xref: /openbmc/linux/net/core/net_namespace.c (revision 2a73306b)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 static bool init_net_initialized;
41 
42 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
43 
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45 
46 static struct net_generic *net_alloc_generic(void)
47 {
48 	struct net_generic *ng;
49 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50 
51 	ng = kzalloc(generic_size, GFP_KERNEL);
52 	if (ng)
53 		ng->len = max_gen_ptrs;
54 
55 	return ng;
56 }
57 
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 	struct net_generic *ng, *old_ng;
61 
62 	BUG_ON(!mutex_is_locked(&net_mutex));
63 	BUG_ON(id == 0);
64 
65 	old_ng = rcu_dereference_protected(net->gen,
66 					   lockdep_is_held(&net_mutex));
67 	ng = old_ng;
68 	if (old_ng->len >= id)
69 		goto assign;
70 
71 	ng = net_alloc_generic();
72 	if (ng == NULL)
73 		return -ENOMEM;
74 
75 	/*
76 	 * Some synchronisation notes:
77 	 *
78 	 * The net_generic explores the net->gen array inside rcu
79 	 * read section. Besides once set the net->gen->ptr[x]
80 	 * pointer never changes (see rules in netns/generic.h).
81 	 *
82 	 * That said, we simply duplicate this array and schedule
83 	 * the old copy for kfree after a grace period.
84 	 */
85 
86 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87 
88 	rcu_assign_pointer(net->gen, ng);
89 	kfree_rcu(old_ng, rcu);
90 assign:
91 	ng->ptr[id - 1] = data;
92 	return 0;
93 }
94 
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 	int err = -ENOMEM;
98 	void *data = NULL;
99 
100 	if (ops->id && ops->size) {
101 		data = kzalloc(ops->size, GFP_KERNEL);
102 		if (!data)
103 			goto out;
104 
105 		err = net_assign_generic(net, *ops->id, data);
106 		if (err)
107 			goto cleanup;
108 	}
109 	err = 0;
110 	if (ops->init)
111 		err = ops->init(net);
112 	if (!err)
113 		return 0;
114 
115 cleanup:
116 	kfree(data);
117 
118 out:
119 	return err;
120 }
121 
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 	if (ops->id && ops->size) {
125 		int id = *ops->id;
126 		kfree(net_generic(net, id));
127 	}
128 }
129 
130 static void ops_exit_list(const struct pernet_operations *ops,
131 			  struct list_head *net_exit_list)
132 {
133 	struct net *net;
134 	if (ops->exit) {
135 		list_for_each_entry(net, net_exit_list, exit_list)
136 			ops->exit(net);
137 	}
138 	if (ops->exit_batch)
139 		ops->exit_batch(net_exit_list);
140 }
141 
142 static void ops_free_list(const struct pernet_operations *ops,
143 			  struct list_head *net_exit_list)
144 {
145 	struct net *net;
146 	if (ops->size && ops->id) {
147 		list_for_each_entry(net, net_exit_list, exit_list)
148 			ops_free(ops, net);
149 	}
150 }
151 
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 	int min = 0, max = 0;
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164 
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166  * function returns the id so that idr_for_each() stops. Because we cannot
167  * returns the id 0 (idr_for_each() will not stop), we return the magic value
168  * NET_ID_ZERO (-1) for it.
169  */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 	if (net_eq(net, peer))
174 		return id ? : NET_ID_ZERO;
175 	return 0;
176 }
177 
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179  * is set to true, thus the caller knows that the new id must be notified via
180  * rtnl.
181  */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 	bool alloc_it = *alloc;
186 
187 	*alloc = false;
188 
189 	/* Magic value for id 0. */
190 	if (id == NET_ID_ZERO)
191 		return 0;
192 	if (id > 0)
193 		return id;
194 
195 	if (alloc_it) {
196 		id = alloc_netid(net, peer, -1);
197 		*alloc = true;
198 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 	}
200 
201 	return NETNSA_NSID_NOT_ASSIGNED;
202 }
203 
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 	bool no = false;
208 
209 	return __peernet2id_alloc(net, peer, &no);
210 }
211 
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214  * be allocated and returned.
215  */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 	unsigned long flags;
219 	bool alloc;
220 	int id;
221 
222 	spin_lock_irqsave(&net->nsid_lock, flags);
223 	alloc = atomic_read(&peer->count) == 0 ? false : true;
224 	id = __peernet2id_alloc(net, peer, &alloc);
225 	spin_unlock_irqrestore(&net->nsid_lock, flags);
226 	if (alloc && id >= 0)
227 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
228 	return id;
229 }
230 
231 /* This function returns, if assigned, the id of a peer netns. */
232 int peernet2id(struct net *net, struct net *peer)
233 {
234 	unsigned long flags;
235 	int id;
236 
237 	spin_lock_irqsave(&net->nsid_lock, flags);
238 	id = __peernet2id(net, peer);
239 	spin_unlock_irqrestore(&net->nsid_lock, flags);
240 	return id;
241 }
242 EXPORT_SYMBOL(peernet2id);
243 
244 /* This function returns true is the peer netns has an id assigned into the
245  * current netns.
246  */
247 bool peernet_has_id(struct net *net, struct net *peer)
248 {
249 	return peernet2id(net, peer) >= 0;
250 }
251 
252 struct net *get_net_ns_by_id(struct net *net, int id)
253 {
254 	unsigned long flags;
255 	struct net *peer;
256 
257 	if (id < 0)
258 		return NULL;
259 
260 	rcu_read_lock();
261 	spin_lock_irqsave(&net->nsid_lock, flags);
262 	peer = idr_find(&net->netns_ids, id);
263 	if (peer)
264 		get_net(peer);
265 	spin_unlock_irqrestore(&net->nsid_lock, flags);
266 	rcu_read_unlock();
267 
268 	return peer;
269 }
270 
271 /*
272  * setup_net runs the initializers for the network namespace object.
273  */
274 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
275 {
276 	/* Must be called with net_mutex held */
277 	const struct pernet_operations *ops, *saved_ops;
278 	int error = 0;
279 	LIST_HEAD(net_exit_list);
280 
281 	atomic_set(&net->count, 1);
282 	atomic_set(&net->passive, 1);
283 	net->dev_base_seq = 1;
284 	net->user_ns = user_ns;
285 	idr_init(&net->netns_ids);
286 	spin_lock_init(&net->nsid_lock);
287 
288 	list_for_each_entry(ops, &pernet_list, list) {
289 		error = ops_init(ops, net);
290 		if (error < 0)
291 			goto out_undo;
292 	}
293 out:
294 	return error;
295 
296 out_undo:
297 	/* Walk through the list backwards calling the exit functions
298 	 * for the pernet modules whose init functions did not fail.
299 	 */
300 	list_add(&net->exit_list, &net_exit_list);
301 	saved_ops = ops;
302 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
303 		ops_exit_list(ops, &net_exit_list);
304 
305 	ops = saved_ops;
306 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
307 		ops_free_list(ops, &net_exit_list);
308 
309 	rcu_barrier();
310 	goto out;
311 }
312 
313 
314 #ifdef CONFIG_NET_NS
315 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
316 {
317 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
318 }
319 
320 static void dec_net_namespaces(struct ucounts *ucounts)
321 {
322 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
323 }
324 
325 static struct kmem_cache *net_cachep;
326 static struct workqueue_struct *netns_wq;
327 
328 static struct net *net_alloc(void)
329 {
330 	struct net *net = NULL;
331 	struct net_generic *ng;
332 
333 	ng = net_alloc_generic();
334 	if (!ng)
335 		goto out;
336 
337 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
338 	if (!net)
339 		goto out_free;
340 
341 	rcu_assign_pointer(net->gen, ng);
342 out:
343 	return net;
344 
345 out_free:
346 	kfree(ng);
347 	goto out;
348 }
349 
350 static void net_free(struct net *net)
351 {
352 	kfree(rcu_access_pointer(net->gen));
353 	kmem_cache_free(net_cachep, net);
354 }
355 
356 void net_drop_ns(void *p)
357 {
358 	struct net *ns = p;
359 	if (ns && atomic_dec_and_test(&ns->passive))
360 		net_free(ns);
361 }
362 
363 struct net *copy_net_ns(unsigned long flags,
364 			struct user_namespace *user_ns, struct net *old_net)
365 {
366 	struct ucounts *ucounts;
367 	struct net *net;
368 	int rv;
369 
370 	if (!(flags & CLONE_NEWNET))
371 		return get_net(old_net);
372 
373 	ucounts = inc_net_namespaces(user_ns);
374 	if (!ucounts)
375 		return ERR_PTR(-ENOSPC);
376 
377 	net = net_alloc();
378 	if (!net) {
379 		dec_net_namespaces(ucounts);
380 		return ERR_PTR(-ENOMEM);
381 	}
382 
383 	get_user_ns(user_ns);
384 
385 	mutex_lock(&net_mutex);
386 	net->ucounts = ucounts;
387 	rv = setup_net(net, user_ns);
388 	if (rv == 0) {
389 		rtnl_lock();
390 		list_add_tail_rcu(&net->list, &net_namespace_list);
391 		rtnl_unlock();
392 	}
393 	mutex_unlock(&net_mutex);
394 	if (rv < 0) {
395 		dec_net_namespaces(ucounts);
396 		put_user_ns(user_ns);
397 		net_drop_ns(net);
398 		return ERR_PTR(rv);
399 	}
400 	return net;
401 }
402 
403 static DEFINE_SPINLOCK(cleanup_list_lock);
404 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
405 
406 static void cleanup_net(struct work_struct *work)
407 {
408 	const struct pernet_operations *ops;
409 	struct net *net, *tmp;
410 	struct list_head net_kill_list;
411 	LIST_HEAD(net_exit_list);
412 
413 	/* Atomically snapshot the list of namespaces to cleanup */
414 	spin_lock_irq(&cleanup_list_lock);
415 	list_replace_init(&cleanup_list, &net_kill_list);
416 	spin_unlock_irq(&cleanup_list_lock);
417 
418 	mutex_lock(&net_mutex);
419 
420 	/* Don't let anyone else find us. */
421 	rtnl_lock();
422 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
423 		list_del_rcu(&net->list);
424 		list_add_tail(&net->exit_list, &net_exit_list);
425 		for_each_net(tmp) {
426 			int id;
427 
428 			spin_lock_irq(&tmp->nsid_lock);
429 			id = __peernet2id(tmp, net);
430 			if (id >= 0)
431 				idr_remove(&tmp->netns_ids, id);
432 			spin_unlock_irq(&tmp->nsid_lock);
433 			if (id >= 0)
434 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
435 		}
436 		spin_lock_irq(&net->nsid_lock);
437 		idr_destroy(&net->netns_ids);
438 		spin_unlock_irq(&net->nsid_lock);
439 
440 	}
441 	rtnl_unlock();
442 
443 	/*
444 	 * Another CPU might be rcu-iterating the list, wait for it.
445 	 * This needs to be before calling the exit() notifiers, so
446 	 * the rcu_barrier() below isn't sufficient alone.
447 	 */
448 	synchronize_rcu();
449 
450 	/* Run all of the network namespace exit methods */
451 	list_for_each_entry_reverse(ops, &pernet_list, list)
452 		ops_exit_list(ops, &net_exit_list);
453 
454 	/* Free the net generic variables */
455 	list_for_each_entry_reverse(ops, &pernet_list, list)
456 		ops_free_list(ops, &net_exit_list);
457 
458 	mutex_unlock(&net_mutex);
459 
460 	/* Ensure there are no outstanding rcu callbacks using this
461 	 * network namespace.
462 	 */
463 	rcu_barrier();
464 
465 	/* Finally it is safe to free my network namespace structure */
466 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
467 		list_del_init(&net->exit_list);
468 		dec_net_namespaces(net->ucounts);
469 		put_user_ns(net->user_ns);
470 		net_drop_ns(net);
471 	}
472 }
473 static DECLARE_WORK(net_cleanup_work, cleanup_net);
474 
475 void __put_net(struct net *net)
476 {
477 	/* Cleanup the network namespace in process context */
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&cleanup_list_lock, flags);
481 	list_add(&net->cleanup_list, &cleanup_list);
482 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
483 
484 	queue_work(netns_wq, &net_cleanup_work);
485 }
486 EXPORT_SYMBOL_GPL(__put_net);
487 
488 struct net *get_net_ns_by_fd(int fd)
489 {
490 	struct file *file;
491 	struct ns_common *ns;
492 	struct net *net;
493 
494 	file = proc_ns_fget(fd);
495 	if (IS_ERR(file))
496 		return ERR_CAST(file);
497 
498 	ns = get_proc_ns(file_inode(file));
499 	if (ns->ops == &netns_operations)
500 		net = get_net(container_of(ns, struct net, ns));
501 	else
502 		net = ERR_PTR(-EINVAL);
503 
504 	fput(file);
505 	return net;
506 }
507 
508 #else
509 struct net *get_net_ns_by_fd(int fd)
510 {
511 	return ERR_PTR(-EINVAL);
512 }
513 #endif
514 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
515 
516 struct net *get_net_ns_by_pid(pid_t pid)
517 {
518 	struct task_struct *tsk;
519 	struct net *net;
520 
521 	/* Lookup the network namespace */
522 	net = ERR_PTR(-ESRCH);
523 	rcu_read_lock();
524 	tsk = find_task_by_vpid(pid);
525 	if (tsk) {
526 		struct nsproxy *nsproxy;
527 		task_lock(tsk);
528 		nsproxy = tsk->nsproxy;
529 		if (nsproxy)
530 			net = get_net(nsproxy->net_ns);
531 		task_unlock(tsk);
532 	}
533 	rcu_read_unlock();
534 	return net;
535 }
536 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
537 
538 static __net_init int net_ns_net_init(struct net *net)
539 {
540 #ifdef CONFIG_NET_NS
541 	net->ns.ops = &netns_operations;
542 #endif
543 	return ns_alloc_inum(&net->ns);
544 }
545 
546 static __net_exit void net_ns_net_exit(struct net *net)
547 {
548 	ns_free_inum(&net->ns);
549 }
550 
551 static struct pernet_operations __net_initdata net_ns_ops = {
552 	.init = net_ns_net_init,
553 	.exit = net_ns_net_exit,
554 };
555 
556 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
557 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
558 	[NETNSA_NSID]		= { .type = NLA_S32 },
559 	[NETNSA_PID]		= { .type = NLA_U32 },
560 	[NETNSA_FD]		= { .type = NLA_U32 },
561 };
562 
563 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
564 {
565 	struct net *net = sock_net(skb->sk);
566 	struct nlattr *tb[NETNSA_MAX + 1];
567 	unsigned long flags;
568 	struct net *peer;
569 	int nsid, err;
570 
571 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
572 			  rtnl_net_policy);
573 	if (err < 0)
574 		return err;
575 	if (!tb[NETNSA_NSID])
576 		return -EINVAL;
577 	nsid = nla_get_s32(tb[NETNSA_NSID]);
578 
579 	if (tb[NETNSA_PID])
580 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
581 	else if (tb[NETNSA_FD])
582 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
583 	else
584 		return -EINVAL;
585 	if (IS_ERR(peer))
586 		return PTR_ERR(peer);
587 
588 	spin_lock_irqsave(&net->nsid_lock, flags);
589 	if (__peernet2id(net, peer) >= 0) {
590 		spin_unlock_irqrestore(&net->nsid_lock, flags);
591 		err = -EEXIST;
592 		goto out;
593 	}
594 
595 	err = alloc_netid(net, peer, nsid);
596 	spin_unlock_irqrestore(&net->nsid_lock, flags);
597 	if (err >= 0) {
598 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
599 		err = 0;
600 	}
601 out:
602 	put_net(peer);
603 	return err;
604 }
605 
606 static int rtnl_net_get_size(void)
607 {
608 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
609 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
610 	       ;
611 }
612 
613 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
614 			 int cmd, struct net *net, int nsid)
615 {
616 	struct nlmsghdr *nlh;
617 	struct rtgenmsg *rth;
618 
619 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
620 	if (!nlh)
621 		return -EMSGSIZE;
622 
623 	rth = nlmsg_data(nlh);
624 	rth->rtgen_family = AF_UNSPEC;
625 
626 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
627 		goto nla_put_failure;
628 
629 	nlmsg_end(skb, nlh);
630 	return 0;
631 
632 nla_put_failure:
633 	nlmsg_cancel(skb, nlh);
634 	return -EMSGSIZE;
635 }
636 
637 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
638 {
639 	struct net *net = sock_net(skb->sk);
640 	struct nlattr *tb[NETNSA_MAX + 1];
641 	struct sk_buff *msg;
642 	struct net *peer;
643 	int err, id;
644 
645 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
646 			  rtnl_net_policy);
647 	if (err < 0)
648 		return err;
649 	if (tb[NETNSA_PID])
650 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
651 	else if (tb[NETNSA_FD])
652 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
653 	else
654 		return -EINVAL;
655 
656 	if (IS_ERR(peer))
657 		return PTR_ERR(peer);
658 
659 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
660 	if (!msg) {
661 		err = -ENOMEM;
662 		goto out;
663 	}
664 
665 	id = peernet2id(net, peer);
666 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
667 			    RTM_NEWNSID, net, id);
668 	if (err < 0)
669 		goto err_out;
670 
671 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
672 	goto out;
673 
674 err_out:
675 	nlmsg_free(msg);
676 out:
677 	put_net(peer);
678 	return err;
679 }
680 
681 struct rtnl_net_dump_cb {
682 	struct net *net;
683 	struct sk_buff *skb;
684 	struct netlink_callback *cb;
685 	int idx;
686 	int s_idx;
687 };
688 
689 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
690 {
691 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
692 	int ret;
693 
694 	if (net_cb->idx < net_cb->s_idx)
695 		goto cont;
696 
697 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
698 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
699 			    RTM_NEWNSID, net_cb->net, id);
700 	if (ret < 0)
701 		return ret;
702 
703 cont:
704 	net_cb->idx++;
705 	return 0;
706 }
707 
708 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
709 {
710 	struct net *net = sock_net(skb->sk);
711 	struct rtnl_net_dump_cb net_cb = {
712 		.net = net,
713 		.skb = skb,
714 		.cb = cb,
715 		.idx = 0,
716 		.s_idx = cb->args[0],
717 	};
718 	unsigned long flags;
719 
720 	spin_lock_irqsave(&net->nsid_lock, flags);
721 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
722 	spin_unlock_irqrestore(&net->nsid_lock, flags);
723 
724 	cb->args[0] = net_cb.idx;
725 	return skb->len;
726 }
727 
728 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
729 {
730 	struct sk_buff *msg;
731 	int err = -ENOMEM;
732 
733 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
734 	if (!msg)
735 		goto out;
736 
737 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
738 	if (err < 0)
739 		goto err_out;
740 
741 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
742 	return;
743 
744 err_out:
745 	nlmsg_free(msg);
746 out:
747 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
748 }
749 
750 static int __init net_ns_init(void)
751 {
752 	struct net_generic *ng;
753 
754 #ifdef CONFIG_NET_NS
755 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
756 					SMP_CACHE_BYTES,
757 					SLAB_PANIC, NULL);
758 
759 	/* Create workqueue for cleanup */
760 	netns_wq = create_singlethread_workqueue("netns");
761 	if (!netns_wq)
762 		panic("Could not create netns workq");
763 #endif
764 
765 	ng = net_alloc_generic();
766 	if (!ng)
767 		panic("Could not allocate generic netns");
768 
769 	rcu_assign_pointer(init_net.gen, ng);
770 
771 	mutex_lock(&net_mutex);
772 	if (setup_net(&init_net, &init_user_ns))
773 		panic("Could not setup the initial network namespace");
774 
775 	init_net_initialized = true;
776 
777 	rtnl_lock();
778 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
779 	rtnl_unlock();
780 
781 	mutex_unlock(&net_mutex);
782 
783 	register_pernet_subsys(&net_ns_ops);
784 
785 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
786 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
787 		      NULL);
788 
789 	return 0;
790 }
791 
792 pure_initcall(net_ns_init);
793 
794 #ifdef CONFIG_NET_NS
795 static int __register_pernet_operations(struct list_head *list,
796 					struct pernet_operations *ops)
797 {
798 	struct net *net;
799 	int error;
800 	LIST_HEAD(net_exit_list);
801 
802 	list_add_tail(&ops->list, list);
803 	if (ops->init || (ops->id && ops->size)) {
804 		for_each_net(net) {
805 			error = ops_init(ops, net);
806 			if (error)
807 				goto out_undo;
808 			list_add_tail(&net->exit_list, &net_exit_list);
809 		}
810 	}
811 	return 0;
812 
813 out_undo:
814 	/* If I have an error cleanup all namespaces I initialized */
815 	list_del(&ops->list);
816 	ops_exit_list(ops, &net_exit_list);
817 	ops_free_list(ops, &net_exit_list);
818 	return error;
819 }
820 
821 static void __unregister_pernet_operations(struct pernet_operations *ops)
822 {
823 	struct net *net;
824 	LIST_HEAD(net_exit_list);
825 
826 	list_del(&ops->list);
827 	for_each_net(net)
828 		list_add_tail(&net->exit_list, &net_exit_list);
829 	ops_exit_list(ops, &net_exit_list);
830 	ops_free_list(ops, &net_exit_list);
831 }
832 
833 #else
834 
835 static int __register_pernet_operations(struct list_head *list,
836 					struct pernet_operations *ops)
837 {
838 	if (!init_net_initialized) {
839 		list_add_tail(&ops->list, list);
840 		return 0;
841 	}
842 
843 	return ops_init(ops, &init_net);
844 }
845 
846 static void __unregister_pernet_operations(struct pernet_operations *ops)
847 {
848 	if (!init_net_initialized) {
849 		list_del(&ops->list);
850 	} else {
851 		LIST_HEAD(net_exit_list);
852 		list_add(&init_net.exit_list, &net_exit_list);
853 		ops_exit_list(ops, &net_exit_list);
854 		ops_free_list(ops, &net_exit_list);
855 	}
856 }
857 
858 #endif /* CONFIG_NET_NS */
859 
860 static DEFINE_IDA(net_generic_ids);
861 
862 static int register_pernet_operations(struct list_head *list,
863 				      struct pernet_operations *ops)
864 {
865 	int error;
866 
867 	if (ops->id) {
868 again:
869 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
870 		if (error < 0) {
871 			if (error == -EAGAIN) {
872 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
873 				goto again;
874 			}
875 			return error;
876 		}
877 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
878 	}
879 	error = __register_pernet_operations(list, ops);
880 	if (error) {
881 		rcu_barrier();
882 		if (ops->id)
883 			ida_remove(&net_generic_ids, *ops->id);
884 	}
885 
886 	return error;
887 }
888 
889 static void unregister_pernet_operations(struct pernet_operations *ops)
890 {
891 
892 	__unregister_pernet_operations(ops);
893 	rcu_barrier();
894 	if (ops->id)
895 		ida_remove(&net_generic_ids, *ops->id);
896 }
897 
898 /**
899  *      register_pernet_subsys - register a network namespace subsystem
900  *	@ops:  pernet operations structure for the subsystem
901  *
902  *	Register a subsystem which has init and exit functions
903  *	that are called when network namespaces are created and
904  *	destroyed respectively.
905  *
906  *	When registered all network namespace init functions are
907  *	called for every existing network namespace.  Allowing kernel
908  *	modules to have a race free view of the set of network namespaces.
909  *
910  *	When a new network namespace is created all of the init
911  *	methods are called in the order in which they were registered.
912  *
913  *	When a network namespace is destroyed all of the exit methods
914  *	are called in the reverse of the order with which they were
915  *	registered.
916  */
917 int register_pernet_subsys(struct pernet_operations *ops)
918 {
919 	int error;
920 	mutex_lock(&net_mutex);
921 	error =  register_pernet_operations(first_device, ops);
922 	mutex_unlock(&net_mutex);
923 	return error;
924 }
925 EXPORT_SYMBOL_GPL(register_pernet_subsys);
926 
927 /**
928  *      unregister_pernet_subsys - unregister a network namespace subsystem
929  *	@ops: pernet operations structure to manipulate
930  *
931  *	Remove the pernet operations structure from the list to be
932  *	used when network namespaces are created or destroyed.  In
933  *	addition run the exit method for all existing network
934  *	namespaces.
935  */
936 void unregister_pernet_subsys(struct pernet_operations *ops)
937 {
938 	mutex_lock(&net_mutex);
939 	unregister_pernet_operations(ops);
940 	mutex_unlock(&net_mutex);
941 }
942 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
943 
944 /**
945  *      register_pernet_device - register a network namespace device
946  *	@ops:  pernet operations structure for the subsystem
947  *
948  *	Register a device which has init and exit functions
949  *	that are called when network namespaces are created and
950  *	destroyed respectively.
951  *
952  *	When registered all network namespace init functions are
953  *	called for every existing network namespace.  Allowing kernel
954  *	modules to have a race free view of the set of network namespaces.
955  *
956  *	When a new network namespace is created all of the init
957  *	methods are called in the order in which they were registered.
958  *
959  *	When a network namespace is destroyed all of the exit methods
960  *	are called in the reverse of the order with which they were
961  *	registered.
962  */
963 int register_pernet_device(struct pernet_operations *ops)
964 {
965 	int error;
966 	mutex_lock(&net_mutex);
967 	error = register_pernet_operations(&pernet_list, ops);
968 	if (!error && (first_device == &pernet_list))
969 		first_device = &ops->list;
970 	mutex_unlock(&net_mutex);
971 	return error;
972 }
973 EXPORT_SYMBOL_GPL(register_pernet_device);
974 
975 /**
976  *      unregister_pernet_device - unregister a network namespace netdevice
977  *	@ops: pernet operations structure to manipulate
978  *
979  *	Remove the pernet operations structure from the list to be
980  *	used when network namespaces are created or destroyed.  In
981  *	addition run the exit method for all existing network
982  *	namespaces.
983  */
984 void unregister_pernet_device(struct pernet_operations *ops)
985 {
986 	mutex_lock(&net_mutex);
987 	if (&ops->list == first_device)
988 		first_device = first_device->next;
989 	unregister_pernet_operations(ops);
990 	mutex_unlock(&net_mutex);
991 }
992 EXPORT_SYMBOL_GPL(unregister_pernet_device);
993 
994 #ifdef CONFIG_NET_NS
995 static struct ns_common *netns_get(struct task_struct *task)
996 {
997 	struct net *net = NULL;
998 	struct nsproxy *nsproxy;
999 
1000 	task_lock(task);
1001 	nsproxy = task->nsproxy;
1002 	if (nsproxy)
1003 		net = get_net(nsproxy->net_ns);
1004 	task_unlock(task);
1005 
1006 	return net ? &net->ns : NULL;
1007 }
1008 
1009 static inline struct net *to_net_ns(struct ns_common *ns)
1010 {
1011 	return container_of(ns, struct net, ns);
1012 }
1013 
1014 static void netns_put(struct ns_common *ns)
1015 {
1016 	put_net(to_net_ns(ns));
1017 }
1018 
1019 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1020 {
1021 	struct net *net = to_net_ns(ns);
1022 
1023 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1024 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1025 		return -EPERM;
1026 
1027 	put_net(nsproxy->net_ns);
1028 	nsproxy->net_ns = get_net(net);
1029 	return 0;
1030 }
1031 
1032 static struct user_namespace *netns_owner(struct ns_common *ns)
1033 {
1034 	return to_net_ns(ns)->user_ns;
1035 }
1036 
1037 const struct proc_ns_operations netns_operations = {
1038 	.name		= "net",
1039 	.type		= CLONE_NEWNET,
1040 	.get		= netns_get,
1041 	.put		= netns_put,
1042 	.install	= netns_install,
1043 	.owner		= netns_owner,
1044 };
1045 #endif
1046