xref: /openbmc/linux/net/core/net_namespace.c (revision 1c2dd16a)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 struct net init_net = {
38 	.count		= ATOMIC_INIT(1),
39 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42 
43 static bool init_net_initialized;
44 
45 #define MIN_PERNET_OPS_ID	\
46 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47 
48 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
49 
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51 
52 static struct net_generic *net_alloc_generic(void)
53 {
54 	struct net_generic *ng;
55 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56 
57 	ng = kzalloc(generic_size, GFP_KERNEL);
58 	if (ng)
59 		ng->s.len = max_gen_ptrs;
60 
61 	return ng;
62 }
63 
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 	struct net_generic *ng, *old_ng;
67 
68 	BUG_ON(!mutex_is_locked(&net_mutex));
69 	BUG_ON(id < MIN_PERNET_OPS_ID);
70 
71 	old_ng = rcu_dereference_protected(net->gen,
72 					   lockdep_is_held(&net_mutex));
73 	if (old_ng->s.len > id) {
74 		old_ng->ptr[id] = data;
75 		return 0;
76 	}
77 
78 	ng = net_alloc_generic();
79 	if (ng == NULL)
80 		return -ENOMEM;
81 
82 	/*
83 	 * Some synchronisation notes:
84 	 *
85 	 * The net_generic explores the net->gen array inside rcu
86 	 * read section. Besides once set the net->gen->ptr[x]
87 	 * pointer never changes (see rules in netns/generic.h).
88 	 *
89 	 * That said, we simply duplicate this array and schedule
90 	 * the old copy for kfree after a grace period.
91 	 */
92 
93 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 	ng->ptr[id] = data;
96 
97 	rcu_assign_pointer(net->gen, ng);
98 	kfree_rcu(old_ng, s.rcu);
99 	return 0;
100 }
101 
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 	int err = -ENOMEM;
105 	void *data = NULL;
106 
107 	if (ops->id && ops->size) {
108 		data = kzalloc(ops->size, GFP_KERNEL);
109 		if (!data)
110 			goto out;
111 
112 		err = net_assign_generic(net, *ops->id, data);
113 		if (err)
114 			goto cleanup;
115 	}
116 	err = 0;
117 	if (ops->init)
118 		err = ops->init(net);
119 	if (!err)
120 		return 0;
121 
122 cleanup:
123 	kfree(data);
124 
125 out:
126 	return err;
127 }
128 
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 	if (ops->id && ops->size) {
132 		kfree(net_generic(net, *ops->id));
133 	}
134 }
135 
136 static void ops_exit_list(const struct pernet_operations *ops,
137 			  struct list_head *net_exit_list)
138 {
139 	struct net *net;
140 	if (ops->exit) {
141 		list_for_each_entry(net, net_exit_list, exit_list)
142 			ops->exit(net);
143 	}
144 	if (ops->exit_batch)
145 		ops->exit_batch(net_exit_list);
146 }
147 
148 static void ops_free_list(const struct pernet_operations *ops,
149 			  struct list_head *net_exit_list)
150 {
151 	struct net *net;
152 	if (ops->size && ops->id) {
153 		list_for_each_entry(net, net_exit_list, exit_list)
154 			ops_free(ops, net);
155 	}
156 }
157 
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 	int min = 0, max = 0;
162 
163 	if (reqid >= 0) {
164 		min = reqid;
165 		max = reqid + 1;
166 	}
167 
168 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170 
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172  * function returns the id so that idr_for_each() stops. Because we cannot
173  * returns the id 0 (idr_for_each() will not stop), we return the magic value
174  * NET_ID_ZERO (-1) for it.
175  */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 	if (net_eq(net, peer))
180 		return id ? : NET_ID_ZERO;
181 	return 0;
182 }
183 
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185  * is set to true, thus the caller knows that the new id must be notified via
186  * rtnl.
187  */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 	bool alloc_it = *alloc;
192 
193 	*alloc = false;
194 
195 	/* Magic value for id 0. */
196 	if (id == NET_ID_ZERO)
197 		return 0;
198 	if (id > 0)
199 		return id;
200 
201 	if (alloc_it) {
202 		id = alloc_netid(net, peer, -1);
203 		*alloc = true;
204 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 	}
206 
207 	return NETNSA_NSID_NOT_ASSIGNED;
208 }
209 
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 	bool no = false;
214 
215 	return __peernet2id_alloc(net, peer, &no);
216 }
217 
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220  * be allocated and returned.
221  */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 	bool alloc;
225 	int id;
226 
227 	if (atomic_read(&net->count) == 0)
228 		return NETNSA_NSID_NOT_ASSIGNED;
229 	spin_lock_bh(&net->nsid_lock);
230 	alloc = atomic_read(&peer->count) == 0 ? false : true;
231 	id = __peernet2id_alloc(net, peer, &alloc);
232 	spin_unlock_bh(&net->nsid_lock);
233 	if (alloc && id >= 0)
234 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
235 	return id;
236 }
237 
238 /* This function returns, if assigned, the id of a peer netns. */
239 int peernet2id(struct net *net, struct net *peer)
240 {
241 	int id;
242 
243 	spin_lock_bh(&net->nsid_lock);
244 	id = __peernet2id(net, peer);
245 	spin_unlock_bh(&net->nsid_lock);
246 	return id;
247 }
248 EXPORT_SYMBOL(peernet2id);
249 
250 /* This function returns true is the peer netns has an id assigned into the
251  * current netns.
252  */
253 bool peernet_has_id(struct net *net, struct net *peer)
254 {
255 	return peernet2id(net, peer) >= 0;
256 }
257 
258 struct net *get_net_ns_by_id(struct net *net, int id)
259 {
260 	struct net *peer;
261 
262 	if (id < 0)
263 		return NULL;
264 
265 	rcu_read_lock();
266 	spin_lock_bh(&net->nsid_lock);
267 	peer = idr_find(&net->netns_ids, id);
268 	if (peer)
269 		get_net(peer);
270 	spin_unlock_bh(&net->nsid_lock);
271 	rcu_read_unlock();
272 
273 	return peer;
274 }
275 
276 /*
277  * setup_net runs the initializers for the network namespace object.
278  */
279 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
280 {
281 	/* Must be called with net_mutex held */
282 	const struct pernet_operations *ops, *saved_ops;
283 	int error = 0;
284 	LIST_HEAD(net_exit_list);
285 
286 	atomic_set(&net->count, 1);
287 	atomic_set(&net->passive, 1);
288 	net->dev_base_seq = 1;
289 	net->user_ns = user_ns;
290 	idr_init(&net->netns_ids);
291 	spin_lock_init(&net->nsid_lock);
292 
293 	list_for_each_entry(ops, &pernet_list, list) {
294 		error = ops_init(ops, net);
295 		if (error < 0)
296 			goto out_undo;
297 	}
298 out:
299 	return error;
300 
301 out_undo:
302 	/* Walk through the list backwards calling the exit functions
303 	 * for the pernet modules whose init functions did not fail.
304 	 */
305 	list_add(&net->exit_list, &net_exit_list);
306 	saved_ops = ops;
307 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
308 		ops_exit_list(ops, &net_exit_list);
309 
310 	ops = saved_ops;
311 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
312 		ops_free_list(ops, &net_exit_list);
313 
314 	rcu_barrier();
315 	goto out;
316 }
317 
318 
319 #ifdef CONFIG_NET_NS
320 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
321 {
322 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
323 }
324 
325 static void dec_net_namespaces(struct ucounts *ucounts)
326 {
327 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
328 }
329 
330 static struct kmem_cache *net_cachep;
331 static struct workqueue_struct *netns_wq;
332 
333 static struct net *net_alloc(void)
334 {
335 	struct net *net = NULL;
336 	struct net_generic *ng;
337 
338 	ng = net_alloc_generic();
339 	if (!ng)
340 		goto out;
341 
342 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
343 	if (!net)
344 		goto out_free;
345 
346 	rcu_assign_pointer(net->gen, ng);
347 out:
348 	return net;
349 
350 out_free:
351 	kfree(ng);
352 	goto out;
353 }
354 
355 static void net_free(struct net *net)
356 {
357 	kfree(rcu_access_pointer(net->gen));
358 	kmem_cache_free(net_cachep, net);
359 }
360 
361 void net_drop_ns(void *p)
362 {
363 	struct net *ns = p;
364 	if (ns && atomic_dec_and_test(&ns->passive))
365 		net_free(ns);
366 }
367 
368 struct net *copy_net_ns(unsigned long flags,
369 			struct user_namespace *user_ns, struct net *old_net)
370 {
371 	struct ucounts *ucounts;
372 	struct net *net;
373 	int rv;
374 
375 	if (!(flags & CLONE_NEWNET))
376 		return get_net(old_net);
377 
378 	ucounts = inc_net_namespaces(user_ns);
379 	if (!ucounts)
380 		return ERR_PTR(-ENOSPC);
381 
382 	net = net_alloc();
383 	if (!net) {
384 		dec_net_namespaces(ucounts);
385 		return ERR_PTR(-ENOMEM);
386 	}
387 
388 	get_user_ns(user_ns);
389 
390 	rv = mutex_lock_killable(&net_mutex);
391 	if (rv < 0) {
392 		net_free(net);
393 		dec_net_namespaces(ucounts);
394 		put_user_ns(user_ns);
395 		return ERR_PTR(rv);
396 	}
397 
398 	net->ucounts = ucounts;
399 	rv = setup_net(net, user_ns);
400 	if (rv == 0) {
401 		rtnl_lock();
402 		list_add_tail_rcu(&net->list, &net_namespace_list);
403 		rtnl_unlock();
404 	}
405 	mutex_unlock(&net_mutex);
406 	if (rv < 0) {
407 		dec_net_namespaces(ucounts);
408 		put_user_ns(user_ns);
409 		net_drop_ns(net);
410 		return ERR_PTR(rv);
411 	}
412 	return net;
413 }
414 
415 static DEFINE_SPINLOCK(cleanup_list_lock);
416 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
417 
418 static void cleanup_net(struct work_struct *work)
419 {
420 	const struct pernet_operations *ops;
421 	struct net *net, *tmp;
422 	struct list_head net_kill_list;
423 	LIST_HEAD(net_exit_list);
424 
425 	/* Atomically snapshot the list of namespaces to cleanup */
426 	spin_lock_irq(&cleanup_list_lock);
427 	list_replace_init(&cleanup_list, &net_kill_list);
428 	spin_unlock_irq(&cleanup_list_lock);
429 
430 	mutex_lock(&net_mutex);
431 
432 	/* Don't let anyone else find us. */
433 	rtnl_lock();
434 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
435 		list_del_rcu(&net->list);
436 		list_add_tail(&net->exit_list, &net_exit_list);
437 		for_each_net(tmp) {
438 			int id;
439 
440 			spin_lock_bh(&tmp->nsid_lock);
441 			id = __peernet2id(tmp, net);
442 			if (id >= 0)
443 				idr_remove(&tmp->netns_ids, id);
444 			spin_unlock_bh(&tmp->nsid_lock);
445 			if (id >= 0)
446 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
447 		}
448 		spin_lock_bh(&net->nsid_lock);
449 		idr_destroy(&net->netns_ids);
450 		spin_unlock_bh(&net->nsid_lock);
451 
452 	}
453 	rtnl_unlock();
454 
455 	/*
456 	 * Another CPU might be rcu-iterating the list, wait for it.
457 	 * This needs to be before calling the exit() notifiers, so
458 	 * the rcu_barrier() below isn't sufficient alone.
459 	 */
460 	synchronize_rcu();
461 
462 	/* Run all of the network namespace exit methods */
463 	list_for_each_entry_reverse(ops, &pernet_list, list)
464 		ops_exit_list(ops, &net_exit_list);
465 
466 	/* Free the net generic variables */
467 	list_for_each_entry_reverse(ops, &pernet_list, list)
468 		ops_free_list(ops, &net_exit_list);
469 
470 	mutex_unlock(&net_mutex);
471 
472 	/* Ensure there are no outstanding rcu callbacks using this
473 	 * network namespace.
474 	 */
475 	rcu_barrier();
476 
477 	/* Finally it is safe to free my network namespace structure */
478 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
479 		list_del_init(&net->exit_list);
480 		dec_net_namespaces(net->ucounts);
481 		put_user_ns(net->user_ns);
482 		net_drop_ns(net);
483 	}
484 }
485 static DECLARE_WORK(net_cleanup_work, cleanup_net);
486 
487 void __put_net(struct net *net)
488 {
489 	/* Cleanup the network namespace in process context */
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&cleanup_list_lock, flags);
493 	list_add(&net->cleanup_list, &cleanup_list);
494 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
495 
496 	queue_work(netns_wq, &net_cleanup_work);
497 }
498 EXPORT_SYMBOL_GPL(__put_net);
499 
500 struct net *get_net_ns_by_fd(int fd)
501 {
502 	struct file *file;
503 	struct ns_common *ns;
504 	struct net *net;
505 
506 	file = proc_ns_fget(fd);
507 	if (IS_ERR(file))
508 		return ERR_CAST(file);
509 
510 	ns = get_proc_ns(file_inode(file));
511 	if (ns->ops == &netns_operations)
512 		net = get_net(container_of(ns, struct net, ns));
513 	else
514 		net = ERR_PTR(-EINVAL);
515 
516 	fput(file);
517 	return net;
518 }
519 
520 #else
521 struct net *get_net_ns_by_fd(int fd)
522 {
523 	return ERR_PTR(-EINVAL);
524 }
525 #endif
526 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
527 
528 struct net *get_net_ns_by_pid(pid_t pid)
529 {
530 	struct task_struct *tsk;
531 	struct net *net;
532 
533 	/* Lookup the network namespace */
534 	net = ERR_PTR(-ESRCH);
535 	rcu_read_lock();
536 	tsk = find_task_by_vpid(pid);
537 	if (tsk) {
538 		struct nsproxy *nsproxy;
539 		task_lock(tsk);
540 		nsproxy = tsk->nsproxy;
541 		if (nsproxy)
542 			net = get_net(nsproxy->net_ns);
543 		task_unlock(tsk);
544 	}
545 	rcu_read_unlock();
546 	return net;
547 }
548 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
549 
550 static __net_init int net_ns_net_init(struct net *net)
551 {
552 #ifdef CONFIG_NET_NS
553 	net->ns.ops = &netns_operations;
554 #endif
555 	return ns_alloc_inum(&net->ns);
556 }
557 
558 static __net_exit void net_ns_net_exit(struct net *net)
559 {
560 	ns_free_inum(&net->ns);
561 }
562 
563 static struct pernet_operations __net_initdata net_ns_ops = {
564 	.init = net_ns_net_init,
565 	.exit = net_ns_net_exit,
566 };
567 
568 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
569 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
570 	[NETNSA_NSID]		= { .type = NLA_S32 },
571 	[NETNSA_PID]		= { .type = NLA_U32 },
572 	[NETNSA_FD]		= { .type = NLA_U32 },
573 };
574 
575 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
576 			  struct netlink_ext_ack *extack)
577 {
578 	struct net *net = sock_net(skb->sk);
579 	struct nlattr *tb[NETNSA_MAX + 1];
580 	struct net *peer;
581 	int nsid, err;
582 
583 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
584 			  rtnl_net_policy, extack);
585 	if (err < 0)
586 		return err;
587 	if (!tb[NETNSA_NSID])
588 		return -EINVAL;
589 	nsid = nla_get_s32(tb[NETNSA_NSID]);
590 
591 	if (tb[NETNSA_PID])
592 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
593 	else if (tb[NETNSA_FD])
594 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
595 	else
596 		return -EINVAL;
597 	if (IS_ERR(peer))
598 		return PTR_ERR(peer);
599 
600 	spin_lock_bh(&net->nsid_lock);
601 	if (__peernet2id(net, peer) >= 0) {
602 		spin_unlock_bh(&net->nsid_lock);
603 		err = -EEXIST;
604 		goto out;
605 	}
606 
607 	err = alloc_netid(net, peer, nsid);
608 	spin_unlock_bh(&net->nsid_lock);
609 	if (err >= 0) {
610 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
611 		err = 0;
612 	}
613 out:
614 	put_net(peer);
615 	return err;
616 }
617 
618 static int rtnl_net_get_size(void)
619 {
620 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
621 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
622 	       ;
623 }
624 
625 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
626 			 int cmd, struct net *net, int nsid)
627 {
628 	struct nlmsghdr *nlh;
629 	struct rtgenmsg *rth;
630 
631 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
632 	if (!nlh)
633 		return -EMSGSIZE;
634 
635 	rth = nlmsg_data(nlh);
636 	rth->rtgen_family = AF_UNSPEC;
637 
638 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
639 		goto nla_put_failure;
640 
641 	nlmsg_end(skb, nlh);
642 	return 0;
643 
644 nla_put_failure:
645 	nlmsg_cancel(skb, nlh);
646 	return -EMSGSIZE;
647 }
648 
649 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
650 			  struct netlink_ext_ack *extack)
651 {
652 	struct net *net = sock_net(skb->sk);
653 	struct nlattr *tb[NETNSA_MAX + 1];
654 	struct sk_buff *msg;
655 	struct net *peer;
656 	int err, id;
657 
658 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
659 			  rtnl_net_policy, extack);
660 	if (err < 0)
661 		return err;
662 	if (tb[NETNSA_PID])
663 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
664 	else if (tb[NETNSA_FD])
665 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
666 	else
667 		return -EINVAL;
668 
669 	if (IS_ERR(peer))
670 		return PTR_ERR(peer);
671 
672 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
673 	if (!msg) {
674 		err = -ENOMEM;
675 		goto out;
676 	}
677 
678 	id = peernet2id(net, peer);
679 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
680 			    RTM_NEWNSID, net, id);
681 	if (err < 0)
682 		goto err_out;
683 
684 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
685 	goto out;
686 
687 err_out:
688 	nlmsg_free(msg);
689 out:
690 	put_net(peer);
691 	return err;
692 }
693 
694 struct rtnl_net_dump_cb {
695 	struct net *net;
696 	struct sk_buff *skb;
697 	struct netlink_callback *cb;
698 	int idx;
699 	int s_idx;
700 };
701 
702 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
703 {
704 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
705 	int ret;
706 
707 	if (net_cb->idx < net_cb->s_idx)
708 		goto cont;
709 
710 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
711 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
712 			    RTM_NEWNSID, net_cb->net, id);
713 	if (ret < 0)
714 		return ret;
715 
716 cont:
717 	net_cb->idx++;
718 	return 0;
719 }
720 
721 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
722 {
723 	struct net *net = sock_net(skb->sk);
724 	struct rtnl_net_dump_cb net_cb = {
725 		.net = net,
726 		.skb = skb,
727 		.cb = cb,
728 		.idx = 0,
729 		.s_idx = cb->args[0],
730 	};
731 
732 	spin_lock_bh(&net->nsid_lock);
733 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
734 	spin_unlock_bh(&net->nsid_lock);
735 
736 	cb->args[0] = net_cb.idx;
737 	return skb->len;
738 }
739 
740 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
741 {
742 	struct sk_buff *msg;
743 	int err = -ENOMEM;
744 
745 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
746 	if (!msg)
747 		goto out;
748 
749 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
750 	if (err < 0)
751 		goto err_out;
752 
753 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
754 	return;
755 
756 err_out:
757 	nlmsg_free(msg);
758 out:
759 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
760 }
761 
762 static int __init net_ns_init(void)
763 {
764 	struct net_generic *ng;
765 
766 #ifdef CONFIG_NET_NS
767 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
768 					SMP_CACHE_BYTES,
769 					SLAB_PANIC, NULL);
770 
771 	/* Create workqueue for cleanup */
772 	netns_wq = create_singlethread_workqueue("netns");
773 	if (!netns_wq)
774 		panic("Could not create netns workq");
775 #endif
776 
777 	ng = net_alloc_generic();
778 	if (!ng)
779 		panic("Could not allocate generic netns");
780 
781 	rcu_assign_pointer(init_net.gen, ng);
782 
783 	mutex_lock(&net_mutex);
784 	if (setup_net(&init_net, &init_user_ns))
785 		panic("Could not setup the initial network namespace");
786 
787 	init_net_initialized = true;
788 
789 	rtnl_lock();
790 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
791 	rtnl_unlock();
792 
793 	mutex_unlock(&net_mutex);
794 
795 	register_pernet_subsys(&net_ns_ops);
796 
797 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
798 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
799 		      NULL);
800 
801 	return 0;
802 }
803 
804 pure_initcall(net_ns_init);
805 
806 #ifdef CONFIG_NET_NS
807 static int __register_pernet_operations(struct list_head *list,
808 					struct pernet_operations *ops)
809 {
810 	struct net *net;
811 	int error;
812 	LIST_HEAD(net_exit_list);
813 
814 	list_add_tail(&ops->list, list);
815 	if (ops->init || (ops->id && ops->size)) {
816 		for_each_net(net) {
817 			error = ops_init(ops, net);
818 			if (error)
819 				goto out_undo;
820 			list_add_tail(&net->exit_list, &net_exit_list);
821 		}
822 	}
823 	return 0;
824 
825 out_undo:
826 	/* If I have an error cleanup all namespaces I initialized */
827 	list_del(&ops->list);
828 	ops_exit_list(ops, &net_exit_list);
829 	ops_free_list(ops, &net_exit_list);
830 	return error;
831 }
832 
833 static void __unregister_pernet_operations(struct pernet_operations *ops)
834 {
835 	struct net *net;
836 	LIST_HEAD(net_exit_list);
837 
838 	list_del(&ops->list);
839 	for_each_net(net)
840 		list_add_tail(&net->exit_list, &net_exit_list);
841 	ops_exit_list(ops, &net_exit_list);
842 	ops_free_list(ops, &net_exit_list);
843 }
844 
845 #else
846 
847 static int __register_pernet_operations(struct list_head *list,
848 					struct pernet_operations *ops)
849 {
850 	if (!init_net_initialized) {
851 		list_add_tail(&ops->list, list);
852 		return 0;
853 	}
854 
855 	return ops_init(ops, &init_net);
856 }
857 
858 static void __unregister_pernet_operations(struct pernet_operations *ops)
859 {
860 	if (!init_net_initialized) {
861 		list_del(&ops->list);
862 	} else {
863 		LIST_HEAD(net_exit_list);
864 		list_add(&init_net.exit_list, &net_exit_list);
865 		ops_exit_list(ops, &net_exit_list);
866 		ops_free_list(ops, &net_exit_list);
867 	}
868 }
869 
870 #endif /* CONFIG_NET_NS */
871 
872 static DEFINE_IDA(net_generic_ids);
873 
874 static int register_pernet_operations(struct list_head *list,
875 				      struct pernet_operations *ops)
876 {
877 	int error;
878 
879 	if (ops->id) {
880 again:
881 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
882 		if (error < 0) {
883 			if (error == -EAGAIN) {
884 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
885 				goto again;
886 			}
887 			return error;
888 		}
889 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
890 	}
891 	error = __register_pernet_operations(list, ops);
892 	if (error) {
893 		rcu_barrier();
894 		if (ops->id)
895 			ida_remove(&net_generic_ids, *ops->id);
896 	}
897 
898 	return error;
899 }
900 
901 static void unregister_pernet_operations(struct pernet_operations *ops)
902 {
903 
904 	__unregister_pernet_operations(ops);
905 	rcu_barrier();
906 	if (ops->id)
907 		ida_remove(&net_generic_ids, *ops->id);
908 }
909 
910 /**
911  *      register_pernet_subsys - register a network namespace subsystem
912  *	@ops:  pernet operations structure for the subsystem
913  *
914  *	Register a subsystem which has init and exit functions
915  *	that are called when network namespaces are created and
916  *	destroyed respectively.
917  *
918  *	When registered all network namespace init functions are
919  *	called for every existing network namespace.  Allowing kernel
920  *	modules to have a race free view of the set of network namespaces.
921  *
922  *	When a new network namespace is created all of the init
923  *	methods are called in the order in which they were registered.
924  *
925  *	When a network namespace is destroyed all of the exit methods
926  *	are called in the reverse of the order with which they were
927  *	registered.
928  */
929 int register_pernet_subsys(struct pernet_operations *ops)
930 {
931 	int error;
932 	mutex_lock(&net_mutex);
933 	error =  register_pernet_operations(first_device, ops);
934 	mutex_unlock(&net_mutex);
935 	return error;
936 }
937 EXPORT_SYMBOL_GPL(register_pernet_subsys);
938 
939 /**
940  *      unregister_pernet_subsys - unregister a network namespace subsystem
941  *	@ops: pernet operations structure to manipulate
942  *
943  *	Remove the pernet operations structure from the list to be
944  *	used when network namespaces are created or destroyed.  In
945  *	addition run the exit method for all existing network
946  *	namespaces.
947  */
948 void unregister_pernet_subsys(struct pernet_operations *ops)
949 {
950 	mutex_lock(&net_mutex);
951 	unregister_pernet_operations(ops);
952 	mutex_unlock(&net_mutex);
953 }
954 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
955 
956 /**
957  *      register_pernet_device - register a network namespace device
958  *	@ops:  pernet operations structure for the subsystem
959  *
960  *	Register a device which has init and exit functions
961  *	that are called when network namespaces are created and
962  *	destroyed respectively.
963  *
964  *	When registered all network namespace init functions are
965  *	called for every existing network namespace.  Allowing kernel
966  *	modules to have a race free view of the set of network namespaces.
967  *
968  *	When a new network namespace is created all of the init
969  *	methods are called in the order in which they were registered.
970  *
971  *	When a network namespace is destroyed all of the exit methods
972  *	are called in the reverse of the order with which they were
973  *	registered.
974  */
975 int register_pernet_device(struct pernet_operations *ops)
976 {
977 	int error;
978 	mutex_lock(&net_mutex);
979 	error = register_pernet_operations(&pernet_list, ops);
980 	if (!error && (first_device == &pernet_list))
981 		first_device = &ops->list;
982 	mutex_unlock(&net_mutex);
983 	return error;
984 }
985 EXPORT_SYMBOL_GPL(register_pernet_device);
986 
987 /**
988  *      unregister_pernet_device - unregister a network namespace netdevice
989  *	@ops: pernet operations structure to manipulate
990  *
991  *	Remove the pernet operations structure from the list to be
992  *	used when network namespaces are created or destroyed.  In
993  *	addition run the exit method for all existing network
994  *	namespaces.
995  */
996 void unregister_pernet_device(struct pernet_operations *ops)
997 {
998 	mutex_lock(&net_mutex);
999 	if (&ops->list == first_device)
1000 		first_device = first_device->next;
1001 	unregister_pernet_operations(ops);
1002 	mutex_unlock(&net_mutex);
1003 }
1004 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1005 
1006 #ifdef CONFIG_NET_NS
1007 static struct ns_common *netns_get(struct task_struct *task)
1008 {
1009 	struct net *net = NULL;
1010 	struct nsproxy *nsproxy;
1011 
1012 	task_lock(task);
1013 	nsproxy = task->nsproxy;
1014 	if (nsproxy)
1015 		net = get_net(nsproxy->net_ns);
1016 	task_unlock(task);
1017 
1018 	return net ? &net->ns : NULL;
1019 }
1020 
1021 static inline struct net *to_net_ns(struct ns_common *ns)
1022 {
1023 	return container_of(ns, struct net, ns);
1024 }
1025 
1026 static void netns_put(struct ns_common *ns)
1027 {
1028 	put_net(to_net_ns(ns));
1029 }
1030 
1031 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1032 {
1033 	struct net *net = to_net_ns(ns);
1034 
1035 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1036 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1037 		return -EPERM;
1038 
1039 	put_net(nsproxy->net_ns);
1040 	nsproxy->net_ns = get_net(net);
1041 	return 0;
1042 }
1043 
1044 static struct user_namespace *netns_owner(struct ns_common *ns)
1045 {
1046 	return to_net_ns(ns)->user_ns;
1047 }
1048 
1049 const struct proc_ns_operations netns_operations = {
1050 	.name		= "net",
1051 	.type		= CLONE_NEWNET,
1052 	.get		= netns_get,
1053 	.put		= netns_put,
1054 	.install	= netns_install,
1055 	.owner		= netns_owner,
1056 };
1057 #endif
1058