xref: /openbmc/linux/net/core/net_namespace.c (revision 1a59d1b8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 
23 #include <net/sock.h>
24 #include <net/netlink.h>
25 #include <net/net_namespace.h>
26 #include <net/netns/generic.h>
27 
28 /*
29  *	Our network namespace constructor/destructor lists
30  */
31 
32 static LIST_HEAD(pernet_list);
33 static struct list_head *first_device = &pernet_list;
34 
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37 
38 /* Protects net_namespace_list. Nests iside rtnl_lock() */
39 DECLARE_RWSEM(net_rwsem);
40 EXPORT_SYMBOL_GPL(net_rwsem);
41 
42 struct net init_net = {
43 	.count		= REFCOUNT_INIT(1),
44 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
45 };
46 EXPORT_SYMBOL(init_net);
47 
48 static bool init_net_initialized;
49 /*
50  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
51  * init_net_initialized and first_device pointer.
52  * This is internal net namespace object. Please, don't use it
53  * outside.
54  */
55 DECLARE_RWSEM(pernet_ops_rwsem);
56 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
57 
58 #define MIN_PERNET_OPS_ID	\
59 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
60 
61 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
62 
63 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
64 
65 static struct net_generic *net_alloc_generic(void)
66 {
67 	struct net_generic *ng;
68 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
69 
70 	ng = kzalloc(generic_size, GFP_KERNEL);
71 	if (ng)
72 		ng->s.len = max_gen_ptrs;
73 
74 	return ng;
75 }
76 
77 static int net_assign_generic(struct net *net, unsigned int id, void *data)
78 {
79 	struct net_generic *ng, *old_ng;
80 
81 	BUG_ON(id < MIN_PERNET_OPS_ID);
82 
83 	old_ng = rcu_dereference_protected(net->gen,
84 					   lockdep_is_held(&pernet_ops_rwsem));
85 	if (old_ng->s.len > id) {
86 		old_ng->ptr[id] = data;
87 		return 0;
88 	}
89 
90 	ng = net_alloc_generic();
91 	if (ng == NULL)
92 		return -ENOMEM;
93 
94 	/*
95 	 * Some synchronisation notes:
96 	 *
97 	 * The net_generic explores the net->gen array inside rcu
98 	 * read section. Besides once set the net->gen->ptr[x]
99 	 * pointer never changes (see rules in netns/generic.h).
100 	 *
101 	 * That said, we simply duplicate this array and schedule
102 	 * the old copy for kfree after a grace period.
103 	 */
104 
105 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
106 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
107 	ng->ptr[id] = data;
108 
109 	rcu_assign_pointer(net->gen, ng);
110 	kfree_rcu(old_ng, s.rcu);
111 	return 0;
112 }
113 
114 static int ops_init(const struct pernet_operations *ops, struct net *net)
115 {
116 	int err = -ENOMEM;
117 	void *data = NULL;
118 
119 	if (ops->id && ops->size) {
120 		data = kzalloc(ops->size, GFP_KERNEL);
121 		if (!data)
122 			goto out;
123 
124 		err = net_assign_generic(net, *ops->id, data);
125 		if (err)
126 			goto cleanup;
127 	}
128 	err = 0;
129 	if (ops->init)
130 		err = ops->init(net);
131 	if (!err)
132 		return 0;
133 
134 cleanup:
135 	kfree(data);
136 
137 out:
138 	return err;
139 }
140 
141 static void ops_free(const struct pernet_operations *ops, struct net *net)
142 {
143 	if (ops->id && ops->size) {
144 		kfree(net_generic(net, *ops->id));
145 	}
146 }
147 
148 static void ops_exit_list(const struct pernet_operations *ops,
149 			  struct list_head *net_exit_list)
150 {
151 	struct net *net;
152 	if (ops->exit) {
153 		list_for_each_entry(net, net_exit_list, exit_list)
154 			ops->exit(net);
155 	}
156 	if (ops->exit_batch)
157 		ops->exit_batch(net_exit_list);
158 }
159 
160 static void ops_free_list(const struct pernet_operations *ops,
161 			  struct list_head *net_exit_list)
162 {
163 	struct net *net;
164 	if (ops->size && ops->id) {
165 		list_for_each_entry(net, net_exit_list, exit_list)
166 			ops_free(ops, net);
167 	}
168 }
169 
170 /* should be called with nsid_lock held */
171 static int alloc_netid(struct net *net, struct net *peer, int reqid)
172 {
173 	int min = 0, max = 0;
174 
175 	if (reqid >= 0) {
176 		min = reqid;
177 		max = reqid + 1;
178 	}
179 
180 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
181 }
182 
183 /* This function is used by idr_for_each(). If net is equal to peer, the
184  * function returns the id so that idr_for_each() stops. Because we cannot
185  * returns the id 0 (idr_for_each() will not stop), we return the magic value
186  * NET_ID_ZERO (-1) for it.
187  */
188 #define NET_ID_ZERO -1
189 static int net_eq_idr(int id, void *net, void *peer)
190 {
191 	if (net_eq(net, peer))
192 		return id ? : NET_ID_ZERO;
193 	return 0;
194 }
195 
196 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
197  * is set to true, thus the caller knows that the new id must be notified via
198  * rtnl.
199  */
200 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
201 {
202 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
203 	bool alloc_it = *alloc;
204 
205 	*alloc = false;
206 
207 	/* Magic value for id 0. */
208 	if (id == NET_ID_ZERO)
209 		return 0;
210 	if (id > 0)
211 		return id;
212 
213 	if (alloc_it) {
214 		id = alloc_netid(net, peer, -1);
215 		*alloc = true;
216 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
217 	}
218 
219 	return NETNSA_NSID_NOT_ASSIGNED;
220 }
221 
222 /* should be called with nsid_lock held */
223 static int __peernet2id(struct net *net, struct net *peer)
224 {
225 	bool no = false;
226 
227 	return __peernet2id_alloc(net, peer, &no);
228 }
229 
230 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
231 /* This function returns the id of a peer netns. If no id is assigned, one will
232  * be allocated and returned.
233  */
234 int peernet2id_alloc(struct net *net, struct net *peer)
235 {
236 	bool alloc = false, alive = false;
237 	int id;
238 
239 	if (refcount_read(&net->count) == 0)
240 		return NETNSA_NSID_NOT_ASSIGNED;
241 	spin_lock_bh(&net->nsid_lock);
242 	/*
243 	 * When peer is obtained from RCU lists, we may race with
244 	 * its cleanup. Check whether it's alive, and this guarantees
245 	 * we never hash a peer back to net->netns_ids, after it has
246 	 * just been idr_remove()'d from there in cleanup_net().
247 	 */
248 	if (maybe_get_net(peer))
249 		alive = alloc = true;
250 	id = __peernet2id_alloc(net, peer, &alloc);
251 	spin_unlock_bh(&net->nsid_lock);
252 	if (alloc && id >= 0)
253 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
254 	if (alive)
255 		put_net(peer);
256 	return id;
257 }
258 EXPORT_SYMBOL_GPL(peernet2id_alloc);
259 
260 /* This function returns, if assigned, the id of a peer netns. */
261 int peernet2id(struct net *net, struct net *peer)
262 {
263 	int id;
264 
265 	spin_lock_bh(&net->nsid_lock);
266 	id = __peernet2id(net, peer);
267 	spin_unlock_bh(&net->nsid_lock);
268 	return id;
269 }
270 EXPORT_SYMBOL(peernet2id);
271 
272 /* This function returns true is the peer netns has an id assigned into the
273  * current netns.
274  */
275 bool peernet_has_id(struct net *net, struct net *peer)
276 {
277 	return peernet2id(net, peer) >= 0;
278 }
279 
280 struct net *get_net_ns_by_id(struct net *net, int id)
281 {
282 	struct net *peer;
283 
284 	if (id < 0)
285 		return NULL;
286 
287 	rcu_read_lock();
288 	peer = idr_find(&net->netns_ids, id);
289 	if (peer)
290 		peer = maybe_get_net(peer);
291 	rcu_read_unlock();
292 
293 	return peer;
294 }
295 
296 /*
297  * setup_net runs the initializers for the network namespace object.
298  */
299 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
300 {
301 	/* Must be called with pernet_ops_rwsem held */
302 	const struct pernet_operations *ops, *saved_ops;
303 	int error = 0;
304 	LIST_HEAD(net_exit_list);
305 
306 	refcount_set(&net->count, 1);
307 	refcount_set(&net->passive, 1);
308 	get_random_bytes(&net->hash_mix, sizeof(u32));
309 	net->dev_base_seq = 1;
310 	net->user_ns = user_ns;
311 	idr_init(&net->netns_ids);
312 	spin_lock_init(&net->nsid_lock);
313 	mutex_init(&net->ipv4.ra_mutex);
314 
315 	list_for_each_entry(ops, &pernet_list, list) {
316 		error = ops_init(ops, net);
317 		if (error < 0)
318 			goto out_undo;
319 	}
320 	down_write(&net_rwsem);
321 	list_add_tail_rcu(&net->list, &net_namespace_list);
322 	up_write(&net_rwsem);
323 out:
324 	return error;
325 
326 out_undo:
327 	/* Walk through the list backwards calling the exit functions
328 	 * for the pernet modules whose init functions did not fail.
329 	 */
330 	list_add(&net->exit_list, &net_exit_list);
331 	saved_ops = ops;
332 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
333 		ops_exit_list(ops, &net_exit_list);
334 
335 	ops = saved_ops;
336 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
337 		ops_free_list(ops, &net_exit_list);
338 
339 	rcu_barrier();
340 	goto out;
341 }
342 
343 static int __net_init net_defaults_init_net(struct net *net)
344 {
345 	net->core.sysctl_somaxconn = SOMAXCONN;
346 	return 0;
347 }
348 
349 static struct pernet_operations net_defaults_ops = {
350 	.init = net_defaults_init_net,
351 };
352 
353 static __init int net_defaults_init(void)
354 {
355 	if (register_pernet_subsys(&net_defaults_ops))
356 		panic("Cannot initialize net default settings");
357 
358 	return 0;
359 }
360 
361 core_initcall(net_defaults_init);
362 
363 #ifdef CONFIG_NET_NS
364 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
365 {
366 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
367 }
368 
369 static void dec_net_namespaces(struct ucounts *ucounts)
370 {
371 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
372 }
373 
374 static struct kmem_cache *net_cachep __ro_after_init;
375 static struct workqueue_struct *netns_wq;
376 
377 static struct net *net_alloc(void)
378 {
379 	struct net *net = NULL;
380 	struct net_generic *ng;
381 
382 	ng = net_alloc_generic();
383 	if (!ng)
384 		goto out;
385 
386 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
387 	if (!net)
388 		goto out_free;
389 
390 	rcu_assign_pointer(net->gen, ng);
391 out:
392 	return net;
393 
394 out_free:
395 	kfree(ng);
396 	goto out;
397 }
398 
399 static void net_free(struct net *net)
400 {
401 	kfree(rcu_access_pointer(net->gen));
402 	kmem_cache_free(net_cachep, net);
403 }
404 
405 void net_drop_ns(void *p)
406 {
407 	struct net *ns = p;
408 	if (ns && refcount_dec_and_test(&ns->passive))
409 		net_free(ns);
410 }
411 
412 struct net *copy_net_ns(unsigned long flags,
413 			struct user_namespace *user_ns, struct net *old_net)
414 {
415 	struct ucounts *ucounts;
416 	struct net *net;
417 	int rv;
418 
419 	if (!(flags & CLONE_NEWNET))
420 		return get_net(old_net);
421 
422 	ucounts = inc_net_namespaces(user_ns);
423 	if (!ucounts)
424 		return ERR_PTR(-ENOSPC);
425 
426 	net = net_alloc();
427 	if (!net) {
428 		rv = -ENOMEM;
429 		goto dec_ucounts;
430 	}
431 	refcount_set(&net->passive, 1);
432 	net->ucounts = ucounts;
433 	get_user_ns(user_ns);
434 
435 	rv = down_read_killable(&pernet_ops_rwsem);
436 	if (rv < 0)
437 		goto put_userns;
438 
439 	rv = setup_net(net, user_ns);
440 
441 	up_read(&pernet_ops_rwsem);
442 
443 	if (rv < 0) {
444 put_userns:
445 		put_user_ns(user_ns);
446 		net_drop_ns(net);
447 dec_ucounts:
448 		dec_net_namespaces(ucounts);
449 		return ERR_PTR(rv);
450 	}
451 	return net;
452 }
453 
454 /**
455  * net_ns_get_ownership - get sysfs ownership data for @net
456  * @net: network namespace in question (can be NULL)
457  * @uid: kernel user ID for sysfs objects
458  * @gid: kernel group ID for sysfs objects
459  *
460  * Returns the uid/gid pair of root in the user namespace associated with the
461  * given network namespace.
462  */
463 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
464 {
465 	if (net) {
466 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
467 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
468 
469 		if (uid_valid(ns_root_uid))
470 			*uid = ns_root_uid;
471 
472 		if (gid_valid(ns_root_gid))
473 			*gid = ns_root_gid;
474 	} else {
475 		*uid = GLOBAL_ROOT_UID;
476 		*gid = GLOBAL_ROOT_GID;
477 	}
478 }
479 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
480 
481 static void unhash_nsid(struct net *net, struct net *last)
482 {
483 	struct net *tmp;
484 	/* This function is only called from cleanup_net() work,
485 	 * and this work is the only process, that may delete
486 	 * a net from net_namespace_list. So, when the below
487 	 * is executing, the list may only grow. Thus, we do not
488 	 * use for_each_net_rcu() or net_rwsem.
489 	 */
490 	for_each_net(tmp) {
491 		int id;
492 
493 		spin_lock_bh(&tmp->nsid_lock);
494 		id = __peernet2id(tmp, net);
495 		if (id >= 0)
496 			idr_remove(&tmp->netns_ids, id);
497 		spin_unlock_bh(&tmp->nsid_lock);
498 		if (id >= 0)
499 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
500 		if (tmp == last)
501 			break;
502 	}
503 	spin_lock_bh(&net->nsid_lock);
504 	idr_destroy(&net->netns_ids);
505 	spin_unlock_bh(&net->nsid_lock);
506 }
507 
508 static LLIST_HEAD(cleanup_list);
509 
510 static void cleanup_net(struct work_struct *work)
511 {
512 	const struct pernet_operations *ops;
513 	struct net *net, *tmp, *last;
514 	struct llist_node *net_kill_list;
515 	LIST_HEAD(net_exit_list);
516 
517 	/* Atomically snapshot the list of namespaces to cleanup */
518 	net_kill_list = llist_del_all(&cleanup_list);
519 
520 	down_read(&pernet_ops_rwsem);
521 
522 	/* Don't let anyone else find us. */
523 	down_write(&net_rwsem);
524 	llist_for_each_entry(net, net_kill_list, cleanup_list)
525 		list_del_rcu(&net->list);
526 	/* Cache last net. After we unlock rtnl, no one new net
527 	 * added to net_namespace_list can assign nsid pointer
528 	 * to a net from net_kill_list (see peernet2id_alloc()).
529 	 * So, we skip them in unhash_nsid().
530 	 *
531 	 * Note, that unhash_nsid() does not delete nsid links
532 	 * between net_kill_list's nets, as they've already
533 	 * deleted from net_namespace_list. But, this would be
534 	 * useless anyway, as netns_ids are destroyed there.
535 	 */
536 	last = list_last_entry(&net_namespace_list, struct net, list);
537 	up_write(&net_rwsem);
538 
539 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
540 		unhash_nsid(net, last);
541 		list_add_tail(&net->exit_list, &net_exit_list);
542 	}
543 
544 	/*
545 	 * Another CPU might be rcu-iterating the list, wait for it.
546 	 * This needs to be before calling the exit() notifiers, so
547 	 * the rcu_barrier() below isn't sufficient alone.
548 	 */
549 	synchronize_rcu();
550 
551 	/* Run all of the network namespace exit methods */
552 	list_for_each_entry_reverse(ops, &pernet_list, list)
553 		ops_exit_list(ops, &net_exit_list);
554 
555 	/* Free the net generic variables */
556 	list_for_each_entry_reverse(ops, &pernet_list, list)
557 		ops_free_list(ops, &net_exit_list);
558 
559 	up_read(&pernet_ops_rwsem);
560 
561 	/* Ensure there are no outstanding rcu callbacks using this
562 	 * network namespace.
563 	 */
564 	rcu_barrier();
565 
566 	/* Finally it is safe to free my network namespace structure */
567 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
568 		list_del_init(&net->exit_list);
569 		dec_net_namespaces(net->ucounts);
570 		put_user_ns(net->user_ns);
571 		net_drop_ns(net);
572 	}
573 }
574 
575 /**
576  * net_ns_barrier - wait until concurrent net_cleanup_work is done
577  *
578  * cleanup_net runs from work queue and will first remove namespaces
579  * from the global list, then run net exit functions.
580  *
581  * Call this in module exit path to make sure that all netns
582  * ->exit ops have been invoked before the function is removed.
583  */
584 void net_ns_barrier(void)
585 {
586 	down_write(&pernet_ops_rwsem);
587 	up_write(&pernet_ops_rwsem);
588 }
589 EXPORT_SYMBOL(net_ns_barrier);
590 
591 static DECLARE_WORK(net_cleanup_work, cleanup_net);
592 
593 void __put_net(struct net *net)
594 {
595 	/* Cleanup the network namespace in process context */
596 	if (llist_add(&net->cleanup_list, &cleanup_list))
597 		queue_work(netns_wq, &net_cleanup_work);
598 }
599 EXPORT_SYMBOL_GPL(__put_net);
600 
601 struct net *get_net_ns_by_fd(int fd)
602 {
603 	struct file *file;
604 	struct ns_common *ns;
605 	struct net *net;
606 
607 	file = proc_ns_fget(fd);
608 	if (IS_ERR(file))
609 		return ERR_CAST(file);
610 
611 	ns = get_proc_ns(file_inode(file));
612 	if (ns->ops == &netns_operations)
613 		net = get_net(container_of(ns, struct net, ns));
614 	else
615 		net = ERR_PTR(-EINVAL);
616 
617 	fput(file);
618 	return net;
619 }
620 
621 #else
622 struct net *get_net_ns_by_fd(int fd)
623 {
624 	return ERR_PTR(-EINVAL);
625 }
626 #endif
627 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
628 
629 struct net *get_net_ns_by_pid(pid_t pid)
630 {
631 	struct task_struct *tsk;
632 	struct net *net;
633 
634 	/* Lookup the network namespace */
635 	net = ERR_PTR(-ESRCH);
636 	rcu_read_lock();
637 	tsk = find_task_by_vpid(pid);
638 	if (tsk) {
639 		struct nsproxy *nsproxy;
640 		task_lock(tsk);
641 		nsproxy = tsk->nsproxy;
642 		if (nsproxy)
643 			net = get_net(nsproxy->net_ns);
644 		task_unlock(tsk);
645 	}
646 	rcu_read_unlock();
647 	return net;
648 }
649 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
650 
651 static __net_init int net_ns_net_init(struct net *net)
652 {
653 #ifdef CONFIG_NET_NS
654 	net->ns.ops = &netns_operations;
655 #endif
656 	return ns_alloc_inum(&net->ns);
657 }
658 
659 static __net_exit void net_ns_net_exit(struct net *net)
660 {
661 	ns_free_inum(&net->ns);
662 }
663 
664 static struct pernet_operations __net_initdata net_ns_ops = {
665 	.init = net_ns_net_init,
666 	.exit = net_ns_net_exit,
667 };
668 
669 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
670 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
671 	[NETNSA_NSID]		= { .type = NLA_S32 },
672 	[NETNSA_PID]		= { .type = NLA_U32 },
673 	[NETNSA_FD]		= { .type = NLA_U32 },
674 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
675 };
676 
677 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
678 			  struct netlink_ext_ack *extack)
679 {
680 	struct net *net = sock_net(skb->sk);
681 	struct nlattr *tb[NETNSA_MAX + 1];
682 	struct nlattr *nla;
683 	struct net *peer;
684 	int nsid, err;
685 
686 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
687 				     NETNSA_MAX, rtnl_net_policy, extack);
688 	if (err < 0)
689 		return err;
690 	if (!tb[NETNSA_NSID]) {
691 		NL_SET_ERR_MSG(extack, "nsid is missing");
692 		return -EINVAL;
693 	}
694 	nsid = nla_get_s32(tb[NETNSA_NSID]);
695 
696 	if (tb[NETNSA_PID]) {
697 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
698 		nla = tb[NETNSA_PID];
699 	} else if (tb[NETNSA_FD]) {
700 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
701 		nla = tb[NETNSA_FD];
702 	} else {
703 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
704 		return -EINVAL;
705 	}
706 	if (IS_ERR(peer)) {
707 		NL_SET_BAD_ATTR(extack, nla);
708 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
709 		return PTR_ERR(peer);
710 	}
711 
712 	spin_lock_bh(&net->nsid_lock);
713 	if (__peernet2id(net, peer) >= 0) {
714 		spin_unlock_bh(&net->nsid_lock);
715 		err = -EEXIST;
716 		NL_SET_BAD_ATTR(extack, nla);
717 		NL_SET_ERR_MSG(extack,
718 			       "Peer netns already has a nsid assigned");
719 		goto out;
720 	}
721 
722 	err = alloc_netid(net, peer, nsid);
723 	spin_unlock_bh(&net->nsid_lock);
724 	if (err >= 0) {
725 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
726 		err = 0;
727 	} else if (err == -ENOSPC && nsid >= 0) {
728 		err = -EEXIST;
729 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
730 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
731 	}
732 out:
733 	put_net(peer);
734 	return err;
735 }
736 
737 static int rtnl_net_get_size(void)
738 {
739 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
740 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
741 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
742 	       ;
743 }
744 
745 struct net_fill_args {
746 	u32 portid;
747 	u32 seq;
748 	int flags;
749 	int cmd;
750 	int nsid;
751 	bool add_ref;
752 	int ref_nsid;
753 };
754 
755 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
756 {
757 	struct nlmsghdr *nlh;
758 	struct rtgenmsg *rth;
759 
760 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
761 			args->flags);
762 	if (!nlh)
763 		return -EMSGSIZE;
764 
765 	rth = nlmsg_data(nlh);
766 	rth->rtgen_family = AF_UNSPEC;
767 
768 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
769 		goto nla_put_failure;
770 
771 	if (args->add_ref &&
772 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
773 		goto nla_put_failure;
774 
775 	nlmsg_end(skb, nlh);
776 	return 0;
777 
778 nla_put_failure:
779 	nlmsg_cancel(skb, nlh);
780 	return -EMSGSIZE;
781 }
782 
783 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
784 				    const struct nlmsghdr *nlh,
785 				    struct nlattr **tb,
786 				    struct netlink_ext_ack *extack)
787 {
788 	int i, err;
789 
790 	if (!netlink_strict_get_check(skb))
791 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
792 					      tb, NETNSA_MAX, rtnl_net_policy,
793 					      extack);
794 
795 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
796 					    NETNSA_MAX, rtnl_net_policy,
797 					    extack);
798 	if (err)
799 		return err;
800 
801 	for (i = 0; i <= NETNSA_MAX; i++) {
802 		if (!tb[i])
803 			continue;
804 
805 		switch (i) {
806 		case NETNSA_PID:
807 		case NETNSA_FD:
808 		case NETNSA_NSID:
809 		case NETNSA_TARGET_NSID:
810 			break;
811 		default:
812 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
813 			return -EINVAL;
814 		}
815 	}
816 
817 	return 0;
818 }
819 
820 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
821 			  struct netlink_ext_ack *extack)
822 {
823 	struct net *net = sock_net(skb->sk);
824 	struct nlattr *tb[NETNSA_MAX + 1];
825 	struct net_fill_args fillargs = {
826 		.portid = NETLINK_CB(skb).portid,
827 		.seq = nlh->nlmsg_seq,
828 		.cmd = RTM_NEWNSID,
829 	};
830 	struct net *peer, *target = net;
831 	struct nlattr *nla;
832 	struct sk_buff *msg;
833 	int err;
834 
835 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
836 	if (err < 0)
837 		return err;
838 	if (tb[NETNSA_PID]) {
839 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
840 		nla = tb[NETNSA_PID];
841 	} else if (tb[NETNSA_FD]) {
842 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
843 		nla = tb[NETNSA_FD];
844 	} else if (tb[NETNSA_NSID]) {
845 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
846 		if (!peer)
847 			peer = ERR_PTR(-ENOENT);
848 		nla = tb[NETNSA_NSID];
849 	} else {
850 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
851 		return -EINVAL;
852 	}
853 
854 	if (IS_ERR(peer)) {
855 		NL_SET_BAD_ATTR(extack, nla);
856 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
857 		return PTR_ERR(peer);
858 	}
859 
860 	if (tb[NETNSA_TARGET_NSID]) {
861 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
862 
863 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
864 		if (IS_ERR(target)) {
865 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
866 			NL_SET_ERR_MSG(extack,
867 				       "Target netns reference is invalid");
868 			err = PTR_ERR(target);
869 			goto out;
870 		}
871 		fillargs.add_ref = true;
872 		fillargs.ref_nsid = peernet2id(net, peer);
873 	}
874 
875 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
876 	if (!msg) {
877 		err = -ENOMEM;
878 		goto out;
879 	}
880 
881 	fillargs.nsid = peernet2id(target, peer);
882 	err = rtnl_net_fill(msg, &fillargs);
883 	if (err < 0)
884 		goto err_out;
885 
886 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
887 	goto out;
888 
889 err_out:
890 	nlmsg_free(msg);
891 out:
892 	if (fillargs.add_ref)
893 		put_net(target);
894 	put_net(peer);
895 	return err;
896 }
897 
898 struct rtnl_net_dump_cb {
899 	struct net *tgt_net;
900 	struct net *ref_net;
901 	struct sk_buff *skb;
902 	struct net_fill_args fillargs;
903 	int idx;
904 	int s_idx;
905 };
906 
907 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
908 {
909 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
910 	int ret;
911 
912 	if (net_cb->idx < net_cb->s_idx)
913 		goto cont;
914 
915 	net_cb->fillargs.nsid = id;
916 	if (net_cb->fillargs.add_ref)
917 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
918 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
919 	if (ret < 0)
920 		return ret;
921 
922 cont:
923 	net_cb->idx++;
924 	return 0;
925 }
926 
927 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
928 				   struct rtnl_net_dump_cb *net_cb,
929 				   struct netlink_callback *cb)
930 {
931 	struct netlink_ext_ack *extack = cb->extack;
932 	struct nlattr *tb[NETNSA_MAX + 1];
933 	int err, i;
934 
935 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
936 					    NETNSA_MAX, rtnl_net_policy,
937 					    extack);
938 	if (err < 0)
939 		return err;
940 
941 	for (i = 0; i <= NETNSA_MAX; i++) {
942 		if (!tb[i])
943 			continue;
944 
945 		if (i == NETNSA_TARGET_NSID) {
946 			struct net *net;
947 
948 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
949 			if (IS_ERR(net)) {
950 				NL_SET_BAD_ATTR(extack, tb[i]);
951 				NL_SET_ERR_MSG(extack,
952 					       "Invalid target network namespace id");
953 				return PTR_ERR(net);
954 			}
955 			net_cb->fillargs.add_ref = true;
956 			net_cb->ref_net = net_cb->tgt_net;
957 			net_cb->tgt_net = net;
958 		} else {
959 			NL_SET_BAD_ATTR(extack, tb[i]);
960 			NL_SET_ERR_MSG(extack,
961 				       "Unsupported attribute in dump request");
962 			return -EINVAL;
963 		}
964 	}
965 
966 	return 0;
967 }
968 
969 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
970 {
971 	struct rtnl_net_dump_cb net_cb = {
972 		.tgt_net = sock_net(skb->sk),
973 		.skb = skb,
974 		.fillargs = {
975 			.portid = NETLINK_CB(cb->skb).portid,
976 			.seq = cb->nlh->nlmsg_seq,
977 			.flags = NLM_F_MULTI,
978 			.cmd = RTM_NEWNSID,
979 		},
980 		.idx = 0,
981 		.s_idx = cb->args[0],
982 	};
983 	int err = 0;
984 
985 	if (cb->strict_check) {
986 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
987 		if (err < 0)
988 			goto end;
989 	}
990 
991 	spin_lock_bh(&net_cb.tgt_net->nsid_lock);
992 	if (net_cb.fillargs.add_ref &&
993 	    !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
994 	    !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
995 		spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
996 		err = -EAGAIN;
997 		goto end;
998 	}
999 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1000 	if (net_cb.fillargs.add_ref &&
1001 	    !net_eq(net_cb.ref_net, net_cb.tgt_net))
1002 		spin_unlock_bh(&net_cb.ref_net->nsid_lock);
1003 	spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1004 
1005 	cb->args[0] = net_cb.idx;
1006 end:
1007 	if (net_cb.fillargs.add_ref)
1008 		put_net(net_cb.tgt_net);
1009 	return err < 0 ? err : skb->len;
1010 }
1011 
1012 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
1013 {
1014 	struct net_fill_args fillargs = {
1015 		.cmd = cmd,
1016 		.nsid = id,
1017 	};
1018 	struct sk_buff *msg;
1019 	int err = -ENOMEM;
1020 
1021 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1022 	if (!msg)
1023 		goto out;
1024 
1025 	err = rtnl_net_fill(msg, &fillargs);
1026 	if (err < 0)
1027 		goto err_out;
1028 
1029 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
1030 	return;
1031 
1032 err_out:
1033 	nlmsg_free(msg);
1034 out:
1035 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1036 }
1037 
1038 static int __init net_ns_init(void)
1039 {
1040 	struct net_generic *ng;
1041 
1042 #ifdef CONFIG_NET_NS
1043 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1044 					SMP_CACHE_BYTES,
1045 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1046 
1047 	/* Create workqueue for cleanup */
1048 	netns_wq = create_singlethread_workqueue("netns");
1049 	if (!netns_wq)
1050 		panic("Could not create netns workq");
1051 #endif
1052 
1053 	ng = net_alloc_generic();
1054 	if (!ng)
1055 		panic("Could not allocate generic netns");
1056 
1057 	rcu_assign_pointer(init_net.gen, ng);
1058 
1059 	down_write(&pernet_ops_rwsem);
1060 	if (setup_net(&init_net, &init_user_ns))
1061 		panic("Could not setup the initial network namespace");
1062 
1063 	init_net_initialized = true;
1064 	up_write(&pernet_ops_rwsem);
1065 
1066 	if (register_pernet_subsys(&net_ns_ops))
1067 		panic("Could not register network namespace subsystems");
1068 
1069 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1070 		      RTNL_FLAG_DOIT_UNLOCKED);
1071 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1072 		      RTNL_FLAG_DOIT_UNLOCKED);
1073 
1074 	return 0;
1075 }
1076 
1077 pure_initcall(net_ns_init);
1078 
1079 #ifdef CONFIG_NET_NS
1080 static int __register_pernet_operations(struct list_head *list,
1081 					struct pernet_operations *ops)
1082 {
1083 	struct net *net;
1084 	int error;
1085 	LIST_HEAD(net_exit_list);
1086 
1087 	list_add_tail(&ops->list, list);
1088 	if (ops->init || (ops->id && ops->size)) {
1089 		/* We held write locked pernet_ops_rwsem, and parallel
1090 		 * setup_net() and cleanup_net() are not possible.
1091 		 */
1092 		for_each_net(net) {
1093 			error = ops_init(ops, net);
1094 			if (error)
1095 				goto out_undo;
1096 			list_add_tail(&net->exit_list, &net_exit_list);
1097 		}
1098 	}
1099 	return 0;
1100 
1101 out_undo:
1102 	/* If I have an error cleanup all namespaces I initialized */
1103 	list_del(&ops->list);
1104 	ops_exit_list(ops, &net_exit_list);
1105 	ops_free_list(ops, &net_exit_list);
1106 	return error;
1107 }
1108 
1109 static void __unregister_pernet_operations(struct pernet_operations *ops)
1110 {
1111 	struct net *net;
1112 	LIST_HEAD(net_exit_list);
1113 
1114 	list_del(&ops->list);
1115 	/* See comment in __register_pernet_operations() */
1116 	for_each_net(net)
1117 		list_add_tail(&net->exit_list, &net_exit_list);
1118 	ops_exit_list(ops, &net_exit_list);
1119 	ops_free_list(ops, &net_exit_list);
1120 }
1121 
1122 #else
1123 
1124 static int __register_pernet_operations(struct list_head *list,
1125 					struct pernet_operations *ops)
1126 {
1127 	if (!init_net_initialized) {
1128 		list_add_tail(&ops->list, list);
1129 		return 0;
1130 	}
1131 
1132 	return ops_init(ops, &init_net);
1133 }
1134 
1135 static void __unregister_pernet_operations(struct pernet_operations *ops)
1136 {
1137 	if (!init_net_initialized) {
1138 		list_del(&ops->list);
1139 	} else {
1140 		LIST_HEAD(net_exit_list);
1141 		list_add(&init_net.exit_list, &net_exit_list);
1142 		ops_exit_list(ops, &net_exit_list);
1143 		ops_free_list(ops, &net_exit_list);
1144 	}
1145 }
1146 
1147 #endif /* CONFIG_NET_NS */
1148 
1149 static DEFINE_IDA(net_generic_ids);
1150 
1151 static int register_pernet_operations(struct list_head *list,
1152 				      struct pernet_operations *ops)
1153 {
1154 	int error;
1155 
1156 	if (ops->id) {
1157 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1158 				GFP_KERNEL);
1159 		if (error < 0)
1160 			return error;
1161 		*ops->id = error;
1162 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1163 	}
1164 	error = __register_pernet_operations(list, ops);
1165 	if (error) {
1166 		rcu_barrier();
1167 		if (ops->id)
1168 			ida_free(&net_generic_ids, *ops->id);
1169 	}
1170 
1171 	return error;
1172 }
1173 
1174 static void unregister_pernet_operations(struct pernet_operations *ops)
1175 {
1176 	__unregister_pernet_operations(ops);
1177 	rcu_barrier();
1178 	if (ops->id)
1179 		ida_free(&net_generic_ids, *ops->id);
1180 }
1181 
1182 /**
1183  *      register_pernet_subsys - register a network namespace subsystem
1184  *	@ops:  pernet operations structure for the subsystem
1185  *
1186  *	Register a subsystem which has init and exit functions
1187  *	that are called when network namespaces are created and
1188  *	destroyed respectively.
1189  *
1190  *	When registered all network namespace init functions are
1191  *	called for every existing network namespace.  Allowing kernel
1192  *	modules to have a race free view of the set of network namespaces.
1193  *
1194  *	When a new network namespace is created all of the init
1195  *	methods are called in the order in which they were registered.
1196  *
1197  *	When a network namespace is destroyed all of the exit methods
1198  *	are called in the reverse of the order with which they were
1199  *	registered.
1200  */
1201 int register_pernet_subsys(struct pernet_operations *ops)
1202 {
1203 	int error;
1204 	down_write(&pernet_ops_rwsem);
1205 	error =  register_pernet_operations(first_device, ops);
1206 	up_write(&pernet_ops_rwsem);
1207 	return error;
1208 }
1209 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1210 
1211 /**
1212  *      unregister_pernet_subsys - unregister a network namespace subsystem
1213  *	@ops: pernet operations structure to manipulate
1214  *
1215  *	Remove the pernet operations structure from the list to be
1216  *	used when network namespaces are created or destroyed.  In
1217  *	addition run the exit method for all existing network
1218  *	namespaces.
1219  */
1220 void unregister_pernet_subsys(struct pernet_operations *ops)
1221 {
1222 	down_write(&pernet_ops_rwsem);
1223 	unregister_pernet_operations(ops);
1224 	up_write(&pernet_ops_rwsem);
1225 }
1226 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1227 
1228 /**
1229  *      register_pernet_device - register a network namespace device
1230  *	@ops:  pernet operations structure for the subsystem
1231  *
1232  *	Register a device which has init and exit functions
1233  *	that are called when network namespaces are created and
1234  *	destroyed respectively.
1235  *
1236  *	When registered all network namespace init functions are
1237  *	called for every existing network namespace.  Allowing kernel
1238  *	modules to have a race free view of the set of network namespaces.
1239  *
1240  *	When a new network namespace is created all of the init
1241  *	methods are called in the order in which they were registered.
1242  *
1243  *	When a network namespace is destroyed all of the exit methods
1244  *	are called in the reverse of the order with which they were
1245  *	registered.
1246  */
1247 int register_pernet_device(struct pernet_operations *ops)
1248 {
1249 	int error;
1250 	down_write(&pernet_ops_rwsem);
1251 	error = register_pernet_operations(&pernet_list, ops);
1252 	if (!error && (first_device == &pernet_list))
1253 		first_device = &ops->list;
1254 	up_write(&pernet_ops_rwsem);
1255 	return error;
1256 }
1257 EXPORT_SYMBOL_GPL(register_pernet_device);
1258 
1259 /**
1260  *      unregister_pernet_device - unregister a network namespace netdevice
1261  *	@ops: pernet operations structure to manipulate
1262  *
1263  *	Remove the pernet operations structure from the list to be
1264  *	used when network namespaces are created or destroyed.  In
1265  *	addition run the exit method for all existing network
1266  *	namespaces.
1267  */
1268 void unregister_pernet_device(struct pernet_operations *ops)
1269 {
1270 	down_write(&pernet_ops_rwsem);
1271 	if (&ops->list == first_device)
1272 		first_device = first_device->next;
1273 	unregister_pernet_operations(ops);
1274 	up_write(&pernet_ops_rwsem);
1275 }
1276 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1277 
1278 #ifdef CONFIG_NET_NS
1279 static struct ns_common *netns_get(struct task_struct *task)
1280 {
1281 	struct net *net = NULL;
1282 	struct nsproxy *nsproxy;
1283 
1284 	task_lock(task);
1285 	nsproxy = task->nsproxy;
1286 	if (nsproxy)
1287 		net = get_net(nsproxy->net_ns);
1288 	task_unlock(task);
1289 
1290 	return net ? &net->ns : NULL;
1291 }
1292 
1293 static inline struct net *to_net_ns(struct ns_common *ns)
1294 {
1295 	return container_of(ns, struct net, ns);
1296 }
1297 
1298 static void netns_put(struct ns_common *ns)
1299 {
1300 	put_net(to_net_ns(ns));
1301 }
1302 
1303 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1304 {
1305 	struct net *net = to_net_ns(ns);
1306 
1307 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1308 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1309 		return -EPERM;
1310 
1311 	put_net(nsproxy->net_ns);
1312 	nsproxy->net_ns = get_net(net);
1313 	return 0;
1314 }
1315 
1316 static struct user_namespace *netns_owner(struct ns_common *ns)
1317 {
1318 	return to_net_ns(ns)->user_ns;
1319 }
1320 
1321 const struct proc_ns_operations netns_operations = {
1322 	.name		= "net",
1323 	.type		= CLONE_NEWNET,
1324 	.get		= netns_get,
1325 	.put		= netns_put,
1326 	.install	= netns_install,
1327 	.owner		= netns_owner,
1328 };
1329 #endif
1330