xref: /openbmc/linux/net/core/net_namespace.c (revision 1a57feb8)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 struct net init_net = {
38 	.count		= REFCOUNT_INIT(1),
39 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42 
43 static bool init_net_initialized;
44 /*
45  * net_sem: protects: pernet_list, net_generic_ids,
46  * init_net_initialized and first_device pointer.
47  */
48 DECLARE_RWSEM(net_sem);
49 
50 #define MIN_PERNET_OPS_ID	\
51 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
52 
53 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
54 
55 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
56 
57 static struct net_generic *net_alloc_generic(void)
58 {
59 	struct net_generic *ng;
60 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
61 
62 	ng = kzalloc(generic_size, GFP_KERNEL);
63 	if (ng)
64 		ng->s.len = max_gen_ptrs;
65 
66 	return ng;
67 }
68 
69 static int net_assign_generic(struct net *net, unsigned int id, void *data)
70 {
71 	struct net_generic *ng, *old_ng;
72 
73 	BUG_ON(!mutex_is_locked(&net_mutex));
74 	BUG_ON(id < MIN_PERNET_OPS_ID);
75 
76 	old_ng = rcu_dereference_protected(net->gen,
77 					   lockdep_is_held(&net_mutex));
78 	if (old_ng->s.len > id) {
79 		old_ng->ptr[id] = data;
80 		return 0;
81 	}
82 
83 	ng = net_alloc_generic();
84 	if (ng == NULL)
85 		return -ENOMEM;
86 
87 	/*
88 	 * Some synchronisation notes:
89 	 *
90 	 * The net_generic explores the net->gen array inside rcu
91 	 * read section. Besides once set the net->gen->ptr[x]
92 	 * pointer never changes (see rules in netns/generic.h).
93 	 *
94 	 * That said, we simply duplicate this array and schedule
95 	 * the old copy for kfree after a grace period.
96 	 */
97 
98 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
99 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
100 	ng->ptr[id] = data;
101 
102 	rcu_assign_pointer(net->gen, ng);
103 	kfree_rcu(old_ng, s.rcu);
104 	return 0;
105 }
106 
107 static int ops_init(const struct pernet_operations *ops, struct net *net)
108 {
109 	int err = -ENOMEM;
110 	void *data = NULL;
111 
112 	if (ops->id && ops->size) {
113 		data = kzalloc(ops->size, GFP_KERNEL);
114 		if (!data)
115 			goto out;
116 
117 		err = net_assign_generic(net, *ops->id, data);
118 		if (err)
119 			goto cleanup;
120 	}
121 	err = 0;
122 	if (ops->init)
123 		err = ops->init(net);
124 	if (!err)
125 		return 0;
126 
127 cleanup:
128 	kfree(data);
129 
130 out:
131 	return err;
132 }
133 
134 static void ops_free(const struct pernet_operations *ops, struct net *net)
135 {
136 	if (ops->id && ops->size) {
137 		kfree(net_generic(net, *ops->id));
138 	}
139 }
140 
141 static void ops_exit_list(const struct pernet_operations *ops,
142 			  struct list_head *net_exit_list)
143 {
144 	struct net *net;
145 	if (ops->exit) {
146 		list_for_each_entry(net, net_exit_list, exit_list)
147 			ops->exit(net);
148 	}
149 	if (ops->exit_batch)
150 		ops->exit_batch(net_exit_list);
151 }
152 
153 static void ops_free_list(const struct pernet_operations *ops,
154 			  struct list_head *net_exit_list)
155 {
156 	struct net *net;
157 	if (ops->size && ops->id) {
158 		list_for_each_entry(net, net_exit_list, exit_list)
159 			ops_free(ops, net);
160 	}
161 }
162 
163 /* should be called with nsid_lock held */
164 static int alloc_netid(struct net *net, struct net *peer, int reqid)
165 {
166 	int min = 0, max = 0;
167 
168 	if (reqid >= 0) {
169 		min = reqid;
170 		max = reqid + 1;
171 	}
172 
173 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
174 }
175 
176 /* This function is used by idr_for_each(). If net is equal to peer, the
177  * function returns the id so that idr_for_each() stops. Because we cannot
178  * returns the id 0 (idr_for_each() will not stop), we return the magic value
179  * NET_ID_ZERO (-1) for it.
180  */
181 #define NET_ID_ZERO -1
182 static int net_eq_idr(int id, void *net, void *peer)
183 {
184 	if (net_eq(net, peer))
185 		return id ? : NET_ID_ZERO;
186 	return 0;
187 }
188 
189 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
190  * is set to true, thus the caller knows that the new id must be notified via
191  * rtnl.
192  */
193 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
194 {
195 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
196 	bool alloc_it = *alloc;
197 
198 	*alloc = false;
199 
200 	/* Magic value for id 0. */
201 	if (id == NET_ID_ZERO)
202 		return 0;
203 	if (id > 0)
204 		return id;
205 
206 	if (alloc_it) {
207 		id = alloc_netid(net, peer, -1);
208 		*alloc = true;
209 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
210 	}
211 
212 	return NETNSA_NSID_NOT_ASSIGNED;
213 }
214 
215 /* should be called with nsid_lock held */
216 static int __peernet2id(struct net *net, struct net *peer)
217 {
218 	bool no = false;
219 
220 	return __peernet2id_alloc(net, peer, &no);
221 }
222 
223 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
224 /* This function returns the id of a peer netns. If no id is assigned, one will
225  * be allocated and returned.
226  */
227 int peernet2id_alloc(struct net *net, struct net *peer)
228 {
229 	bool alloc = false, alive = false;
230 	int id;
231 
232 	if (refcount_read(&net->count) == 0)
233 		return NETNSA_NSID_NOT_ASSIGNED;
234 	spin_lock_bh(&net->nsid_lock);
235 	/*
236 	 * When peer is obtained from RCU lists, we may race with
237 	 * its cleanup. Check whether it's alive, and this guarantees
238 	 * we never hash a peer back to net->netns_ids, after it has
239 	 * just been idr_remove()'d from there in cleanup_net().
240 	 */
241 	if (maybe_get_net(peer))
242 		alive = alloc = true;
243 	id = __peernet2id_alloc(net, peer, &alloc);
244 	spin_unlock_bh(&net->nsid_lock);
245 	if (alloc && id >= 0)
246 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
247 	if (alive)
248 		put_net(peer);
249 	return id;
250 }
251 EXPORT_SYMBOL_GPL(peernet2id_alloc);
252 
253 /* This function returns, if assigned, the id of a peer netns. */
254 int peernet2id(struct net *net, struct net *peer)
255 {
256 	int id;
257 
258 	spin_lock_bh(&net->nsid_lock);
259 	id = __peernet2id(net, peer);
260 	spin_unlock_bh(&net->nsid_lock);
261 	return id;
262 }
263 EXPORT_SYMBOL(peernet2id);
264 
265 /* This function returns true is the peer netns has an id assigned into the
266  * current netns.
267  */
268 bool peernet_has_id(struct net *net, struct net *peer)
269 {
270 	return peernet2id(net, peer) >= 0;
271 }
272 
273 struct net *get_net_ns_by_id(struct net *net, int id)
274 {
275 	struct net *peer;
276 
277 	if (id < 0)
278 		return NULL;
279 
280 	rcu_read_lock();
281 	peer = idr_find(&net->netns_ids, id);
282 	if (peer)
283 		peer = maybe_get_net(peer);
284 	rcu_read_unlock();
285 
286 	return peer;
287 }
288 
289 /*
290  * setup_net runs the initializers for the network namespace object.
291  */
292 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
293 {
294 	/* Must be called with net_sem held */
295 	const struct pernet_operations *ops, *saved_ops;
296 	int error = 0;
297 	LIST_HEAD(net_exit_list);
298 
299 	refcount_set(&net->count, 1);
300 	refcount_set(&net->passive, 1);
301 	net->dev_base_seq = 1;
302 	net->user_ns = user_ns;
303 	idr_init(&net->netns_ids);
304 	spin_lock_init(&net->nsid_lock);
305 
306 	list_for_each_entry(ops, &pernet_list, list) {
307 		error = ops_init(ops, net);
308 		if (error < 0)
309 			goto out_undo;
310 	}
311 	rtnl_lock();
312 	list_add_tail_rcu(&net->list, &net_namespace_list);
313 	rtnl_unlock();
314 out:
315 	return error;
316 
317 out_undo:
318 	/* Walk through the list backwards calling the exit functions
319 	 * for the pernet modules whose init functions did not fail.
320 	 */
321 	list_add(&net->exit_list, &net_exit_list);
322 	saved_ops = ops;
323 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
324 		ops_exit_list(ops, &net_exit_list);
325 
326 	ops = saved_ops;
327 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
328 		ops_free_list(ops, &net_exit_list);
329 
330 	rcu_barrier();
331 	goto out;
332 }
333 
334 static int __net_init net_defaults_init_net(struct net *net)
335 {
336 	net->core.sysctl_somaxconn = SOMAXCONN;
337 	return 0;
338 }
339 
340 static struct pernet_operations net_defaults_ops = {
341 	.init = net_defaults_init_net,
342 };
343 
344 static __init int net_defaults_init(void)
345 {
346 	if (register_pernet_subsys(&net_defaults_ops))
347 		panic("Cannot initialize net default settings");
348 
349 	return 0;
350 }
351 
352 core_initcall(net_defaults_init);
353 
354 #ifdef CONFIG_NET_NS
355 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
356 {
357 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
358 }
359 
360 static void dec_net_namespaces(struct ucounts *ucounts)
361 {
362 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
363 }
364 
365 static struct kmem_cache *net_cachep;
366 static struct workqueue_struct *netns_wq;
367 
368 static struct net *net_alloc(void)
369 {
370 	struct net *net = NULL;
371 	struct net_generic *ng;
372 
373 	ng = net_alloc_generic();
374 	if (!ng)
375 		goto out;
376 
377 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
378 	if (!net)
379 		goto out_free;
380 
381 	rcu_assign_pointer(net->gen, ng);
382 out:
383 	return net;
384 
385 out_free:
386 	kfree(ng);
387 	goto out;
388 }
389 
390 static void net_free(struct net *net)
391 {
392 	kfree(rcu_access_pointer(net->gen));
393 	kmem_cache_free(net_cachep, net);
394 }
395 
396 void net_drop_ns(void *p)
397 {
398 	struct net *ns = p;
399 	if (ns && refcount_dec_and_test(&ns->passive))
400 		net_free(ns);
401 }
402 
403 struct net *copy_net_ns(unsigned long flags,
404 			struct user_namespace *user_ns, struct net *old_net)
405 {
406 	struct ucounts *ucounts;
407 	struct net *net;
408 	int rv;
409 
410 	if (!(flags & CLONE_NEWNET))
411 		return get_net(old_net);
412 
413 	ucounts = inc_net_namespaces(user_ns);
414 	if (!ucounts)
415 		return ERR_PTR(-ENOSPC);
416 
417 	net = net_alloc();
418 	if (!net) {
419 		rv = -ENOMEM;
420 		goto dec_ucounts;
421 	}
422 	refcount_set(&net->passive, 1);
423 	net->ucounts = ucounts;
424 	get_user_ns(user_ns);
425 
426 	rv = down_read_killable(&net_sem);
427 	if (rv < 0)
428 		goto put_userns;
429 	rv = mutex_lock_killable(&net_mutex);
430 	if (rv < 0)
431 		goto up_read;
432 	rv = setup_net(net, user_ns);
433 	mutex_unlock(&net_mutex);
434 up_read:
435 	up_read(&net_sem);
436 	if (rv < 0) {
437 put_userns:
438 		put_user_ns(user_ns);
439 		net_drop_ns(net);
440 dec_ucounts:
441 		dec_net_namespaces(ucounts);
442 		return ERR_PTR(rv);
443 	}
444 	return net;
445 }
446 
447 static void unhash_nsid(struct net *net, struct net *last)
448 {
449 	struct net *tmp;
450 	/* This function is only called from cleanup_net() work,
451 	 * and this work is the only process, that may delete
452 	 * a net from net_namespace_list. So, when the below
453 	 * is executing, the list may only grow. Thus, we do not
454 	 * use for_each_net_rcu() or rtnl_lock().
455 	 */
456 	for_each_net(tmp) {
457 		int id;
458 
459 		spin_lock_bh(&tmp->nsid_lock);
460 		id = __peernet2id(tmp, net);
461 		if (id >= 0)
462 			idr_remove(&tmp->netns_ids, id);
463 		spin_unlock_bh(&tmp->nsid_lock);
464 		if (id >= 0)
465 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
466 		if (tmp == last)
467 			break;
468 	}
469 	spin_lock_bh(&net->nsid_lock);
470 	idr_destroy(&net->netns_ids);
471 	spin_unlock_bh(&net->nsid_lock);
472 }
473 
474 static DEFINE_SPINLOCK(cleanup_list_lock);
475 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
476 
477 static void cleanup_net(struct work_struct *work)
478 {
479 	const struct pernet_operations *ops;
480 	struct net *net, *tmp, *last;
481 	struct list_head net_kill_list;
482 	LIST_HEAD(net_exit_list);
483 
484 	/* Atomically snapshot the list of namespaces to cleanup */
485 	spin_lock_irq(&cleanup_list_lock);
486 	list_replace_init(&cleanup_list, &net_kill_list);
487 	spin_unlock_irq(&cleanup_list_lock);
488 
489 	down_read(&net_sem);
490 	mutex_lock(&net_mutex);
491 
492 	/* Don't let anyone else find us. */
493 	rtnl_lock();
494 	list_for_each_entry(net, &net_kill_list, cleanup_list)
495 		list_del_rcu(&net->list);
496 	/* Cache last net. After we unlock rtnl, no one new net
497 	 * added to net_namespace_list can assign nsid pointer
498 	 * to a net from net_kill_list (see peernet2id_alloc()).
499 	 * So, we skip them in unhash_nsid().
500 	 *
501 	 * Note, that unhash_nsid() does not delete nsid links
502 	 * between net_kill_list's nets, as they've already
503 	 * deleted from net_namespace_list. But, this would be
504 	 * useless anyway, as netns_ids are destroyed there.
505 	 */
506 	last = list_last_entry(&net_namespace_list, struct net, list);
507 	rtnl_unlock();
508 
509 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
510 		unhash_nsid(net, last);
511 		list_add_tail(&net->exit_list, &net_exit_list);
512 	}
513 
514 	/*
515 	 * Another CPU might be rcu-iterating the list, wait for it.
516 	 * This needs to be before calling the exit() notifiers, so
517 	 * the rcu_barrier() below isn't sufficient alone.
518 	 */
519 	synchronize_rcu();
520 
521 	/* Run all of the network namespace exit methods */
522 	list_for_each_entry_reverse(ops, &pernet_list, list)
523 		ops_exit_list(ops, &net_exit_list);
524 
525 	/* Free the net generic variables */
526 	list_for_each_entry_reverse(ops, &pernet_list, list)
527 		ops_free_list(ops, &net_exit_list);
528 
529 	mutex_unlock(&net_mutex);
530 	up_read(&net_sem);
531 
532 	/* Ensure there are no outstanding rcu callbacks using this
533 	 * network namespace.
534 	 */
535 	rcu_barrier();
536 
537 	/* Finally it is safe to free my network namespace structure */
538 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
539 		list_del_init(&net->exit_list);
540 		dec_net_namespaces(net->ucounts);
541 		put_user_ns(net->user_ns);
542 		net_drop_ns(net);
543 	}
544 }
545 
546 /**
547  * net_ns_barrier - wait until concurrent net_cleanup_work is done
548  *
549  * cleanup_net runs from work queue and will first remove namespaces
550  * from the global list, then run net exit functions.
551  *
552  * Call this in module exit path to make sure that all netns
553  * ->exit ops have been invoked before the function is removed.
554  */
555 void net_ns_barrier(void)
556 {
557 	down_write(&net_sem);
558 	mutex_lock(&net_mutex);
559 	mutex_unlock(&net_mutex);
560 	up_write(&net_sem);
561 }
562 EXPORT_SYMBOL(net_ns_barrier);
563 
564 static DECLARE_WORK(net_cleanup_work, cleanup_net);
565 
566 void __put_net(struct net *net)
567 {
568 	/* Cleanup the network namespace in process context */
569 	unsigned long flags;
570 
571 	spin_lock_irqsave(&cleanup_list_lock, flags);
572 	list_add(&net->cleanup_list, &cleanup_list);
573 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
574 
575 	queue_work(netns_wq, &net_cleanup_work);
576 }
577 EXPORT_SYMBOL_GPL(__put_net);
578 
579 struct net *get_net_ns_by_fd(int fd)
580 {
581 	struct file *file;
582 	struct ns_common *ns;
583 	struct net *net;
584 
585 	file = proc_ns_fget(fd);
586 	if (IS_ERR(file))
587 		return ERR_CAST(file);
588 
589 	ns = get_proc_ns(file_inode(file));
590 	if (ns->ops == &netns_operations)
591 		net = get_net(container_of(ns, struct net, ns));
592 	else
593 		net = ERR_PTR(-EINVAL);
594 
595 	fput(file);
596 	return net;
597 }
598 
599 #else
600 struct net *get_net_ns_by_fd(int fd)
601 {
602 	return ERR_PTR(-EINVAL);
603 }
604 #endif
605 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
606 
607 struct net *get_net_ns_by_pid(pid_t pid)
608 {
609 	struct task_struct *tsk;
610 	struct net *net;
611 
612 	/* Lookup the network namespace */
613 	net = ERR_PTR(-ESRCH);
614 	rcu_read_lock();
615 	tsk = find_task_by_vpid(pid);
616 	if (tsk) {
617 		struct nsproxy *nsproxy;
618 		task_lock(tsk);
619 		nsproxy = tsk->nsproxy;
620 		if (nsproxy)
621 			net = get_net(nsproxy->net_ns);
622 		task_unlock(tsk);
623 	}
624 	rcu_read_unlock();
625 	return net;
626 }
627 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
628 
629 static __net_init int net_ns_net_init(struct net *net)
630 {
631 #ifdef CONFIG_NET_NS
632 	net->ns.ops = &netns_operations;
633 #endif
634 	return ns_alloc_inum(&net->ns);
635 }
636 
637 static __net_exit void net_ns_net_exit(struct net *net)
638 {
639 	ns_free_inum(&net->ns);
640 }
641 
642 static struct pernet_operations __net_initdata net_ns_ops = {
643 	.init = net_ns_net_init,
644 	.exit = net_ns_net_exit,
645 };
646 
647 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
648 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
649 	[NETNSA_NSID]		= { .type = NLA_S32 },
650 	[NETNSA_PID]		= { .type = NLA_U32 },
651 	[NETNSA_FD]		= { .type = NLA_U32 },
652 };
653 
654 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
655 			  struct netlink_ext_ack *extack)
656 {
657 	struct net *net = sock_net(skb->sk);
658 	struct nlattr *tb[NETNSA_MAX + 1];
659 	struct nlattr *nla;
660 	struct net *peer;
661 	int nsid, err;
662 
663 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
664 			  rtnl_net_policy, extack);
665 	if (err < 0)
666 		return err;
667 	if (!tb[NETNSA_NSID]) {
668 		NL_SET_ERR_MSG(extack, "nsid is missing");
669 		return -EINVAL;
670 	}
671 	nsid = nla_get_s32(tb[NETNSA_NSID]);
672 
673 	if (tb[NETNSA_PID]) {
674 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
675 		nla = tb[NETNSA_PID];
676 	} else if (tb[NETNSA_FD]) {
677 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
678 		nla = tb[NETNSA_FD];
679 	} else {
680 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
681 		return -EINVAL;
682 	}
683 	if (IS_ERR(peer)) {
684 		NL_SET_BAD_ATTR(extack, nla);
685 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
686 		return PTR_ERR(peer);
687 	}
688 
689 	spin_lock_bh(&net->nsid_lock);
690 	if (__peernet2id(net, peer) >= 0) {
691 		spin_unlock_bh(&net->nsid_lock);
692 		err = -EEXIST;
693 		NL_SET_BAD_ATTR(extack, nla);
694 		NL_SET_ERR_MSG(extack,
695 			       "Peer netns already has a nsid assigned");
696 		goto out;
697 	}
698 
699 	err = alloc_netid(net, peer, nsid);
700 	spin_unlock_bh(&net->nsid_lock);
701 	if (err >= 0) {
702 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
703 		err = 0;
704 	} else if (err == -ENOSPC && nsid >= 0) {
705 		err = -EEXIST;
706 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
707 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
708 	}
709 out:
710 	put_net(peer);
711 	return err;
712 }
713 
714 static int rtnl_net_get_size(void)
715 {
716 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
717 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
718 	       ;
719 }
720 
721 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
722 			 int cmd, struct net *net, int nsid)
723 {
724 	struct nlmsghdr *nlh;
725 	struct rtgenmsg *rth;
726 
727 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
728 	if (!nlh)
729 		return -EMSGSIZE;
730 
731 	rth = nlmsg_data(nlh);
732 	rth->rtgen_family = AF_UNSPEC;
733 
734 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
735 		goto nla_put_failure;
736 
737 	nlmsg_end(skb, nlh);
738 	return 0;
739 
740 nla_put_failure:
741 	nlmsg_cancel(skb, nlh);
742 	return -EMSGSIZE;
743 }
744 
745 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
746 			  struct netlink_ext_ack *extack)
747 {
748 	struct net *net = sock_net(skb->sk);
749 	struct nlattr *tb[NETNSA_MAX + 1];
750 	struct nlattr *nla;
751 	struct sk_buff *msg;
752 	struct net *peer;
753 	int err, id;
754 
755 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
756 			  rtnl_net_policy, extack);
757 	if (err < 0)
758 		return err;
759 	if (tb[NETNSA_PID]) {
760 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
761 		nla = tb[NETNSA_PID];
762 	} else if (tb[NETNSA_FD]) {
763 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
764 		nla = tb[NETNSA_FD];
765 	} else {
766 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
767 		return -EINVAL;
768 	}
769 
770 	if (IS_ERR(peer)) {
771 		NL_SET_BAD_ATTR(extack, nla);
772 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
773 		return PTR_ERR(peer);
774 	}
775 
776 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
777 	if (!msg) {
778 		err = -ENOMEM;
779 		goto out;
780 	}
781 
782 	id = peernet2id(net, peer);
783 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
784 			    RTM_NEWNSID, net, id);
785 	if (err < 0)
786 		goto err_out;
787 
788 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
789 	goto out;
790 
791 err_out:
792 	nlmsg_free(msg);
793 out:
794 	put_net(peer);
795 	return err;
796 }
797 
798 struct rtnl_net_dump_cb {
799 	struct net *net;
800 	struct sk_buff *skb;
801 	struct netlink_callback *cb;
802 	int idx;
803 	int s_idx;
804 };
805 
806 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
807 {
808 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
809 	int ret;
810 
811 	if (net_cb->idx < net_cb->s_idx)
812 		goto cont;
813 
814 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
815 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
816 			    RTM_NEWNSID, net_cb->net, id);
817 	if (ret < 0)
818 		return ret;
819 
820 cont:
821 	net_cb->idx++;
822 	return 0;
823 }
824 
825 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
826 {
827 	struct net *net = sock_net(skb->sk);
828 	struct rtnl_net_dump_cb net_cb = {
829 		.net = net,
830 		.skb = skb,
831 		.cb = cb,
832 		.idx = 0,
833 		.s_idx = cb->args[0],
834 	};
835 
836 	spin_lock_bh(&net->nsid_lock);
837 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
838 	spin_unlock_bh(&net->nsid_lock);
839 
840 	cb->args[0] = net_cb.idx;
841 	return skb->len;
842 }
843 
844 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
845 {
846 	struct sk_buff *msg;
847 	int err = -ENOMEM;
848 
849 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
850 	if (!msg)
851 		goto out;
852 
853 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
854 	if (err < 0)
855 		goto err_out;
856 
857 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
858 	return;
859 
860 err_out:
861 	nlmsg_free(msg);
862 out:
863 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
864 }
865 
866 static int __init net_ns_init(void)
867 {
868 	struct net_generic *ng;
869 
870 #ifdef CONFIG_NET_NS
871 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
872 					SMP_CACHE_BYTES,
873 					SLAB_PANIC, NULL);
874 
875 	/* Create workqueue for cleanup */
876 	netns_wq = create_singlethread_workqueue("netns");
877 	if (!netns_wq)
878 		panic("Could not create netns workq");
879 #endif
880 
881 	ng = net_alloc_generic();
882 	if (!ng)
883 		panic("Could not allocate generic netns");
884 
885 	rcu_assign_pointer(init_net.gen, ng);
886 
887 	down_write(&net_sem);
888 	if (setup_net(&init_net, &init_user_ns))
889 		panic("Could not setup the initial network namespace");
890 
891 	init_net_initialized = true;
892 	up_write(&net_sem);
893 
894 	register_pernet_subsys(&net_ns_ops);
895 
896 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
897 		      RTNL_FLAG_DOIT_UNLOCKED);
898 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
899 		      RTNL_FLAG_DOIT_UNLOCKED);
900 
901 	return 0;
902 }
903 
904 pure_initcall(net_ns_init);
905 
906 #ifdef CONFIG_NET_NS
907 static int __register_pernet_operations(struct list_head *list,
908 					struct pernet_operations *ops)
909 {
910 	struct net *net;
911 	int error;
912 	LIST_HEAD(net_exit_list);
913 
914 	list_add_tail(&ops->list, list);
915 	if (ops->init || (ops->id && ops->size)) {
916 		for_each_net(net) {
917 			error = ops_init(ops, net);
918 			if (error)
919 				goto out_undo;
920 			list_add_tail(&net->exit_list, &net_exit_list);
921 		}
922 	}
923 	return 0;
924 
925 out_undo:
926 	/* If I have an error cleanup all namespaces I initialized */
927 	list_del(&ops->list);
928 	ops_exit_list(ops, &net_exit_list);
929 	ops_free_list(ops, &net_exit_list);
930 	return error;
931 }
932 
933 static void __unregister_pernet_operations(struct pernet_operations *ops)
934 {
935 	struct net *net;
936 	LIST_HEAD(net_exit_list);
937 
938 	list_del(&ops->list);
939 	for_each_net(net)
940 		list_add_tail(&net->exit_list, &net_exit_list);
941 	ops_exit_list(ops, &net_exit_list);
942 	ops_free_list(ops, &net_exit_list);
943 }
944 
945 #else
946 
947 static int __register_pernet_operations(struct list_head *list,
948 					struct pernet_operations *ops)
949 {
950 	if (!init_net_initialized) {
951 		list_add_tail(&ops->list, list);
952 		return 0;
953 	}
954 
955 	return ops_init(ops, &init_net);
956 }
957 
958 static void __unregister_pernet_operations(struct pernet_operations *ops)
959 {
960 	if (!init_net_initialized) {
961 		list_del(&ops->list);
962 	} else {
963 		LIST_HEAD(net_exit_list);
964 		list_add(&init_net.exit_list, &net_exit_list);
965 		ops_exit_list(ops, &net_exit_list);
966 		ops_free_list(ops, &net_exit_list);
967 	}
968 }
969 
970 #endif /* CONFIG_NET_NS */
971 
972 static DEFINE_IDA(net_generic_ids);
973 
974 static int register_pernet_operations(struct list_head *list,
975 				      struct pernet_operations *ops)
976 {
977 	int error;
978 
979 	if (ops->id) {
980 again:
981 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
982 		if (error < 0) {
983 			if (error == -EAGAIN) {
984 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
985 				goto again;
986 			}
987 			return error;
988 		}
989 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
990 	}
991 	error = __register_pernet_operations(list, ops);
992 	if (error) {
993 		rcu_barrier();
994 		if (ops->id)
995 			ida_remove(&net_generic_ids, *ops->id);
996 	}
997 
998 	return error;
999 }
1000 
1001 static void unregister_pernet_operations(struct pernet_operations *ops)
1002 {
1003 
1004 	__unregister_pernet_operations(ops);
1005 	rcu_barrier();
1006 	if (ops->id)
1007 		ida_remove(&net_generic_ids, *ops->id);
1008 }
1009 
1010 /**
1011  *      register_pernet_subsys - register a network namespace subsystem
1012  *	@ops:  pernet operations structure for the subsystem
1013  *
1014  *	Register a subsystem which has init and exit functions
1015  *	that are called when network namespaces are created and
1016  *	destroyed respectively.
1017  *
1018  *	When registered all network namespace init functions are
1019  *	called for every existing network namespace.  Allowing kernel
1020  *	modules to have a race free view of the set of network namespaces.
1021  *
1022  *	When a new network namespace is created all of the init
1023  *	methods are called in the order in which they were registered.
1024  *
1025  *	When a network namespace is destroyed all of the exit methods
1026  *	are called in the reverse of the order with which they were
1027  *	registered.
1028  */
1029 int register_pernet_subsys(struct pernet_operations *ops)
1030 {
1031 	int error;
1032 	down_write(&net_sem);
1033 	error =  register_pernet_operations(first_device, ops);
1034 	up_write(&net_sem);
1035 	return error;
1036 }
1037 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1038 
1039 /**
1040  *      unregister_pernet_subsys - unregister a network namespace subsystem
1041  *	@ops: pernet operations structure to manipulate
1042  *
1043  *	Remove the pernet operations structure from the list to be
1044  *	used when network namespaces are created or destroyed.  In
1045  *	addition run the exit method for all existing network
1046  *	namespaces.
1047  */
1048 void unregister_pernet_subsys(struct pernet_operations *ops)
1049 {
1050 	down_write(&net_sem);
1051 	unregister_pernet_operations(ops);
1052 	up_write(&net_sem);
1053 }
1054 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1055 
1056 /**
1057  *      register_pernet_device - register a network namespace device
1058  *	@ops:  pernet operations structure for the subsystem
1059  *
1060  *	Register a device which has init and exit functions
1061  *	that are called when network namespaces are created and
1062  *	destroyed respectively.
1063  *
1064  *	When registered all network namespace init functions are
1065  *	called for every existing network namespace.  Allowing kernel
1066  *	modules to have a race free view of the set of network namespaces.
1067  *
1068  *	When a new network namespace is created all of the init
1069  *	methods are called in the order in which they were registered.
1070  *
1071  *	When a network namespace is destroyed all of the exit methods
1072  *	are called in the reverse of the order with which they were
1073  *	registered.
1074  */
1075 int register_pernet_device(struct pernet_operations *ops)
1076 {
1077 	int error;
1078 	down_write(&net_sem);
1079 	error = register_pernet_operations(&pernet_list, ops);
1080 	if (!error && (first_device == &pernet_list))
1081 		first_device = &ops->list;
1082 	up_write(&net_sem);
1083 	return error;
1084 }
1085 EXPORT_SYMBOL_GPL(register_pernet_device);
1086 
1087 /**
1088  *      unregister_pernet_device - unregister a network namespace netdevice
1089  *	@ops: pernet operations structure to manipulate
1090  *
1091  *	Remove the pernet operations structure from the list to be
1092  *	used when network namespaces are created or destroyed.  In
1093  *	addition run the exit method for all existing network
1094  *	namespaces.
1095  */
1096 void unregister_pernet_device(struct pernet_operations *ops)
1097 {
1098 	down_write(&net_sem);
1099 	if (&ops->list == first_device)
1100 		first_device = first_device->next;
1101 	unregister_pernet_operations(ops);
1102 	up_write(&net_sem);
1103 }
1104 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1105 
1106 #ifdef CONFIG_NET_NS
1107 static struct ns_common *netns_get(struct task_struct *task)
1108 {
1109 	struct net *net = NULL;
1110 	struct nsproxy *nsproxy;
1111 
1112 	task_lock(task);
1113 	nsproxy = task->nsproxy;
1114 	if (nsproxy)
1115 		net = get_net(nsproxy->net_ns);
1116 	task_unlock(task);
1117 
1118 	return net ? &net->ns : NULL;
1119 }
1120 
1121 static inline struct net *to_net_ns(struct ns_common *ns)
1122 {
1123 	return container_of(ns, struct net, ns);
1124 }
1125 
1126 static void netns_put(struct ns_common *ns)
1127 {
1128 	put_net(to_net_ns(ns));
1129 }
1130 
1131 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1132 {
1133 	struct net *net = to_net_ns(ns);
1134 
1135 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1136 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1137 		return -EPERM;
1138 
1139 	put_net(nsproxy->net_ns);
1140 	nsproxy->net_ns = get_net(net);
1141 	return 0;
1142 }
1143 
1144 static struct user_namespace *netns_owner(struct ns_common *ns)
1145 {
1146 	return to_net_ns(ns)->user_ns;
1147 }
1148 
1149 const struct proc_ns_operations netns_operations = {
1150 	.name		= "net",
1151 	.type		= CLONE_NEWNET,
1152 	.get		= netns_get,
1153 	.put		= netns_put,
1154 	.install	= netns_install,
1155 	.owner		= netns_owner,
1156 };
1157 #endif
1158