanup_work is done 620 * 621 * cleanup_net runs from work queue and will first remove namespaces 622 * from the global list, then run net exit functions. 623 * 624 * Call this in module exit path to make sure that all netns 625 * ->exit ops have been invoked before the function is removed. 626 */ 627 void net_ns_barrier(void) 628 { 629 down_write(&pernet_ops_rwsem); 630 up_write(&pernet_ops_rwsem); 631 } 632 EXPORT_SYMBOL(net_ns_barrier); 633 634 static DECLARE_WORK(net_cleanup_work, cleanup_net); 635 636 void __put_net(struct net *net) 637 { 638 /* Cleanup the network namespace in process context */ 639 if (llist_add(&net->cleanup_list, &cleanup_list)) 640 queue_work(netns_wq, &net_cleanup_work); 641 } 642 EXPORT_SYMBOL_GPL(__put_net); 643 644 struct net *get_net_ns_by_fd(int fd) 645 { 646 struct file *file; 647 struct ns_common *ns; 648 struct net *net; 649 650 file = proc_ns_fget(fd); 651 if (IS_ERR(file)) 652 return ERR_CAST(file); 653 654 ns = get_proc_ns(file_inode(file)); 655 if (ns->ops == &netns_operations) 656 net = get_net(container_of(ns, struct net, ns)); 657 else 658 net = ERR_PTR(-EINVAL); 659 660 fput(file); 661 return net; 662 } 663 664 #else 665 struct net *get_net_ns_by_fd(int fd) 666 { 667 return ERR_PTR(-EINVAL); 668 } 669 #endif 670 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 671 672 struct net *get_net_ns_by_pid(pid_t pid) 673 { 674 struct task_struct *tsk; 675 struct net *net; 676 677 /* Lookup the network namespace */ 678 net = ERR_PTR(-ESRCH); 679 rcu_read_lock(); 680 tsk = find_task_by_vpid(pid); 681 if (tsk) { 682 struct nsproxy *nsproxy; 683 task_lock(tsk); 684 nsproxy = tsk->nsproxy; 685 if (nsproxy) 686 net = get_net(nsproxy->net_ns); 687 task_unlock(tsk); 688 } 689 rcu_read_unlock(); 690 return net; 691 } 692 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 693 694 static __net_init int net_ns_net_init(struct net *net) 695 { 696 #ifdef CONFIG_NET_NS 697 net->ns.ops = &netns_operations; 698 #endif 699 return ns_alloc_inum(&net->ns); 700 } 701 702 static __net_exit void net_ns_net_exit(struct net *net) 703 { 704 ns_free_inum(&net->ns); 705 } 706 707 static struct pernet_operations __net_initdata net_ns_ops = { 708 .init = net_ns_net_init, 709 .exit = net_ns_net_exit, 710 }; 711 712 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 713 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 714 [NETNSA_NSID] = { .type = NLA_S32 }, 715 [NETNSA_PID] = { .type = NLA_U32 }, 716 [NETNSA_FD] = { .type = NLA_U32 }, 717 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 718 }; 719 720 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 721 struct netlink_ext_ack *extack) 722 { 723 struct net *net = sock_net(skb->sk); 724 struct nlattr *tb[NETNSA_MAX + 1]; 725 struct nlattr *nla; 726 struct net *peer; 727 int nsid, err; 728 729 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 730 NETNSA_MAX, rtnl_net_policy, extack); 731 if (err < 0) 732 return err; 733 if (!tb[NETNSA_NSID]) { 734 NL_SET_ERR_MSG(extack, "nsid is missing"); 735 return -EINVAL; 736 } 737 nsid = nla_get_s32(tb[NETNSA_NSID]); 738 739 if (tb[NETNSA_PID]) { 740 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 741 nla = tb[NETNSA_PID]; 742 } else if (tb[NETNSA_FD]) { 743 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 744 nla = tb[NETNSA_FD]; 745 } else { 746 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 747 return -EINVAL; 748 } 749 if (IS_ERR(peer)) { 750 NL_SET_BAD_ATTR(extack, nla); 751 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 752 return PTR_ERR(peer); 753 } 754 755 spin_lock_bh(&net->nsid_lock); 756 if (__peernet2id(net, peer) >= 0) { 757 spin_unlock_bh(&net->nsid_lock); 758 err = -EEXIST; 759 NL_SET_BAD_ATTR(extack, nla); 760 NL_SET_ERR_MSG(extack, 761 "Peer netns already has a nsid assigned"); 762 goto out; 763 } 764 765 err = alloc_netid(net, peer, nsid); 766 spin_unlock_bh(&net->nsid_lock); 767 if (err >= 0) { 768 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 769 nlh); 770 err = 0; 771 } else if (err == -ENOSPC && nsid >= 0) { 772 err = -EEXIST; 773 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 774 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 775 } 776 out: 777 put_net(peer); 778 return err; 779 } 780 781 static int rtnl_net_get_size(void) 782 { 783 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 784 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 785 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 786 ; 787 } 788 789 struct net_fill_args { 790 u32 portid; 791 u32 seq; 792 int flags; 793 int cmd; 794 int nsid; 795 bool add_ref; 796 int ref_nsid; 797 }; 798 799 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 800 { 801 struct nlmsghdr *nlh; 802 struct rtgenmsg *rth; 803 804 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 805 args->flags); 806 if (!nlh) 807 return -EMSGSIZE; 808 809 rth = nlmsg_data(nlh); 810 rth->rtgen_family = AF_UNSPEC; 811 812 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 813 goto nla_put_failure; 814 815 if (args->add_ref && 816 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 817 goto nla_put_failure; 818 819 nlmsg_end(skb, nlh); 820 return 0; 821 822 nla_put_failure: 823 nlmsg_cancel(skb, nlh); 824 return -EMSGSIZE; 825 } 826 827 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 828 const struct nlmsghdr *nlh, 829 struct nlattr **tb, 830 struct netlink_ext_ack *extack) 831 { 832 int i, err; 833 834 if (!netlink_strict_get_check(skb)) 835 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 836 tb, NETNSA_MAX, rtnl_net_policy, 837 extack); 838 839 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 840 NETNSA_MAX, rtnl_net_policy, 841 extack); 842 if (err) 843 return err; 844 845 for (i = 0; i <= NETNSA_MAX; i++) { 846 if (!tb[i]) 847 continue; 848 849 switch (i) { 850 case NETNSA_PID: 851 case NETNSA_FD: 852 case NETNSA_NSID: 853 case NETNSA_TARGET_NSID: 854 break; 855 default: 856 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 857 return -EINVAL; 858 } 859 } 860 861 return 0; 862 } 863 864 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 865 struct netlink_ext_ack *extack) 866 { 867 struct net *net = sock_net(skb->sk); 868 struct nlattr *tb[NETNSA_MAX + 1]; 869 struct net_fill_args fillargs = { 870 .portid = NETLINK_CB(skb).portid, 871 .seq = nlh->nlmsg_seq, 872 .cmd = RTM_NEWNSID, 873 }; 874 struct net *peer, *target = net; 875 struct nlattr *nla; 876 struct sk_buff *msg; 877 int err; 878 879 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 880 if (err < 0) 881 return err; 882 if (tb[NETNSA_PID]) { 883 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 884 nla = tb[NETNSA_PID]; 885 } else if (tb[NETNSA_FD]) { 886 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 887 nla = tb[NETNSA_FD]; 888 } else if (tb[NETNSA_NSID]) { 889 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 890 if (!peer) 891 peer = ERR_PTR(-ENOENT); 892 nla = tb[NETNSA_NSID]; 893 } else { 894 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 895 return -EINVAL; 896 } 897 898 if (IS_ERR(peer)) { 899 NL_SET_BAD_ATTR(extack, nla); 900 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 901 return PTR_ERR(peer); 902 } 903 904 if (tb[NETNSA_TARGET_NSID]) { 905 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 906 907 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 908 if (IS_ERR(target)) { 909 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 910 NL_SET_ERR_MSG(extack, 911 "Target netns reference is invalid"); 912 err = PTR_ERR(target); 913 goto out; 914 } 915 fillargs.add_ref = true; 916 fillargs.ref_nsid = peernet2id(net, peer); 917 } 918 919 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 920 if (!msg) { 921 err = -ENOMEM; 922 goto out; 923 } 924 925 fillargs.nsid = peernet2id(target, peer); 926 err = rtnl_net_fill(msg, &fillargs); 927 if (err < 0) 928 goto err_out; 929 930 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 931 goto out; 932 933 err_out: 934 nlmsg_free(msg); 935 out: 936 if (fillargs.add_ref) 937 put_net(target); 938 put_net(peer); 939 return err; 940 } 941 942 struct rtnl_net_dump_cb { 943 struct net *tgt_net; 944 struct net *ref_net; 945 struct sk_buff *skb; 946 struct net_fill_args fillargs; 947 int idx; 948 int s_idx; 949 }; 950 951 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 952 { 953 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 954 int ret; 955 956 if (net_cb->idx < net_cb->s_idx) 957 goto cont; 958 959 net_cb->fillargs.nsid = id; 960 if (net_cb->fillargs.add_ref) 961 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 962 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 963 if (ret < 0) 964 return ret; 965 966 cont: 967 net_cb->idx++; 968 return 0; 969 } 970 971 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 972 struct rtnl_net_dump_cb *net_cb, 973 struct netlink_callback *cb) 974 { 975 struct netlink_ext_ack *extack = cb->extack; 976 struct nlattr *tb[NETNSA_MAX + 1]; 977 int err, i; 978 979 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 980 NETNSA_MAX, rtnl_net_policy, 981 extack); 982 if (err < 0) 983 return err; 984 985 for (i = 0; i <= NETNSA_MAX; i++) { 986 if (!tb[i]) 987 continue; 988 989 if (i == NETNSA_TARGET_NSID) { 990 struct net *net; 991 992 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 993 if (IS_ERR(net)) { 994 NL_SET_BAD_ATTR(extack, tb[i]); 995 NL_SET_ERR_MSG(extack, 996 "Invalid target network namespace id"); 997 return PTR_ERR(net); 998 } 999 net_cb->fillargs.add_ref = true; 1000 net_cb->ref_net = net_cb->tgt_net; 1001 net_cb->tgt_net = net; 1002 } else { 1003 NL_SET_BAD_ATTR(extack, tb[i]); 1004 NL_SET_ERR_MSG(extack, 1005 "Unsupported attribute in dump request"); 1006 return -EINVAL; 1007 } 1008 } 1009 1010 return 0; 1011 } 1012 1013 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1014 { 1015 struct rtnl_net_dump_cb net_cb = { 1016 .tgt_net = sock_net(skb->sk), 1017 .skb = skb, 1018 .fillargs = { 1019 .portid = NETLINK_CB(cb->skb).portid, 1020 .seq = cb->nlh->nlmsg_seq, 1021 .flags = NLM_F_MULTI, 1022 .cmd = RTM_NEWNSID, 1023 }, 1024 .idx = 0, 1025 .s_idx = cb->args[0], 1026 }; 1027 int err = 0; 1028 1029 if (cb->strict_check) { 1030 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1031 if (err < 0) 1032 goto end; 1033 } 1034 1035 spin_lock_bh(&net_cb.tgt_net->nsid_lock); 1036 if (net_cb.fillargs.add_ref && 1037 !net_eq(net_cb.ref_net, net_cb.tgt_net) && 1038 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) { 1039 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1040 err = -EAGAIN; 1041 goto end; 1042 } 1043 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1044 if (net_cb.fillargs.add_ref && 1045 !net_eq(net_cb.ref_net, net_cb.tgt_net)) 1046 spin_unlock_bh(&net_cb.ref_net->nsid_lock); 1047 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1048 1049 cb->args[0] = net_cb.idx; 1050 end: 1051 if (net_cb.fillargs.add_ref) 1052 put_net(net_cb.tgt_net); 1053 return err < 0 ? err : skb->len; 1054 } 1055 1056 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1057 struct nlmsghdr *nlh) 1058 { 1059 struct net_fill_args fillargs = { 1060 .portid = portid, 1061 .seq = nlh ? nlh->nlmsg_seq : 0, 1062 .cmd = cmd, 1063 .nsid = id, 1064 }; 1065 struct sk_buff *msg; 1066 int err = -ENOMEM; 1067 1068 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1069 if (!msg) 1070 goto out; 1071 1072 err = rtnl_net_fill(msg, &fillargs); 1073 if (err < 0) 1074 goto err_out; 1075 1076 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, 0); 1077 return; 1078 1079 err_out: 1080 nlmsg_free(msg); 1081 out: 1082 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1083 } 1084 1085 static int __init net_ns_init(void) 1086 { 1087 struct net_generic *ng; 1088 1089 #ifdef CONFIG_NET_NS 1090 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1091 SMP_CACHE_BYTES, 1092 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1093 1094 /* Create workqueue for cleanup */ 1095 netns_wq = create_singlethread_workqueue("netns"); 1096 if (!netns_wq) 1097 panic("Could not create netns workq"); 1098 #endif 1099 1100 ng = net_alloc_generic(); 1101 if (!ng) 1102 panic("Could not allocate generic netns"); 1103 1104 rcu_assign_pointer(init_net.gen, ng); 1105 1106 down_write(&pernet_ops_rwsem); 1107 if (setup_net(&init_net, &init_user_ns)) 1108 panic("Could not setup the initial network namespace"); 1109 1110 init_net_initialized = true; 1111 up_write(&pernet_ops_rwsem); 1112 1113 if (register_pernet_subsys(&net_ns_ops)) 1114 panic("Could not register network namespace subsystems"); 1115 1116 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1117 RTNL_FLAG_DOIT_UNLOCKED); 1118 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1119 RTNL_FLAG_DOIT_UNLOCKED); 1120 1121 return 0; 1122 } 1123 1124 pure_initcall(net_ns_init); 1125 1126 #ifdef CONFIG_NET_NS 1127 static int __register_pernet_operations(struct list_head *list, 1128 struct pernet_operations *ops) 1129 { 1130 struct net *net; 1131 int error; 1132 LIST_HEAD(net_exit_list); 1133 1134 list_add_tail(&ops->list, list); 1135 if (ops->init || (ops->id && ops->size)) { 1136 /* We held write locked pernet_ops_rwsem, and parallel 1137 * setup_net() and cleanup_net() are not possible. 1138 */ 1139 for_each_net(net) { 1140 error = ops_init(ops, net); 1141 if (error) 1142 goto out_undo; 1143 list_add_tail(&net->exit_list, &net_exit_list); 1144 } 1145 } 1146 return 0; 1147 1148 out_undo: 1149 /* If I have an error cleanup all namespaces I initialized */ 1150 list_del(&ops->list); 1151 ops_pre_exit_list(ops, &net_exit_list); 1152 synchronize_rcu(); 1153 ops_exit_list(ops, &net_exit_list); 1154 ops_free_list(ops, &net_exit_list); 1155 return error; 1156 } 1157 1158 static void __unregister_pernet_operations(struct pernet_operations *ops) 1159 { 1160 struct net *net; 1161 LIST_HEAD(net_exit_list); 1162 1163 list_del(&ops->list); 1164 /* See comment in __register_pernet_operations() */ 1165 for_each_net(net) 1166 list_add_tail(&net->exit_list, &net_exit_list); 1167 ops_pre_exit_list(ops, &net_exit_list); 1168 synchronize_rcu(); 1169 ops_exit_list(ops, &net_exit_list); 1170 ops_free_list(ops, &net_exit_list); 1171 } 1172 1173 #else 1174 1175 static int __register_pernet_operations(struct list_head *list, 1176 struct pernet_operations *ops) 1177 { 1178 if (!init_net_initialized) { 1179 list_add_tail(&ops->list, list); 1180 return 0; 1181 } 1182 1183 return ops_init(ops, &init_net); 1184 } 1185 1186 static void __unregister_pernet_operations(struct pernet_operations *ops) 1187 { 1188 if (!init_net_initialized) { 1189 list_del(&ops->list); 1190 } else { 1191 LIST_HEAD(net_exit_list); 1192 list_add(&init_net.exit_list, &net_exit_list); 1193 ops_pre_exit_list(ops, &net_exit_list); 1194 synchronize_rcu(); 1195 ops_exit_list(ops, &net_exit_list); 1196 ops_free_list(ops, &net_exit_list); 1197 } 1198 } 1199 1200 #endif /* CONFIG_NET_NS */ 1201 1202 static DEFINE_IDA(net_generic_ids); 1203 1204 static int register_pernet_operations(struct list_head *list, 1205 struct pernet_operations *ops) 1206 { 1207 int error; 1208 1209 if (ops->id) { 1210 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1211 GFP_KERNEL); 1212 if (error < 0) 1213 return error; 1214 *ops->id = error; 1215 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1216 } 1217 error = __register_pernet_operations(list, ops); 1218 if (error) { 1219 rcu_barrier(); 1220 if (ops->id) 1221 ida_free(&net_generic_ids, *ops->id); 1222 } 1223 1224 return error; 1225 } 1226 1227 static void unregister_pernet_operations(struct pernet_operations *ops) 1228 { 1229 __unregister_pernet_operations(ops); 1230 rcu_barrier(); 1231 if (ops->id) 1232 ida_free(&net_generic_ids, *ops->id); 1233 } 1234 1235 /** 1236 * register_pernet_subsys - register a network namespace subsystem 1237 * @ops: pernet operations structure for the subsystem 1238 * 1239 * Register a subsystem which has init and exit functions 1240 * that are called when network namespaces are created and 1241 * destroyed respectively. 1242 * 1243 * When registered all network namespace init functions are 1244 * called for every existing network namespace. Allowing kernel 1245 * modules to have a race free view of the set of network namespaces. 1246 * 1247 * When a new network namespace is created all of the init 1248 * methods are called in the order in which they were registered. 1249 * 1250 * When a network namespace is destroyed all of the exit methods 1251 * are called in the reverse of the order with which they were 1252 * registered. 1253 */ 1254 int register_pernet_subsys(struct pernet_operations *ops) 1255 { 1256 int error; 1257 down_write(&pernet_ops_rwsem); 1258 error = register_pernet_operations(first_device, ops); 1259 up_write(&pernet_ops_rwsem); 1260 return error; 1261 } 1262 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1263 1264 /** 1265 * unregister_pernet_subsys - unregister a network namespace subsystem 1266 * @ops: pernet operations structure to manipulate 1267 * 1268 * Remove the pernet operations structure from the list to be 1269 * used when network namespaces are created or destroyed. In 1270 * addition run the exit method for all existing network 1271 * namespaces. 1272 */ 1273 void unregister_pernet_subsys(struct pernet_operations *ops) 1274 { 1275 down_write(&pernet_ops_rwsem); 1276 unregister_pernet_operations(ops); 1277 up_write(&pernet_ops_rwsem); 1278 } 1279 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1280 1281 /** 1282 * register_pernet_device - register a network namespace device 1283 * @ops: pernet operations structure for the subsystem 1284 * 1285 * Register a device which has init and exit functions 1286 * that are called when network namespaces are created and 1287 * destroyed respectively. 1288 * 1289 * When registered all network namespace init functions are 1290 * called for every existing network namespace. Allowing kernel 1291 * modules to have a race free view of the set of network namespaces. 1292 * 1293 * When a new network namespace is created all of the init 1294 * methods are called in the order in which they were registered. 1295 * 1296 * When a network namespace is destroyed all of the exit methods 1297 * are called in the reverse of the order with which they were 1298 * registered. 1299 */ 1300 int register_pernet_device(struct pernet_operations *ops) 1301 { 1302 int error; 1303 down_write(&pernet_ops_rwsem); 1304 error = register_pernet_operations(&pernet_list, ops); 1305 if (!error && (first_device == &pernet_list)) 1306 first_device = &ops->list; 1307 up_write(&pernet_ops_rwsem); 1308 return error; 1309 } 1310 EXPORT_SYMBOL_GPL(register_pernet_device); 1311 1312 /** 1313 * unregister_pernet_device - unregister a network namespace netdevice 1314 * @ops: pernet operations structure to manipulate 1315 * 1316 * Remove the pernet operations structure from the list to be 1317 * used when network namespaces are created or destroyed. In 1318 * addition run the exit method for all existing network 1319 * namespaces. 1320 */ 1321 void unregister_pernet_device(struct pernet_operations *ops) 1322 { 1323 down_write(&pernet_ops_rwsem); 1324 if (&ops->list == first_device) 1325 first_device = first_device->next; 1326 unregister_pernet_operations(ops); 1327 up_write(&pernet_ops_rwsem); 1328 } 1329 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1330 1331 #ifdef CONFIG_NET_NS 1332 static struct ns_common *netns_get(struct task_struct *task) 1333 { 1334 struct net *net = NULL; 1335 struct nsproxy *nsproxy; 1336 1337 task_lock(task); 1338 nsproxy = task->nsproxy; 1339 if (nsproxy) 1340 net = get_net(nsproxy->net_ns); 1341 task_unlock(task); 1342 1343 return net ? &net->ns : NULL; 1344 } 1345 1346 static inline struct net *to_net_ns(struct ns_common *ns) 1347 { 1348 return container_of(ns, struct net, ns); 1349 } 1350 1351 static void netns_put(struct ns_common *ns) 1352 { 1353 put_net(to_net_ns(ns)); 1354 } 1355 1356 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1357 { 1358 struct net *net = to_net_ns(ns); 1359 1360 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1361 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1362 return -EPERM; 1363 1364 put_net(nsproxy->net_ns); 1365 nsproxy->net_ns = get_net(net); 1366 return 0; 1367 } 1368 1369 static struct user_namespace *netns_owner(struct ns_common *ns) 1370 { 1371 return to_net_ns(ns)->user_ns; 1372 } 1373 1374 const struct proc_ns_operations netns_operations = { 1375 .name = "net", 1376 .type = CLONE_NEWNET, 1377 .get = netns_get, 1378 .put = netns_put, 1379 .install = netns_install, 1380 .owner = netns_owner, 1381 }; 1382 #endif 1383