xref: /openbmc/linux/net/core/net_namespace.c (revision 273c28bc)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 struct net init_net = {
38 	.count		= REFCOUNT_INIT(1),
39 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42 
43 static bool init_net_initialized;
44 
45 #define MIN_PERNET_OPS_ID	\
46 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47 
48 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
49 
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51 
52 static struct net_generic *net_alloc_generic(void)
53 {
54 	struct net_generic *ng;
55 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56 
57 	ng = kzalloc(generic_size, GFP_KERNEL);
58 	if (ng)
59 		ng->s.len = max_gen_ptrs;
60 
61 	return ng;
62 }
63 
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 	struct net_generic *ng, *old_ng;
67 
68 	BUG_ON(!mutex_is_locked(&net_mutex));
69 	BUG_ON(id < MIN_PERNET_OPS_ID);
70 
71 	old_ng = rcu_dereference_protected(net->gen,
72 					   lockdep_is_held(&net_mutex));
73 	if (old_ng->s.len > id) {
74 		old_ng->ptr[id] = data;
75 		return 0;
76 	}
77 
78 	ng = net_alloc_generic();
79 	if (ng == NULL)
80 		return -ENOMEM;
81 
82 	/*
83 	 * Some synchronisation notes:
84 	 *
85 	 * The net_generic explores the net->gen array inside rcu
86 	 * read section. Besides once set the net->gen->ptr[x]
87 	 * pointer never changes (see rules in netns/generic.h).
88 	 *
89 	 * That said, we simply duplicate this array and schedule
90 	 * the old copy for kfree after a grace period.
91 	 */
92 
93 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 	ng->ptr[id] = data;
96 
97 	rcu_assign_pointer(net->gen, ng);
98 	kfree_rcu(old_ng, s.rcu);
99 	return 0;
100 }
101 
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 	int err = -ENOMEM;
105 	void *data = NULL;
106 
107 	if (ops->id && ops->size) {
108 		data = kzalloc(ops->size, GFP_KERNEL);
109 		if (!data)
110 			goto out;
111 
112 		err = net_assign_generic(net, *ops->id, data);
113 		if (err)
114 			goto cleanup;
115 	}
116 	err = 0;
117 	if (ops->init)
118 		err = ops->init(net);
119 	if (!err)
120 		return 0;
121 
122 cleanup:
123 	kfree(data);
124 
125 out:
126 	return err;
127 }
128 
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 	if (ops->id && ops->size) {
132 		kfree(net_generic(net, *ops->id));
133 	}
134 }
135 
136 static void ops_exit_list(const struct pernet_operations *ops,
137 			  struct list_head *net_exit_list)
138 {
139 	struct net *net;
140 	if (ops->exit) {
141 		list_for_each_entry(net, net_exit_list, exit_list)
142 			ops->exit(net);
143 	}
144 	if (ops->exit_batch)
145 		ops->exit_batch(net_exit_list);
146 }
147 
148 static void ops_free_list(const struct pernet_operations *ops,
149 			  struct list_head *net_exit_list)
150 {
151 	struct net *net;
152 	if (ops->size && ops->id) {
153 		list_for_each_entry(net, net_exit_list, exit_list)
154 			ops_free(ops, net);
155 	}
156 }
157 
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 	int min = 0, max = 0;
162 
163 	if (reqid >= 0) {
164 		min = reqid;
165 		max = reqid + 1;
166 	}
167 
168 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170 
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172  * function returns the id so that idr_for_each() stops. Because we cannot
173  * returns the id 0 (idr_for_each() will not stop), we return the magic value
174  * NET_ID_ZERO (-1) for it.
175  */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 	if (net_eq(net, peer))
180 		return id ? : NET_ID_ZERO;
181 	return 0;
182 }
183 
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185  * is set to true, thus the caller knows that the new id must be notified via
186  * rtnl.
187  */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 	bool alloc_it = *alloc;
192 
193 	*alloc = false;
194 
195 	/* Magic value for id 0. */
196 	if (id == NET_ID_ZERO)
197 		return 0;
198 	if (id > 0)
199 		return id;
200 
201 	if (alloc_it) {
202 		id = alloc_netid(net, peer, -1);
203 		*alloc = true;
204 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 	}
206 
207 	return NETNSA_NSID_NOT_ASSIGNED;
208 }
209 
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 	bool no = false;
214 
215 	return __peernet2id_alloc(net, peer, &no);
216 }
217 
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220  * be allocated and returned.
221  */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 	bool alloc;
225 	int id;
226 
227 	if (refcount_read(&net->count) == 0)
228 		return NETNSA_NSID_NOT_ASSIGNED;
229 	spin_lock_bh(&net->nsid_lock);
230 	alloc = refcount_read(&peer->count) == 0 ? false : true;
231 	id = __peernet2id_alloc(net, peer, &alloc);
232 	spin_unlock_bh(&net->nsid_lock);
233 	if (alloc && id >= 0)
234 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
235 	return id;
236 }
237 EXPORT_SYMBOL_GPL(peernet2id_alloc);
238 
239 /* This function returns, if assigned, the id of a peer netns. */
240 int peernet2id(struct net *net, struct net *peer)
241 {
242 	int id;
243 
244 	spin_lock_bh(&net->nsid_lock);
245 	id = __peernet2id(net, peer);
246 	spin_unlock_bh(&net->nsid_lock);
247 	return id;
248 }
249 EXPORT_SYMBOL(peernet2id);
250 
251 /* This function returns true is the peer netns has an id assigned into the
252  * current netns.
253  */
254 bool peernet_has_id(struct net *net, struct net *peer)
255 {
256 	return peernet2id(net, peer) >= 0;
257 }
258 
259 struct net *get_net_ns_by_id(struct net *net, int id)
260 {
261 	struct net *peer;
262 
263 	if (id < 0)
264 		return NULL;
265 
266 	rcu_read_lock();
267 	spin_lock_bh(&net->nsid_lock);
268 	peer = idr_find(&net->netns_ids, id);
269 	if (peer)
270 		peer = maybe_get_net(peer);
271 	spin_unlock_bh(&net->nsid_lock);
272 	rcu_read_unlock();
273 
274 	return peer;
275 }
276 
277 /*
278  * setup_net runs the initializers for the network namespace object.
279  */
280 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
281 {
282 	/* Must be called with net_mutex held */
283 	const struct pernet_operations *ops, *saved_ops;
284 	int error = 0;
285 	LIST_HEAD(net_exit_list);
286 
287 	refcount_set(&net->count, 1);
288 	refcount_set(&net->passive, 1);
289 	net->dev_base_seq = 1;
290 	net->user_ns = user_ns;
291 	idr_init(&net->netns_ids);
292 	spin_lock_init(&net->nsid_lock);
293 
294 	list_for_each_entry(ops, &pernet_list, list) {
295 		error = ops_init(ops, net);
296 		if (error < 0)
297 			goto out_undo;
298 	}
299 out:
300 	return error;
301 
302 out_undo:
303 	/* Walk through the list backwards calling the exit functions
304 	 * for the pernet modules whose init functions did not fail.
305 	 */
306 	list_add(&net->exit_list, &net_exit_list);
307 	saved_ops = ops;
308 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
309 		ops_exit_list(ops, &net_exit_list);
310 
311 	ops = saved_ops;
312 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
313 		ops_free_list(ops, &net_exit_list);
314 
315 	rcu_barrier();
316 	goto out;
317 }
318 
319 static int __net_init net_defaults_init_net(struct net *net)
320 {
321 	net->core.sysctl_somaxconn = SOMAXCONN;
322 	return 0;
323 }
324 
325 static struct pernet_operations net_defaults_ops = {
326 	.init = net_defaults_init_net,
327 };
328 
329 static __init int net_defaults_init(void)
330 {
331 	if (register_pernet_subsys(&net_defaults_ops))
332 		panic("Cannot initialize net default settings");
333 
334 	return 0;
335 }
336 
337 core_initcall(net_defaults_init);
338 
339 #ifdef CONFIG_NET_NS
340 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
341 {
342 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
343 }
344 
345 static void dec_net_namespaces(struct ucounts *ucounts)
346 {
347 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
348 }
349 
350 static struct kmem_cache *net_cachep;
351 static struct workqueue_struct *netns_wq;
352 
353 static struct net *net_alloc(void)
354 {
355 	struct net *net = NULL;
356 	struct net_generic *ng;
357 
358 	ng = net_alloc_generic();
359 	if (!ng)
360 		goto out;
361 
362 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
363 	if (!net)
364 		goto out_free;
365 
366 	rcu_assign_pointer(net->gen, ng);
367 out:
368 	return net;
369 
370 out_free:
371 	kfree(ng);
372 	goto out;
373 }
374 
375 static void net_free(struct net *net)
376 {
377 	kfree(rcu_access_pointer(net->gen));
378 	kmem_cache_free(net_cachep, net);
379 }
380 
381 void net_drop_ns(void *p)
382 {
383 	struct net *ns = p;
384 	if (ns && refcount_dec_and_test(&ns->passive))
385 		net_free(ns);
386 }
387 
388 struct net *copy_net_ns(unsigned long flags,
389 			struct user_namespace *user_ns, struct net *old_net)
390 {
391 	struct ucounts *ucounts;
392 	struct net *net;
393 	int rv;
394 
395 	if (!(flags & CLONE_NEWNET))
396 		return get_net(old_net);
397 
398 	ucounts = inc_net_namespaces(user_ns);
399 	if (!ucounts)
400 		return ERR_PTR(-ENOSPC);
401 
402 	net = net_alloc();
403 	if (!net) {
404 		dec_net_namespaces(ucounts);
405 		return ERR_PTR(-ENOMEM);
406 	}
407 
408 	get_user_ns(user_ns);
409 
410 	rv = mutex_lock_killable(&net_mutex);
411 	if (rv < 0) {
412 		net_free(net);
413 		dec_net_namespaces(ucounts);
414 		put_user_ns(user_ns);
415 		return ERR_PTR(rv);
416 	}
417 
418 	net->ucounts = ucounts;
419 	rv = setup_net(net, user_ns);
420 	if (rv == 0) {
421 		rtnl_lock();
422 		list_add_tail_rcu(&net->list, &net_namespace_list);
423 		rtnl_unlock();
424 	}
425 	mutex_unlock(&net_mutex);
426 	if (rv < 0) {
427 		dec_net_namespaces(ucounts);
428 		put_user_ns(user_ns);
429 		net_drop_ns(net);
430 		return ERR_PTR(rv);
431 	}
432 	return net;
433 }
434 
435 static DEFINE_SPINLOCK(cleanup_list_lock);
436 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
437 
438 static void cleanup_net(struct work_struct *work)
439 {
440 	const struct pernet_operations *ops;
441 	struct net *net, *tmp;
442 	struct list_head net_kill_list;
443 	LIST_HEAD(net_exit_list);
444 
445 	/* Atomically snapshot the list of namespaces to cleanup */
446 	spin_lock_irq(&cleanup_list_lock);
447 	list_replace_init(&cleanup_list, &net_kill_list);
448 	spin_unlock_irq(&cleanup_list_lock);
449 
450 	mutex_lock(&net_mutex);
451 
452 	/* Don't let anyone else find us. */
453 	rtnl_lock();
454 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
455 		list_del_rcu(&net->list);
456 		list_add_tail(&net->exit_list, &net_exit_list);
457 		for_each_net(tmp) {
458 			int id;
459 
460 			spin_lock_bh(&tmp->nsid_lock);
461 			id = __peernet2id(tmp, net);
462 			if (id >= 0)
463 				idr_remove(&tmp->netns_ids, id);
464 			spin_unlock_bh(&tmp->nsid_lock);
465 			if (id >= 0)
466 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
467 		}
468 		spin_lock_bh(&net->nsid_lock);
469 		idr_destroy(&net->netns_ids);
470 		spin_unlock_bh(&net->nsid_lock);
471 
472 	}
473 	rtnl_unlock();
474 
475 	/*
476 	 * Another CPU might be rcu-iterating the list, wait for it.
477 	 * This needs to be before calling the exit() notifiers, so
478 	 * the rcu_barrier() below isn't sufficient alone.
479 	 */
480 	synchronize_rcu();
481 
482 	/* Run all of the network namespace exit methods */
483 	list_for_each_entry_reverse(ops, &pernet_list, list)
484 		ops_exit_list(ops, &net_exit_list);
485 
486 	/* Free the net generic variables */
487 	list_for_each_entry_reverse(ops, &pernet_list, list)
488 		ops_free_list(ops, &net_exit_list);
489 
490 	mutex_unlock(&net_mutex);
491 
492 	/* Ensure there are no outstanding rcu callbacks using this
493 	 * network namespace.
494 	 */
495 	rcu_barrier();
496 
497 	/* Finally it is safe to free my network namespace structure */
498 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
499 		list_del_init(&net->exit_list);
500 		dec_net_namespaces(net->ucounts);
501 		put_user_ns(net->user_ns);
502 		net_drop_ns(net);
503 	}
504 }
505 
506 /**
507  * net_ns_barrier - wait until concurrent net_cleanup_work is done
508  *
509  * cleanup_net runs from work queue and will first remove namespaces
510  * from the global list, then run net exit functions.
511  *
512  * Call this in module exit path to make sure that all netns
513  * ->exit ops have been invoked before the function is removed.
514  */
515 void net_ns_barrier(void)
516 {
517 	mutex_lock(&net_mutex);
518 	mutex_unlock(&net_mutex);
519 }
520 EXPORT_SYMBOL(net_ns_barrier);
521 
522 static DECLARE_WORK(net_cleanup_work, cleanup_net);
523 
524 void __put_net(struct net *net)
525 {
526 	/* Cleanup the network namespace in process context */
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&cleanup_list_lock, flags);
530 	list_add(&net->cleanup_list, &cleanup_list);
531 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
532 
533 	queue_work(netns_wq, &net_cleanup_work);
534 }
535 EXPORT_SYMBOL_GPL(__put_net);
536 
537 struct net *get_net_ns_by_fd(int fd)
538 {
539 	struct file *file;
540 	struct ns_common *ns;
541 	struct net *net;
542 
543 	file = proc_ns_fget(fd);
544 	if (IS_ERR(file))
545 		return ERR_CAST(file);
546 
547 	ns = get_proc_ns(file_inode(file));
548 	if (ns->ops == &netns_operations)
549 		net = get_net(container_of(ns, struct net, ns));
550 	else
551 		net = ERR_PTR(-EINVAL);
552 
553 	fput(file);
554 	return net;
555 }
556 
557 #else
558 struct net *get_net_ns_by_fd(int fd)
559 {
560 	return ERR_PTR(-EINVAL);
561 }
562 #endif
563 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
564 
565 struct net *get_net_ns_by_pid(pid_t pid)
566 {
567 	struct task_struct *tsk;
568 	struct net *net;
569 
570 	/* Lookup the network namespace */
571 	net = ERR_PTR(-ESRCH);
572 	rcu_read_lock();
573 	tsk = find_task_by_vpid(pid);
574 	if (tsk) {
575 		struct nsproxy *nsproxy;
576 		task_lock(tsk);
577 		nsproxy = tsk->nsproxy;
578 		if (nsproxy)
579 			net = get_net(nsproxy->net_ns);
580 		task_unlock(tsk);
581 	}
582 	rcu_read_unlock();
583 	return net;
584 }
585 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
586 
587 static __net_init int net_ns_net_init(struct net *net)
588 {
589 #ifdef CONFIG_NET_NS
590 	net->ns.ops = &netns_operations;
591 #endif
592 	return ns_alloc_inum(&net->ns);
593 }
594 
595 static __net_exit void net_ns_net_exit(struct net *net)
596 {
597 	ns_free_inum(&net->ns);
598 }
599 
600 static struct pernet_operations __net_initdata net_ns_ops = {
601 	.init = net_ns_net_init,
602 	.exit = net_ns_net_exit,
603 };
604 
605 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
606 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
607 	[NETNSA_NSID]		= { .type = NLA_S32 },
608 	[NETNSA_PID]		= { .type = NLA_U32 },
609 	[NETNSA_FD]		= { .type = NLA_U32 },
610 };
611 
612 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
613 			  struct netlink_ext_ack *extack)
614 {
615 	struct net *net = sock_net(skb->sk);
616 	struct nlattr *tb[NETNSA_MAX + 1];
617 	struct nlattr *nla;
618 	struct net *peer;
619 	int nsid, err;
620 
621 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
622 			  rtnl_net_policy, extack);
623 	if (err < 0)
624 		return err;
625 	if (!tb[NETNSA_NSID]) {
626 		NL_SET_ERR_MSG(extack, "nsid is missing");
627 		return -EINVAL;
628 	}
629 	nsid = nla_get_s32(tb[NETNSA_NSID]);
630 
631 	if (tb[NETNSA_PID]) {
632 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
633 		nla = tb[NETNSA_PID];
634 	} else if (tb[NETNSA_FD]) {
635 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
636 		nla = tb[NETNSA_FD];
637 	} else {
638 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
639 		return -EINVAL;
640 	}
641 	if (IS_ERR(peer)) {
642 		NL_SET_BAD_ATTR(extack, nla);
643 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
644 		return PTR_ERR(peer);
645 	}
646 
647 	spin_lock_bh(&net->nsid_lock);
648 	if (__peernet2id(net, peer) >= 0) {
649 		spin_unlock_bh(&net->nsid_lock);
650 		err = -EEXIST;
651 		NL_SET_BAD_ATTR(extack, nla);
652 		NL_SET_ERR_MSG(extack,
653 			       "Peer netns already has a nsid assigned");
654 		goto out;
655 	}
656 
657 	err = alloc_netid(net, peer, nsid);
658 	spin_unlock_bh(&net->nsid_lock);
659 	if (err >= 0) {
660 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
661 		err = 0;
662 	} else if (err == -ENOSPC && nsid >= 0) {
663 		err = -EEXIST;
664 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
665 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
666 	}
667 out:
668 	put_net(peer);
669 	return err;
670 }
671 
672 static int rtnl_net_get_size(void)
673 {
674 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
675 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
676 	       ;
677 }
678 
679 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
680 			 int cmd, struct net *net, int nsid)
681 {
682 	struct nlmsghdr *nlh;
683 	struct rtgenmsg *rth;
684 
685 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
686 	if (!nlh)
687 		return -EMSGSIZE;
688 
689 	rth = nlmsg_data(nlh);
690 	rth->rtgen_family = AF_UNSPEC;
691 
692 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
693 		goto nla_put_failure;
694 
695 	nlmsg_end(skb, nlh);
696 	return 0;
697 
698 nla_put_failure:
699 	nlmsg_cancel(skb, nlh);
700 	return -EMSGSIZE;
701 }
702 
703 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
704 			  struct netlink_ext_ack *extack)
705 {
706 	struct net *net = sock_net(skb->sk);
707 	struct nlattr *tb[NETNSA_MAX + 1];
708 	struct nlattr *nla;
709 	struct sk_buff *msg;
710 	struct net *peer;
711 	int err, id;
712 
713 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
714 			  rtnl_net_policy, extack);
715 	if (err < 0)
716 		return err;
717 	if (tb[NETNSA_PID]) {
718 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
719 		nla = tb[NETNSA_PID];
720 	} else if (tb[NETNSA_FD]) {
721 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
722 		nla = tb[NETNSA_FD];
723 	} else {
724 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
725 		return -EINVAL;
726 	}
727 
728 	if (IS_ERR(peer)) {
729 		NL_SET_BAD_ATTR(extack, nla);
730 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
731 		return PTR_ERR(peer);
732 	}
733 
734 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
735 	if (!msg) {
736 		err = -ENOMEM;
737 		goto out;
738 	}
739 
740 	id = peernet2id(net, peer);
741 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
742 			    RTM_NEWNSID, net, id);
743 	if (err < 0)
744 		goto err_out;
745 
746 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
747 	goto out;
748 
749 err_out:
750 	nlmsg_free(msg);
751 out:
752 	put_net(peer);
753 	return err;
754 }
755 
756 struct rtnl_net_dump_cb {
757 	struct net *net;
758 	struct sk_buff *skb;
759 	struct netlink_callback *cb;
760 	int idx;
761 	int s_idx;
762 };
763 
764 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
765 {
766 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
767 	int ret;
768 
769 	if (net_cb->idx < net_cb->s_idx)
770 		goto cont;
771 
772 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
773 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
774 			    RTM_NEWNSID, net_cb->net, id);
775 	if (ret < 0)
776 		return ret;
777 
778 cont:
779 	net_cb->idx++;
780 	return 0;
781 }
782 
783 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
784 {
785 	struct net *net = sock_net(skb->sk);
786 	struct rtnl_net_dump_cb net_cb = {
787 		.net = net,
788 		.skb = skb,
789 		.cb = cb,
790 		.idx = 0,
791 		.s_idx = cb->args[0],
792 	};
793 
794 	spin_lock_bh(&net->nsid_lock);
795 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
796 	spin_unlock_bh(&net->nsid_lock);
797 
798 	cb->args[0] = net_cb.idx;
799 	return skb->len;
800 }
801 
802 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
803 {
804 	struct sk_buff *msg;
805 	int err = -ENOMEM;
806 
807 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
808 	if (!msg)
809 		goto out;
810 
811 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
812 	if (err < 0)
813 		goto err_out;
814 
815 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
816 	return;
817 
818 err_out:
819 	nlmsg_free(msg);
820 out:
821 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
822 }
823 
824 static int __init net_ns_init(void)
825 {
826 	struct net_generic *ng;
827 
828 #ifdef CONFIG_NET_NS
829 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
830 					SMP_CACHE_BYTES,
831 					SLAB_PANIC, NULL);
832 
833 	/* Create workqueue for cleanup */
834 	netns_wq = create_singlethread_workqueue("netns");
835 	if (!netns_wq)
836 		panic("Could not create netns workq");
837 #endif
838 
839 	ng = net_alloc_generic();
840 	if (!ng)
841 		panic("Could not allocate generic netns");
842 
843 	rcu_assign_pointer(init_net.gen, ng);
844 
845 	mutex_lock(&net_mutex);
846 	if (setup_net(&init_net, &init_user_ns))
847 		panic("Could not setup the initial network namespace");
848 
849 	init_net_initialized = true;
850 
851 	rtnl_lock();
852 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
853 	rtnl_unlock();
854 
855 	mutex_unlock(&net_mutex);
856 
857 	register_pernet_subsys(&net_ns_ops);
858 
859 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
860 		      RTNL_FLAG_DOIT_UNLOCKED);
861 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
862 		      RTNL_FLAG_DOIT_UNLOCKED);
863 
864 	return 0;
865 }
866 
867 pure_initcall(net_ns_init);
868 
869 #ifdef CONFIG_NET_NS
870 static int __register_pernet_operations(struct list_head *list,
871 					struct pernet_operations *ops)
872 {
873 	struct net *net;
874 	int error;
875 	LIST_HEAD(net_exit_list);
876 
877 	list_add_tail(&ops->list, list);
878 	if (ops->init || (ops->id && ops->size)) {
879 		for_each_net(net) {
880 			error = ops_init(ops, net);
881 			if (error)
882 				goto out_undo;
883 			list_add_tail(&net->exit_list, &net_exit_list);
884 		}
885 	}
886 	return 0;
887 
888 out_undo:
889 	/* If I have an error cleanup all namespaces I initialized */
890 	list_del(&ops->list);
891 	ops_exit_list(ops, &net_exit_list);
892 	ops_free_list(ops, &net_exit_list);
893 	return error;
894 }
895 
896 static void __unregister_pernet_operations(struct pernet_operations *ops)
897 {
898 	struct net *net;
899 	LIST_HEAD(net_exit_list);
900 
901 	list_del(&ops->list);
902 	for_each_net(net)
903 		list_add_tail(&net->exit_list, &net_exit_list);
904 	ops_exit_list(ops, &net_exit_list);
905 	ops_free_list(ops, &net_exit_list);
906 }
907 
908 #else
909 
910 static int __register_pernet_operations(struct list_head *list,
911 					struct pernet_operations *ops)
912 {
913 	if (!init_net_initialized) {
914 		list_add_tail(&ops->list, list);
915 		return 0;
916 	}
917 
918 	return ops_init(ops, &init_net);
919 }
920 
921 static void __unregister_pernet_operations(struct pernet_operations *ops)
922 {
923 	if (!init_net_initialized) {
924 		list_del(&ops->list);
925 	} else {
926 		LIST_HEAD(net_exit_list);
927 		list_add(&init_net.exit_list, &net_exit_list);
928 		ops_exit_list(ops, &net_exit_list);
929 		ops_free_list(ops, &net_exit_list);
930 	}
931 }
932 
933 #endif /* CONFIG_NET_NS */
934 
935 static DEFINE_IDA(net_generic_ids);
936 
937 static int register_pernet_operations(struct list_head *list,
938 				      struct pernet_operations *ops)
939 {
940 	int error;
941 
942 	if (ops->id) {
943 again:
944 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
945 		if (error < 0) {
946 			if (error == -EAGAIN) {
947 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
948 				goto again;
949 			}
950 			return error;
951 		}
952 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
953 	}
954 	error = __register_pernet_operations(list, ops);
955 	if (error) {
956 		rcu_barrier();
957 		if (ops->id)
958 			ida_remove(&net_generic_ids, *ops->id);
959 	}
960 
961 	return error;
962 }
963 
964 static void unregister_pernet_operations(struct pernet_operations *ops)
965 {
966 
967 	__unregister_pernet_operations(ops);
968 	rcu_barrier();
969 	if (ops->id)
970 		ida_remove(&net_generic_ids, *ops->id);
971 }
972 
973 /**
974  *      register_pernet_subsys - register a network namespace subsystem
975  *	@ops:  pernet operations structure for the subsystem
976  *
977  *	Register a subsystem which has init and exit functions
978  *	that are called when network namespaces are created and
979  *	destroyed respectively.
980  *
981  *	When registered all network namespace init functions are
982  *	called for every existing network namespace.  Allowing kernel
983  *	modules to have a race free view of the set of network namespaces.
984  *
985  *	When a new network namespace is created all of the init
986  *	methods are called in the order in which they were registered.
987  *
988  *	When a network namespace is destroyed all of the exit methods
989  *	are called in the reverse of the order with which they were
990  *	registered.
991  */
992 int register_pernet_subsys(struct pernet_operations *ops)
993 {
994 	int error;
995 	mutex_lock(&net_mutex);
996 	error =  register_pernet_operations(first_device, ops);
997 	mutex_unlock(&net_mutex);
998 	return error;
999 }
1000 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1001 
1002 /**
1003  *      unregister_pernet_subsys - unregister a network namespace subsystem
1004  *	@ops: pernet operations structure to manipulate
1005  *
1006  *	Remove the pernet operations structure from the list to be
1007  *	used when network namespaces are created or destroyed.  In
1008  *	addition run the exit method for all existing network
1009  *	namespaces.
1010  */
1011 void unregister_pernet_subsys(struct pernet_operations *ops)
1012 {
1013 	mutex_lock(&net_mutex);
1014 	unregister_pernet_operations(ops);
1015 	mutex_unlock(&net_mutex);
1016 }
1017 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1018 
1019 /**
1020  *      register_pernet_device - register a network namespace device
1021  *	@ops:  pernet operations structure for the subsystem
1022  *
1023  *	Register a device which has init and exit functions
1024  *	that are called when network namespaces are created and
1025  *	destroyed respectively.
1026  *
1027  *	When registered all network namespace init functions are
1028  *	called for every existing network namespace.  Allowing kernel
1029  *	modules to have a race free view of the set of network namespaces.
1030  *
1031  *	When a new network namespace is created all of the init
1032  *	methods are called in the order in which they were registered.
1033  *
1034  *	When a network namespace is destroyed all of the exit methods
1035  *	are called in the reverse of the order with which they were
1036  *	registered.
1037  */
1038 int register_pernet_device(struct pernet_operations *ops)
1039 {
1040 	int error;
1041 	mutex_lock(&net_mutex);
1042 	error = register_pernet_operations(&pernet_list, ops);
1043 	if (!error && (first_device == &pernet_list))
1044 		first_device = &ops->list;
1045 	mutex_unlock(&net_mutex);
1046 	return error;
1047 }
1048 EXPORT_SYMBOL_GPL(register_pernet_device);
1049 
1050 /**
1051  *      unregister_pernet_device - unregister a network namespace netdevice
1052  *	@ops: pernet operations structure to manipulate
1053  *
1054  *	Remove the pernet operations structure from the list to be
1055  *	used when network namespaces are created or destroyed.  In
1056  *	addition run the exit method for all existing network
1057  *	namespaces.
1058  */
1059 void unregister_pernet_device(struct pernet_operations *ops)
1060 {
1061 	mutex_lock(&net_mutex);
1062 	if (&ops->list == first_device)
1063 		first_device = first_device->next;
1064 	unregister_pernet_operations(ops);
1065 	mutex_unlock(&net_mutex);
1066 }
1067 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1068 
1069 #ifdef CONFIG_NET_NS
1070 static struct ns_common *netns_get(struct task_struct *task)
1071 {
1072 	struct net *net = NULL;
1073 	struct nsproxy *nsproxy;
1074 
1075 	task_lock(task);
1076 	nsproxy = task->nsproxy;
1077 	if (nsproxy)
1078 		net = get_net(nsproxy->net_ns);
1079 	task_unlock(task);
1080 
1081 	return net ? &net->ns : NULL;
1082 }
1083 
1084 static inline struct net *to_net_ns(struct ns_common *ns)
1085 {
1086 	return container_of(ns, struct net, ns);
1087 }
1088 
1089 static void netns_put(struct ns_common *ns)
1090 {
1091 	put_net(to_net_ns(ns));
1092 }
1093 
1094 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1095 {
1096 	struct net *net = to_net_ns(ns);
1097 
1098 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1099 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1100 		return -EPERM;
1101 
1102 	put_net(nsproxy->net_ns);
1103 	nsproxy->net_ns = get_net(net);
1104 	return 0;
1105 }
1106 
1107 static struct user_namespace *netns_owner(struct ns_common *ns)
1108 {
1109 	return to_net_ns(ns)->user_ns;
1110 }
1111 
1112 const struct proc_ns_operations netns_operations = {
1113 	.name		= "net",
1114 	.type		= CLONE_NEWNET,
1115 	.get		= netns_get,
1116 	.put		= netns_put,
1117 	.install	= netns_install,
1118 	.owner		= netns_owner,
1119 };
1120 #endif
1121