xref: /openbmc/linux/net/core/net_namespace.c (revision 109582af)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
41 
42 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
43 
44 static struct net_generic *net_alloc_generic(void)
45 {
46 	struct net_generic *ng;
47 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
48 
49 	ng = kzalloc(generic_size, GFP_KERNEL);
50 	if (ng)
51 		ng->len = max_gen_ptrs;
52 
53 	return ng;
54 }
55 
56 static int net_assign_generic(struct net *net, int id, void *data)
57 {
58 	struct net_generic *ng, *old_ng;
59 
60 	BUG_ON(!mutex_is_locked(&net_mutex));
61 	BUG_ON(id == 0);
62 
63 	old_ng = rcu_dereference_protected(net->gen,
64 					   lockdep_is_held(&net_mutex));
65 	ng = old_ng;
66 	if (old_ng->len >= id)
67 		goto assign;
68 
69 	ng = net_alloc_generic();
70 	if (ng == NULL)
71 		return -ENOMEM;
72 
73 	/*
74 	 * Some synchronisation notes:
75 	 *
76 	 * The net_generic explores the net->gen array inside rcu
77 	 * read section. Besides once set the net->gen->ptr[x]
78 	 * pointer never changes (see rules in netns/generic.h).
79 	 *
80 	 * That said, we simply duplicate this array and schedule
81 	 * the old copy for kfree after a grace period.
82 	 */
83 
84 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
85 
86 	rcu_assign_pointer(net->gen, ng);
87 	kfree_rcu(old_ng, rcu);
88 assign:
89 	ng->ptr[id - 1] = data;
90 	return 0;
91 }
92 
93 static int ops_init(const struct pernet_operations *ops, struct net *net)
94 {
95 	int err = -ENOMEM;
96 	void *data = NULL;
97 
98 	if (ops->id && ops->size) {
99 		data = kzalloc(ops->size, GFP_KERNEL);
100 		if (!data)
101 			goto out;
102 
103 		err = net_assign_generic(net, *ops->id, data);
104 		if (err)
105 			goto cleanup;
106 	}
107 	err = 0;
108 	if (ops->init)
109 		err = ops->init(net);
110 	if (!err)
111 		return 0;
112 
113 cleanup:
114 	kfree(data);
115 
116 out:
117 	return err;
118 }
119 
120 static void ops_free(const struct pernet_operations *ops, struct net *net)
121 {
122 	if (ops->id && ops->size) {
123 		int id = *ops->id;
124 		kfree(net_generic(net, id));
125 	}
126 }
127 
128 static void ops_exit_list(const struct pernet_operations *ops,
129 			  struct list_head *net_exit_list)
130 {
131 	struct net *net;
132 	if (ops->exit) {
133 		list_for_each_entry(net, net_exit_list, exit_list)
134 			ops->exit(net);
135 	}
136 	if (ops->exit_batch)
137 		ops->exit_batch(net_exit_list);
138 }
139 
140 static void ops_free_list(const struct pernet_operations *ops,
141 			  struct list_head *net_exit_list)
142 {
143 	struct net *net;
144 	if (ops->size && ops->id) {
145 		list_for_each_entry(net, net_exit_list, exit_list)
146 			ops_free(ops, net);
147 	}
148 }
149 
150 static void rtnl_net_notifyid(struct net *net, struct net *peer, int cmd,
151 			      int id);
152 static int alloc_netid(struct net *net, struct net *peer, int reqid)
153 {
154 	int min = 0, max = 0, id;
155 
156 	ASSERT_RTNL();
157 
158 	if (reqid >= 0) {
159 		min = reqid;
160 		max = reqid + 1;
161 	}
162 
163 	id = idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
164 	if (id >= 0)
165 		rtnl_net_notifyid(net, peer, RTM_NEWNSID, id);
166 
167 	return id;
168 }
169 
170 /* This function is used by idr_for_each(). If net is equal to peer, the
171  * function returns the id so that idr_for_each() stops. Because we cannot
172  * returns the id 0 (idr_for_each() will not stop), we return the magic value
173  * NET_ID_ZERO (-1) for it.
174  */
175 #define NET_ID_ZERO -1
176 static int net_eq_idr(int id, void *net, void *peer)
177 {
178 	if (net_eq(net, peer))
179 		return id ? : NET_ID_ZERO;
180 	return 0;
181 }
182 
183 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
184 {
185 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
186 
187 	ASSERT_RTNL();
188 
189 	/* Magic value for id 0. */
190 	if (id == NET_ID_ZERO)
191 		return 0;
192 	if (id > 0)
193 		return id;
194 
195 	if (alloc) {
196 		id = alloc_netid(net, peer, -1);
197 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
198 	}
199 
200 	return NETNSA_NSID_NOT_ASSIGNED;
201 }
202 
203 /* This function returns the id of a peer netns. If no id is assigned, one will
204  * be allocated and returned.
205  */
206 int peernet2id(struct net *net, struct net *peer)
207 {
208 	bool alloc = atomic_read(&peer->count) == 0 ? false : true;
209 
210 	return __peernet2id(net, peer, alloc);
211 }
212 EXPORT_SYMBOL(peernet2id);
213 
214 struct net *get_net_ns_by_id(struct net *net, int id)
215 {
216 	struct net *peer;
217 
218 	if (id < 0)
219 		return NULL;
220 
221 	rcu_read_lock();
222 	peer = idr_find(&net->netns_ids, id);
223 	if (peer)
224 		get_net(peer);
225 	rcu_read_unlock();
226 
227 	return peer;
228 }
229 
230 /*
231  * setup_net runs the initializers for the network namespace object.
232  */
233 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
234 {
235 	/* Must be called with net_mutex held */
236 	const struct pernet_operations *ops, *saved_ops;
237 	int error = 0;
238 	LIST_HEAD(net_exit_list);
239 
240 	atomic_set(&net->count, 1);
241 	atomic_set(&net->passive, 1);
242 	net->dev_base_seq = 1;
243 	net->user_ns = user_ns;
244 	idr_init(&net->netns_ids);
245 
246 	list_for_each_entry(ops, &pernet_list, list) {
247 		error = ops_init(ops, net);
248 		if (error < 0)
249 			goto out_undo;
250 	}
251 out:
252 	return error;
253 
254 out_undo:
255 	/* Walk through the list backwards calling the exit functions
256 	 * for the pernet modules whose init functions did not fail.
257 	 */
258 	list_add(&net->exit_list, &net_exit_list);
259 	saved_ops = ops;
260 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
261 		ops_exit_list(ops, &net_exit_list);
262 
263 	ops = saved_ops;
264 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
265 		ops_free_list(ops, &net_exit_list);
266 
267 	rcu_barrier();
268 	goto out;
269 }
270 
271 
272 #ifdef CONFIG_NET_NS
273 static struct kmem_cache *net_cachep;
274 static struct workqueue_struct *netns_wq;
275 
276 static struct net *net_alloc(void)
277 {
278 	struct net *net = NULL;
279 	struct net_generic *ng;
280 
281 	ng = net_alloc_generic();
282 	if (!ng)
283 		goto out;
284 
285 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
286 	if (!net)
287 		goto out_free;
288 
289 	rcu_assign_pointer(net->gen, ng);
290 out:
291 	return net;
292 
293 out_free:
294 	kfree(ng);
295 	goto out;
296 }
297 
298 static void net_free(struct net *net)
299 {
300 	kfree(rcu_access_pointer(net->gen));
301 	kmem_cache_free(net_cachep, net);
302 }
303 
304 void net_drop_ns(void *p)
305 {
306 	struct net *ns = p;
307 	if (ns && atomic_dec_and_test(&ns->passive))
308 		net_free(ns);
309 }
310 
311 struct net *copy_net_ns(unsigned long flags,
312 			struct user_namespace *user_ns, struct net *old_net)
313 {
314 	struct net *net;
315 	int rv;
316 
317 	if (!(flags & CLONE_NEWNET))
318 		return get_net(old_net);
319 
320 	net = net_alloc();
321 	if (!net)
322 		return ERR_PTR(-ENOMEM);
323 
324 	get_user_ns(user_ns);
325 
326 	mutex_lock(&net_mutex);
327 	rv = setup_net(net, user_ns);
328 	if (rv == 0) {
329 		rtnl_lock();
330 		list_add_tail_rcu(&net->list, &net_namespace_list);
331 		rtnl_unlock();
332 	}
333 	mutex_unlock(&net_mutex);
334 	if (rv < 0) {
335 		put_user_ns(user_ns);
336 		net_drop_ns(net);
337 		return ERR_PTR(rv);
338 	}
339 	return net;
340 }
341 
342 static DEFINE_SPINLOCK(cleanup_list_lock);
343 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
344 
345 static void cleanup_net(struct work_struct *work)
346 {
347 	const struct pernet_operations *ops;
348 	struct net *net, *tmp;
349 	struct list_head net_kill_list;
350 	LIST_HEAD(net_exit_list);
351 
352 	/* Atomically snapshot the list of namespaces to cleanup */
353 	spin_lock_irq(&cleanup_list_lock);
354 	list_replace_init(&cleanup_list, &net_kill_list);
355 	spin_unlock_irq(&cleanup_list_lock);
356 
357 	mutex_lock(&net_mutex);
358 
359 	/* Don't let anyone else find us. */
360 	rtnl_lock();
361 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
362 		list_del_rcu(&net->list);
363 		list_add_tail(&net->exit_list, &net_exit_list);
364 		for_each_net(tmp) {
365 			int id = __peernet2id(tmp, net, false);
366 
367 			if (id >= 0) {
368 				rtnl_net_notifyid(tmp, net, RTM_DELNSID, id);
369 				idr_remove(&tmp->netns_ids, id);
370 			}
371 		}
372 		idr_destroy(&net->netns_ids);
373 
374 	}
375 	rtnl_unlock();
376 
377 	/*
378 	 * Another CPU might be rcu-iterating the list, wait for it.
379 	 * This needs to be before calling the exit() notifiers, so
380 	 * the rcu_barrier() below isn't sufficient alone.
381 	 */
382 	synchronize_rcu();
383 
384 	/* Run all of the network namespace exit methods */
385 	list_for_each_entry_reverse(ops, &pernet_list, list)
386 		ops_exit_list(ops, &net_exit_list);
387 
388 	/* Free the net generic variables */
389 	list_for_each_entry_reverse(ops, &pernet_list, list)
390 		ops_free_list(ops, &net_exit_list);
391 
392 	mutex_unlock(&net_mutex);
393 
394 	/* Ensure there are no outstanding rcu callbacks using this
395 	 * network namespace.
396 	 */
397 	rcu_barrier();
398 
399 	/* Finally it is safe to free my network namespace structure */
400 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
401 		list_del_init(&net->exit_list);
402 		put_user_ns(net->user_ns);
403 		net_drop_ns(net);
404 	}
405 }
406 static DECLARE_WORK(net_cleanup_work, cleanup_net);
407 
408 void __put_net(struct net *net)
409 {
410 	/* Cleanup the network namespace in process context */
411 	unsigned long flags;
412 
413 	spin_lock_irqsave(&cleanup_list_lock, flags);
414 	list_add(&net->cleanup_list, &cleanup_list);
415 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
416 
417 	queue_work(netns_wq, &net_cleanup_work);
418 }
419 EXPORT_SYMBOL_GPL(__put_net);
420 
421 struct net *get_net_ns_by_fd(int fd)
422 {
423 	struct file *file;
424 	struct ns_common *ns;
425 	struct net *net;
426 
427 	file = proc_ns_fget(fd);
428 	if (IS_ERR(file))
429 		return ERR_CAST(file);
430 
431 	ns = get_proc_ns(file_inode(file));
432 	if (ns->ops == &netns_operations)
433 		net = get_net(container_of(ns, struct net, ns));
434 	else
435 		net = ERR_PTR(-EINVAL);
436 
437 	fput(file);
438 	return net;
439 }
440 
441 #else
442 struct net *get_net_ns_by_fd(int fd)
443 {
444 	return ERR_PTR(-EINVAL);
445 }
446 #endif
447 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
448 
449 struct net *get_net_ns_by_pid(pid_t pid)
450 {
451 	struct task_struct *tsk;
452 	struct net *net;
453 
454 	/* Lookup the network namespace */
455 	net = ERR_PTR(-ESRCH);
456 	rcu_read_lock();
457 	tsk = find_task_by_vpid(pid);
458 	if (tsk) {
459 		struct nsproxy *nsproxy;
460 		task_lock(tsk);
461 		nsproxy = tsk->nsproxy;
462 		if (nsproxy)
463 			net = get_net(nsproxy->net_ns);
464 		task_unlock(tsk);
465 	}
466 	rcu_read_unlock();
467 	return net;
468 }
469 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
470 
471 static __net_init int net_ns_net_init(struct net *net)
472 {
473 #ifdef CONFIG_NET_NS
474 	net->ns.ops = &netns_operations;
475 #endif
476 	return ns_alloc_inum(&net->ns);
477 }
478 
479 static __net_exit void net_ns_net_exit(struct net *net)
480 {
481 	ns_free_inum(&net->ns);
482 }
483 
484 static struct pernet_operations __net_initdata net_ns_ops = {
485 	.init = net_ns_net_init,
486 	.exit = net_ns_net_exit,
487 };
488 
489 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
490 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
491 	[NETNSA_NSID]		= { .type = NLA_S32 },
492 	[NETNSA_PID]		= { .type = NLA_U32 },
493 	[NETNSA_FD]		= { .type = NLA_U32 },
494 };
495 
496 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
497 {
498 	struct net *net = sock_net(skb->sk);
499 	struct nlattr *tb[NETNSA_MAX + 1];
500 	struct net *peer;
501 	int nsid, err;
502 
503 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
504 			  rtnl_net_policy);
505 	if (err < 0)
506 		return err;
507 	if (!tb[NETNSA_NSID])
508 		return -EINVAL;
509 	nsid = nla_get_s32(tb[NETNSA_NSID]);
510 
511 	if (tb[NETNSA_PID])
512 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
513 	else if (tb[NETNSA_FD])
514 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
515 	else
516 		return -EINVAL;
517 	if (IS_ERR(peer))
518 		return PTR_ERR(peer);
519 
520 	if (__peernet2id(net, peer, false) >= 0) {
521 		err = -EEXIST;
522 		goto out;
523 	}
524 
525 	err = alloc_netid(net, peer, nsid);
526 	if (err > 0)
527 		err = 0;
528 out:
529 	put_net(peer);
530 	return err;
531 }
532 
533 static int rtnl_net_get_size(void)
534 {
535 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
536 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
537 	       ;
538 }
539 
540 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
541 			 int cmd, struct net *net, struct net *peer,
542 			 int nsid)
543 {
544 	struct nlmsghdr *nlh;
545 	struct rtgenmsg *rth;
546 	int id;
547 
548 	ASSERT_RTNL();
549 
550 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
551 	if (!nlh)
552 		return -EMSGSIZE;
553 
554 	rth = nlmsg_data(nlh);
555 	rth->rtgen_family = AF_UNSPEC;
556 
557 	if (nsid >= 0)
558 		id = nsid;
559 	else
560 		id = __peernet2id(net, peer, false);
561 	if (nla_put_s32(skb, NETNSA_NSID, id))
562 		goto nla_put_failure;
563 
564 	nlmsg_end(skb, nlh);
565 	return 0;
566 
567 nla_put_failure:
568 	nlmsg_cancel(skb, nlh);
569 	return -EMSGSIZE;
570 }
571 
572 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
573 {
574 	struct net *net = sock_net(skb->sk);
575 	struct nlattr *tb[NETNSA_MAX + 1];
576 	struct sk_buff *msg;
577 	struct net *peer;
578 	int err;
579 
580 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
581 			  rtnl_net_policy);
582 	if (err < 0)
583 		return err;
584 	if (tb[NETNSA_PID])
585 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
586 	else if (tb[NETNSA_FD])
587 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
588 	else
589 		return -EINVAL;
590 
591 	if (IS_ERR(peer))
592 		return PTR_ERR(peer);
593 
594 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
595 	if (!msg) {
596 		err = -ENOMEM;
597 		goto out;
598 	}
599 
600 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
601 			    RTM_GETNSID, net, peer, -1);
602 	if (err < 0)
603 		goto err_out;
604 
605 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
606 	goto out;
607 
608 err_out:
609 	nlmsg_free(msg);
610 out:
611 	put_net(peer);
612 	return err;
613 }
614 
615 struct rtnl_net_dump_cb {
616 	struct net *net;
617 	struct sk_buff *skb;
618 	struct netlink_callback *cb;
619 	int idx;
620 	int s_idx;
621 };
622 
623 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
624 {
625 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
626 	int ret;
627 
628 	if (net_cb->idx < net_cb->s_idx)
629 		goto cont;
630 
631 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
632 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
633 			    RTM_NEWNSID, net_cb->net, peer, id);
634 	if (ret < 0)
635 		return ret;
636 
637 cont:
638 	net_cb->idx++;
639 	return 0;
640 }
641 
642 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
643 {
644 	struct net *net = sock_net(skb->sk);
645 	struct rtnl_net_dump_cb net_cb = {
646 		.net = net,
647 		.skb = skb,
648 		.cb = cb,
649 		.idx = 0,
650 		.s_idx = cb->args[0],
651 	};
652 
653 	ASSERT_RTNL();
654 
655 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
656 
657 	cb->args[0] = net_cb.idx;
658 	return skb->len;
659 }
660 
661 static void rtnl_net_notifyid(struct net *net, struct net *peer, int cmd,
662 			      int id)
663 {
664 	struct sk_buff *msg;
665 	int err = -ENOMEM;
666 
667 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
668 	if (!msg)
669 		goto out;
670 
671 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, peer, id);
672 	if (err < 0)
673 		goto err_out;
674 
675 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
676 	return;
677 
678 err_out:
679 	nlmsg_free(msg);
680 out:
681 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
682 }
683 
684 static int __init net_ns_init(void)
685 {
686 	struct net_generic *ng;
687 
688 #ifdef CONFIG_NET_NS
689 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
690 					SMP_CACHE_BYTES,
691 					SLAB_PANIC, NULL);
692 
693 	/* Create workqueue for cleanup */
694 	netns_wq = create_singlethread_workqueue("netns");
695 	if (!netns_wq)
696 		panic("Could not create netns workq");
697 #endif
698 
699 	ng = net_alloc_generic();
700 	if (!ng)
701 		panic("Could not allocate generic netns");
702 
703 	rcu_assign_pointer(init_net.gen, ng);
704 
705 	mutex_lock(&net_mutex);
706 	if (setup_net(&init_net, &init_user_ns))
707 		panic("Could not setup the initial network namespace");
708 
709 	rtnl_lock();
710 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
711 	rtnl_unlock();
712 
713 	mutex_unlock(&net_mutex);
714 
715 	register_pernet_subsys(&net_ns_ops);
716 
717 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
718 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
719 		      NULL);
720 
721 	return 0;
722 }
723 
724 pure_initcall(net_ns_init);
725 
726 #ifdef CONFIG_NET_NS
727 static int __register_pernet_operations(struct list_head *list,
728 					struct pernet_operations *ops)
729 {
730 	struct net *net;
731 	int error;
732 	LIST_HEAD(net_exit_list);
733 
734 	list_add_tail(&ops->list, list);
735 	if (ops->init || (ops->id && ops->size)) {
736 		for_each_net(net) {
737 			error = ops_init(ops, net);
738 			if (error)
739 				goto out_undo;
740 			list_add_tail(&net->exit_list, &net_exit_list);
741 		}
742 	}
743 	return 0;
744 
745 out_undo:
746 	/* If I have an error cleanup all namespaces I initialized */
747 	list_del(&ops->list);
748 	ops_exit_list(ops, &net_exit_list);
749 	ops_free_list(ops, &net_exit_list);
750 	return error;
751 }
752 
753 static void __unregister_pernet_operations(struct pernet_operations *ops)
754 {
755 	struct net *net;
756 	LIST_HEAD(net_exit_list);
757 
758 	list_del(&ops->list);
759 	for_each_net(net)
760 		list_add_tail(&net->exit_list, &net_exit_list);
761 	ops_exit_list(ops, &net_exit_list);
762 	ops_free_list(ops, &net_exit_list);
763 }
764 
765 #else
766 
767 static int __register_pernet_operations(struct list_head *list,
768 					struct pernet_operations *ops)
769 {
770 	return ops_init(ops, &init_net);
771 }
772 
773 static void __unregister_pernet_operations(struct pernet_operations *ops)
774 {
775 	LIST_HEAD(net_exit_list);
776 	list_add(&init_net.exit_list, &net_exit_list);
777 	ops_exit_list(ops, &net_exit_list);
778 	ops_free_list(ops, &net_exit_list);
779 }
780 
781 #endif /* CONFIG_NET_NS */
782 
783 static DEFINE_IDA(net_generic_ids);
784 
785 static int register_pernet_operations(struct list_head *list,
786 				      struct pernet_operations *ops)
787 {
788 	int error;
789 
790 	if (ops->id) {
791 again:
792 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
793 		if (error < 0) {
794 			if (error == -EAGAIN) {
795 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
796 				goto again;
797 			}
798 			return error;
799 		}
800 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
801 	}
802 	error = __register_pernet_operations(list, ops);
803 	if (error) {
804 		rcu_barrier();
805 		if (ops->id)
806 			ida_remove(&net_generic_ids, *ops->id);
807 	}
808 
809 	return error;
810 }
811 
812 static void unregister_pernet_operations(struct pernet_operations *ops)
813 {
814 
815 	__unregister_pernet_operations(ops);
816 	rcu_barrier();
817 	if (ops->id)
818 		ida_remove(&net_generic_ids, *ops->id);
819 }
820 
821 /**
822  *      register_pernet_subsys - register a network namespace subsystem
823  *	@ops:  pernet operations structure for the subsystem
824  *
825  *	Register a subsystem which has init and exit functions
826  *	that are called when network namespaces are created and
827  *	destroyed respectively.
828  *
829  *	When registered all network namespace init functions are
830  *	called for every existing network namespace.  Allowing kernel
831  *	modules to have a race free view of the set of network namespaces.
832  *
833  *	When a new network namespace is created all of the init
834  *	methods are called in the order in which they were registered.
835  *
836  *	When a network namespace is destroyed all of the exit methods
837  *	are called in the reverse of the order with which they were
838  *	registered.
839  */
840 int register_pernet_subsys(struct pernet_operations *ops)
841 {
842 	int error;
843 	mutex_lock(&net_mutex);
844 	error =  register_pernet_operations(first_device, ops);
845 	mutex_unlock(&net_mutex);
846 	return error;
847 }
848 EXPORT_SYMBOL_GPL(register_pernet_subsys);
849 
850 /**
851  *      unregister_pernet_subsys - unregister a network namespace subsystem
852  *	@ops: pernet operations structure to manipulate
853  *
854  *	Remove the pernet operations structure from the list to be
855  *	used when network namespaces are created or destroyed.  In
856  *	addition run the exit method for all existing network
857  *	namespaces.
858  */
859 void unregister_pernet_subsys(struct pernet_operations *ops)
860 {
861 	mutex_lock(&net_mutex);
862 	unregister_pernet_operations(ops);
863 	mutex_unlock(&net_mutex);
864 }
865 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
866 
867 /**
868  *      register_pernet_device - register a network namespace device
869  *	@ops:  pernet operations structure for the subsystem
870  *
871  *	Register a device which has init and exit functions
872  *	that are called when network namespaces are created and
873  *	destroyed respectively.
874  *
875  *	When registered all network namespace init functions are
876  *	called for every existing network namespace.  Allowing kernel
877  *	modules to have a race free view of the set of network namespaces.
878  *
879  *	When a new network namespace is created all of the init
880  *	methods are called in the order in which they were registered.
881  *
882  *	When a network namespace is destroyed all of the exit methods
883  *	are called in the reverse of the order with which they were
884  *	registered.
885  */
886 int register_pernet_device(struct pernet_operations *ops)
887 {
888 	int error;
889 	mutex_lock(&net_mutex);
890 	error = register_pernet_operations(&pernet_list, ops);
891 	if (!error && (first_device == &pernet_list))
892 		first_device = &ops->list;
893 	mutex_unlock(&net_mutex);
894 	return error;
895 }
896 EXPORT_SYMBOL_GPL(register_pernet_device);
897 
898 /**
899  *      unregister_pernet_device - unregister a network namespace netdevice
900  *	@ops: pernet operations structure to manipulate
901  *
902  *	Remove the pernet operations structure from the list to be
903  *	used when network namespaces are created or destroyed.  In
904  *	addition run the exit method for all existing network
905  *	namespaces.
906  */
907 void unregister_pernet_device(struct pernet_operations *ops)
908 {
909 	mutex_lock(&net_mutex);
910 	if (&ops->list == first_device)
911 		first_device = first_device->next;
912 	unregister_pernet_operations(ops);
913 	mutex_unlock(&net_mutex);
914 }
915 EXPORT_SYMBOL_GPL(unregister_pernet_device);
916 
917 #ifdef CONFIG_NET_NS
918 static struct ns_common *netns_get(struct task_struct *task)
919 {
920 	struct net *net = NULL;
921 	struct nsproxy *nsproxy;
922 
923 	task_lock(task);
924 	nsproxy = task->nsproxy;
925 	if (nsproxy)
926 		net = get_net(nsproxy->net_ns);
927 	task_unlock(task);
928 
929 	return net ? &net->ns : NULL;
930 }
931 
932 static inline struct net *to_net_ns(struct ns_common *ns)
933 {
934 	return container_of(ns, struct net, ns);
935 }
936 
937 static void netns_put(struct ns_common *ns)
938 {
939 	put_net(to_net_ns(ns));
940 }
941 
942 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
943 {
944 	struct net *net = to_net_ns(ns);
945 
946 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
947 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
948 		return -EPERM;
949 
950 	put_net(nsproxy->net_ns);
951 	nsproxy->net_ns = get_net(net);
952 	return 0;
953 }
954 
955 const struct proc_ns_operations netns_operations = {
956 	.name		= "net",
957 	.type		= CLONE_NEWNET,
958 	.get		= netns_get,
959 	.put		= netns_put,
960 	.install	= netns_install,
961 };
962 #endif
963