xref: /openbmc/linux/net/core/net_namespace.c (revision 0c06bea9)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 DEFINE_MUTEX(net_mutex);
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 struct net init_net = {
38 	.count		= REFCOUNT_INIT(1),
39 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
40 };
41 EXPORT_SYMBOL(init_net);
42 
43 static bool init_net_initialized;
44 
45 #define MIN_PERNET_OPS_ID	\
46 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
47 
48 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
49 
50 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
51 
52 static struct net_generic *net_alloc_generic(void)
53 {
54 	struct net_generic *ng;
55 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
56 
57 	ng = kzalloc(generic_size, GFP_KERNEL);
58 	if (ng)
59 		ng->s.len = max_gen_ptrs;
60 
61 	return ng;
62 }
63 
64 static int net_assign_generic(struct net *net, unsigned int id, void *data)
65 {
66 	struct net_generic *ng, *old_ng;
67 
68 	BUG_ON(!mutex_is_locked(&net_mutex));
69 	BUG_ON(id < MIN_PERNET_OPS_ID);
70 
71 	old_ng = rcu_dereference_protected(net->gen,
72 					   lockdep_is_held(&net_mutex));
73 	if (old_ng->s.len > id) {
74 		old_ng->ptr[id] = data;
75 		return 0;
76 	}
77 
78 	ng = net_alloc_generic();
79 	if (ng == NULL)
80 		return -ENOMEM;
81 
82 	/*
83 	 * Some synchronisation notes:
84 	 *
85 	 * The net_generic explores the net->gen array inside rcu
86 	 * read section. Besides once set the net->gen->ptr[x]
87 	 * pointer never changes (see rules in netns/generic.h).
88 	 *
89 	 * That said, we simply duplicate this array and schedule
90 	 * the old copy for kfree after a grace period.
91 	 */
92 
93 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
94 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
95 	ng->ptr[id] = data;
96 
97 	rcu_assign_pointer(net->gen, ng);
98 	kfree_rcu(old_ng, s.rcu);
99 	return 0;
100 }
101 
102 static int ops_init(const struct pernet_operations *ops, struct net *net)
103 {
104 	int err = -ENOMEM;
105 	void *data = NULL;
106 
107 	if (ops->id && ops->size) {
108 		data = kzalloc(ops->size, GFP_KERNEL);
109 		if (!data)
110 			goto out;
111 
112 		err = net_assign_generic(net, *ops->id, data);
113 		if (err)
114 			goto cleanup;
115 	}
116 	err = 0;
117 	if (ops->init)
118 		err = ops->init(net);
119 	if (!err)
120 		return 0;
121 
122 cleanup:
123 	kfree(data);
124 
125 out:
126 	return err;
127 }
128 
129 static void ops_free(const struct pernet_operations *ops, struct net *net)
130 {
131 	if (ops->id && ops->size) {
132 		kfree(net_generic(net, *ops->id));
133 	}
134 }
135 
136 static void ops_exit_list(const struct pernet_operations *ops,
137 			  struct list_head *net_exit_list)
138 {
139 	struct net *net;
140 	if (ops->exit) {
141 		list_for_each_entry(net, net_exit_list, exit_list)
142 			ops->exit(net);
143 	}
144 	if (ops->exit_batch)
145 		ops->exit_batch(net_exit_list);
146 }
147 
148 static void ops_free_list(const struct pernet_operations *ops,
149 			  struct list_head *net_exit_list)
150 {
151 	struct net *net;
152 	if (ops->size && ops->id) {
153 		list_for_each_entry(net, net_exit_list, exit_list)
154 			ops_free(ops, net);
155 	}
156 }
157 
158 /* should be called with nsid_lock held */
159 static int alloc_netid(struct net *net, struct net *peer, int reqid)
160 {
161 	int min = 0, max = 0;
162 
163 	if (reqid >= 0) {
164 		min = reqid;
165 		max = reqid + 1;
166 	}
167 
168 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
169 }
170 
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172  * function returns the id so that idr_for_each() stops. Because we cannot
173  * returns the id 0 (idr_for_each() will not stop), we return the magic value
174  * NET_ID_ZERO (-1) for it.
175  */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 	if (net_eq(net, peer))
180 		return id ? : NET_ID_ZERO;
181 	return 0;
182 }
183 
184 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
185  * is set to true, thus the caller knows that the new id must be notified via
186  * rtnl.
187  */
188 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
189 {
190 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
191 	bool alloc_it = *alloc;
192 
193 	*alloc = false;
194 
195 	/* Magic value for id 0. */
196 	if (id == NET_ID_ZERO)
197 		return 0;
198 	if (id > 0)
199 		return id;
200 
201 	if (alloc_it) {
202 		id = alloc_netid(net, peer, -1);
203 		*alloc = true;
204 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
205 	}
206 
207 	return NETNSA_NSID_NOT_ASSIGNED;
208 }
209 
210 /* should be called with nsid_lock held */
211 static int __peernet2id(struct net *net, struct net *peer)
212 {
213 	bool no = false;
214 
215 	return __peernet2id_alloc(net, peer, &no);
216 }
217 
218 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
219 /* This function returns the id of a peer netns. If no id is assigned, one will
220  * be allocated and returned.
221  */
222 int peernet2id_alloc(struct net *net, struct net *peer)
223 {
224 	bool alloc = false, alive = false;
225 	int id;
226 
227 	if (refcount_read(&net->count) == 0)
228 		return NETNSA_NSID_NOT_ASSIGNED;
229 	spin_lock_bh(&net->nsid_lock);
230 	/*
231 	 * When peer is obtained from RCU lists, we may race with
232 	 * its cleanup. Check whether it's alive, and this guarantees
233 	 * we never hash a peer back to net->netns_ids, after it has
234 	 * just been idr_remove()'d from there in cleanup_net().
235 	 */
236 	if (maybe_get_net(peer))
237 		alive = alloc = true;
238 	id = __peernet2id_alloc(net, peer, &alloc);
239 	spin_unlock_bh(&net->nsid_lock);
240 	if (alloc && id >= 0)
241 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
242 	if (alive)
243 		put_net(peer);
244 	return id;
245 }
246 EXPORT_SYMBOL_GPL(peernet2id_alloc);
247 
248 /* This function returns, if assigned, the id of a peer netns. */
249 int peernet2id(struct net *net, struct net *peer)
250 {
251 	int id;
252 
253 	spin_lock_bh(&net->nsid_lock);
254 	id = __peernet2id(net, peer);
255 	spin_unlock_bh(&net->nsid_lock);
256 	return id;
257 }
258 EXPORT_SYMBOL(peernet2id);
259 
260 /* This function returns true is the peer netns has an id assigned into the
261  * current netns.
262  */
263 bool peernet_has_id(struct net *net, struct net *peer)
264 {
265 	return peernet2id(net, peer) >= 0;
266 }
267 
268 struct net *get_net_ns_by_id(struct net *net, int id)
269 {
270 	struct net *peer;
271 
272 	if (id < 0)
273 		return NULL;
274 
275 	rcu_read_lock();
276 	spin_lock_bh(&net->nsid_lock);
277 	peer = idr_find(&net->netns_ids, id);
278 	if (peer)
279 		peer = maybe_get_net(peer);
280 	spin_unlock_bh(&net->nsid_lock);
281 	rcu_read_unlock();
282 
283 	return peer;
284 }
285 
286 /*
287  * setup_net runs the initializers for the network namespace object.
288  */
289 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
290 {
291 	/* Must be called with net_mutex held */
292 	const struct pernet_operations *ops, *saved_ops;
293 	int error = 0;
294 	LIST_HEAD(net_exit_list);
295 
296 	refcount_set(&net->count, 1);
297 	refcount_set(&net->passive, 1);
298 	net->dev_base_seq = 1;
299 	net->user_ns = user_ns;
300 	idr_init(&net->netns_ids);
301 	spin_lock_init(&net->nsid_lock);
302 
303 	list_for_each_entry(ops, &pernet_list, list) {
304 		error = ops_init(ops, net);
305 		if (error < 0)
306 			goto out_undo;
307 	}
308 out:
309 	return error;
310 
311 out_undo:
312 	/* Walk through the list backwards calling the exit functions
313 	 * for the pernet modules whose init functions did not fail.
314 	 */
315 	list_add(&net->exit_list, &net_exit_list);
316 	saved_ops = ops;
317 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
318 		ops_exit_list(ops, &net_exit_list);
319 
320 	ops = saved_ops;
321 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
322 		ops_free_list(ops, &net_exit_list);
323 
324 	rcu_barrier();
325 	goto out;
326 }
327 
328 static int __net_init net_defaults_init_net(struct net *net)
329 {
330 	net->core.sysctl_somaxconn = SOMAXCONN;
331 	return 0;
332 }
333 
334 static struct pernet_operations net_defaults_ops = {
335 	.init = net_defaults_init_net,
336 };
337 
338 static __init int net_defaults_init(void)
339 {
340 	if (register_pernet_subsys(&net_defaults_ops))
341 		panic("Cannot initialize net default settings");
342 
343 	return 0;
344 }
345 
346 core_initcall(net_defaults_init);
347 
348 #ifdef CONFIG_NET_NS
349 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
350 {
351 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
352 }
353 
354 static void dec_net_namespaces(struct ucounts *ucounts)
355 {
356 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
357 }
358 
359 static struct kmem_cache *net_cachep;
360 static struct workqueue_struct *netns_wq;
361 
362 static struct net *net_alloc(void)
363 {
364 	struct net *net = NULL;
365 	struct net_generic *ng;
366 
367 	ng = net_alloc_generic();
368 	if (!ng)
369 		goto out;
370 
371 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
372 	if (!net)
373 		goto out_free;
374 
375 	rcu_assign_pointer(net->gen, ng);
376 out:
377 	return net;
378 
379 out_free:
380 	kfree(ng);
381 	goto out;
382 }
383 
384 static void net_free(struct net *net)
385 {
386 	kfree(rcu_access_pointer(net->gen));
387 	kmem_cache_free(net_cachep, net);
388 }
389 
390 void net_drop_ns(void *p)
391 {
392 	struct net *ns = p;
393 	if (ns && refcount_dec_and_test(&ns->passive))
394 		net_free(ns);
395 }
396 
397 struct net *copy_net_ns(unsigned long flags,
398 			struct user_namespace *user_ns, struct net *old_net)
399 {
400 	struct ucounts *ucounts;
401 	struct net *net;
402 	int rv;
403 
404 	if (!(flags & CLONE_NEWNET))
405 		return get_net(old_net);
406 
407 	ucounts = inc_net_namespaces(user_ns);
408 	if (!ucounts)
409 		return ERR_PTR(-ENOSPC);
410 
411 	net = net_alloc();
412 	if (!net) {
413 		dec_net_namespaces(ucounts);
414 		return ERR_PTR(-ENOMEM);
415 	}
416 
417 	get_user_ns(user_ns);
418 
419 	rv = mutex_lock_killable(&net_mutex);
420 	if (rv < 0) {
421 		net_free(net);
422 		dec_net_namespaces(ucounts);
423 		put_user_ns(user_ns);
424 		return ERR_PTR(rv);
425 	}
426 
427 	net->ucounts = ucounts;
428 	rv = setup_net(net, user_ns);
429 	if (rv == 0) {
430 		rtnl_lock();
431 		list_add_tail_rcu(&net->list, &net_namespace_list);
432 		rtnl_unlock();
433 	}
434 	mutex_unlock(&net_mutex);
435 	if (rv < 0) {
436 		dec_net_namespaces(ucounts);
437 		put_user_ns(user_ns);
438 		net_drop_ns(net);
439 		return ERR_PTR(rv);
440 	}
441 	return net;
442 }
443 
444 static DEFINE_SPINLOCK(cleanup_list_lock);
445 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
446 
447 static void cleanup_net(struct work_struct *work)
448 {
449 	const struct pernet_operations *ops;
450 	struct net *net, *tmp;
451 	struct list_head net_kill_list;
452 	LIST_HEAD(net_exit_list);
453 
454 	/* Atomically snapshot the list of namespaces to cleanup */
455 	spin_lock_irq(&cleanup_list_lock);
456 	list_replace_init(&cleanup_list, &net_kill_list);
457 	spin_unlock_irq(&cleanup_list_lock);
458 
459 	mutex_lock(&net_mutex);
460 
461 	/* Don't let anyone else find us. */
462 	rtnl_lock();
463 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
464 		list_del_rcu(&net->list);
465 		list_add_tail(&net->exit_list, &net_exit_list);
466 		for_each_net(tmp) {
467 			int id;
468 
469 			spin_lock_bh(&tmp->nsid_lock);
470 			id = __peernet2id(tmp, net);
471 			if (id >= 0)
472 				idr_remove(&tmp->netns_ids, id);
473 			spin_unlock_bh(&tmp->nsid_lock);
474 			if (id >= 0)
475 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
476 		}
477 		spin_lock_bh(&net->nsid_lock);
478 		idr_destroy(&net->netns_ids);
479 		spin_unlock_bh(&net->nsid_lock);
480 
481 	}
482 	rtnl_unlock();
483 
484 	/*
485 	 * Another CPU might be rcu-iterating the list, wait for it.
486 	 * This needs to be before calling the exit() notifiers, so
487 	 * the rcu_barrier() below isn't sufficient alone.
488 	 */
489 	synchronize_rcu();
490 
491 	/* Run all of the network namespace exit methods */
492 	list_for_each_entry_reverse(ops, &pernet_list, list)
493 		ops_exit_list(ops, &net_exit_list);
494 
495 	/* Free the net generic variables */
496 	list_for_each_entry_reverse(ops, &pernet_list, list)
497 		ops_free_list(ops, &net_exit_list);
498 
499 	mutex_unlock(&net_mutex);
500 
501 	/* Ensure there are no outstanding rcu callbacks using this
502 	 * network namespace.
503 	 */
504 	rcu_barrier();
505 
506 	/* Finally it is safe to free my network namespace structure */
507 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
508 		list_del_init(&net->exit_list);
509 		dec_net_namespaces(net->ucounts);
510 		put_user_ns(net->user_ns);
511 		net_drop_ns(net);
512 	}
513 }
514 
515 /**
516  * net_ns_barrier - wait until concurrent net_cleanup_work is done
517  *
518  * cleanup_net runs from work queue and will first remove namespaces
519  * from the global list, then run net exit functions.
520  *
521  * Call this in module exit path to make sure that all netns
522  * ->exit ops have been invoked before the function is removed.
523  */
524 void net_ns_barrier(void)
525 {
526 	mutex_lock(&net_mutex);
527 	mutex_unlock(&net_mutex);
528 }
529 EXPORT_SYMBOL(net_ns_barrier);
530 
531 static DECLARE_WORK(net_cleanup_work, cleanup_net);
532 
533 void __put_net(struct net *net)
534 {
535 	/* Cleanup the network namespace in process context */
536 	unsigned long flags;
537 
538 	spin_lock_irqsave(&cleanup_list_lock, flags);
539 	list_add(&net->cleanup_list, &cleanup_list);
540 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
541 
542 	queue_work(netns_wq, &net_cleanup_work);
543 }
544 EXPORT_SYMBOL_GPL(__put_net);
545 
546 struct net *get_net_ns_by_fd(int fd)
547 {
548 	struct file *file;
549 	struct ns_common *ns;
550 	struct net *net;
551 
552 	file = proc_ns_fget(fd);
553 	if (IS_ERR(file))
554 		return ERR_CAST(file);
555 
556 	ns = get_proc_ns(file_inode(file));
557 	if (ns->ops == &netns_operations)
558 		net = get_net(container_of(ns, struct net, ns));
559 	else
560 		net = ERR_PTR(-EINVAL);
561 
562 	fput(file);
563 	return net;
564 }
565 
566 #else
567 struct net *get_net_ns_by_fd(int fd)
568 {
569 	return ERR_PTR(-EINVAL);
570 }
571 #endif
572 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
573 
574 struct net *get_net_ns_by_pid(pid_t pid)
575 {
576 	struct task_struct *tsk;
577 	struct net *net;
578 
579 	/* Lookup the network namespace */
580 	net = ERR_PTR(-ESRCH);
581 	rcu_read_lock();
582 	tsk = find_task_by_vpid(pid);
583 	if (tsk) {
584 		struct nsproxy *nsproxy;
585 		task_lock(tsk);
586 		nsproxy = tsk->nsproxy;
587 		if (nsproxy)
588 			net = get_net(nsproxy->net_ns);
589 		task_unlock(tsk);
590 	}
591 	rcu_read_unlock();
592 	return net;
593 }
594 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
595 
596 static __net_init int net_ns_net_init(struct net *net)
597 {
598 #ifdef CONFIG_NET_NS
599 	net->ns.ops = &netns_operations;
600 #endif
601 	return ns_alloc_inum(&net->ns);
602 }
603 
604 static __net_exit void net_ns_net_exit(struct net *net)
605 {
606 	ns_free_inum(&net->ns);
607 }
608 
609 static struct pernet_operations __net_initdata net_ns_ops = {
610 	.init = net_ns_net_init,
611 	.exit = net_ns_net_exit,
612 };
613 
614 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
615 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
616 	[NETNSA_NSID]		= { .type = NLA_S32 },
617 	[NETNSA_PID]		= { .type = NLA_U32 },
618 	[NETNSA_FD]		= { .type = NLA_U32 },
619 };
620 
621 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
622 			  struct netlink_ext_ack *extack)
623 {
624 	struct net *net = sock_net(skb->sk);
625 	struct nlattr *tb[NETNSA_MAX + 1];
626 	struct nlattr *nla;
627 	struct net *peer;
628 	int nsid, err;
629 
630 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
631 			  rtnl_net_policy, extack);
632 	if (err < 0)
633 		return err;
634 	if (!tb[NETNSA_NSID]) {
635 		NL_SET_ERR_MSG(extack, "nsid is missing");
636 		return -EINVAL;
637 	}
638 	nsid = nla_get_s32(tb[NETNSA_NSID]);
639 
640 	if (tb[NETNSA_PID]) {
641 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
642 		nla = tb[NETNSA_PID];
643 	} else if (tb[NETNSA_FD]) {
644 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
645 		nla = tb[NETNSA_FD];
646 	} else {
647 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
648 		return -EINVAL;
649 	}
650 	if (IS_ERR(peer)) {
651 		NL_SET_BAD_ATTR(extack, nla);
652 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
653 		return PTR_ERR(peer);
654 	}
655 
656 	spin_lock_bh(&net->nsid_lock);
657 	if (__peernet2id(net, peer) >= 0) {
658 		spin_unlock_bh(&net->nsid_lock);
659 		err = -EEXIST;
660 		NL_SET_BAD_ATTR(extack, nla);
661 		NL_SET_ERR_MSG(extack,
662 			       "Peer netns already has a nsid assigned");
663 		goto out;
664 	}
665 
666 	err = alloc_netid(net, peer, nsid);
667 	spin_unlock_bh(&net->nsid_lock);
668 	if (err >= 0) {
669 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
670 		err = 0;
671 	} else if (err == -ENOSPC && nsid >= 0) {
672 		err = -EEXIST;
673 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
674 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
675 	}
676 out:
677 	put_net(peer);
678 	return err;
679 }
680 
681 static int rtnl_net_get_size(void)
682 {
683 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
684 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
685 	       ;
686 }
687 
688 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
689 			 int cmd, struct net *net, int nsid)
690 {
691 	struct nlmsghdr *nlh;
692 	struct rtgenmsg *rth;
693 
694 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
695 	if (!nlh)
696 		return -EMSGSIZE;
697 
698 	rth = nlmsg_data(nlh);
699 	rth->rtgen_family = AF_UNSPEC;
700 
701 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
702 		goto nla_put_failure;
703 
704 	nlmsg_end(skb, nlh);
705 	return 0;
706 
707 nla_put_failure:
708 	nlmsg_cancel(skb, nlh);
709 	return -EMSGSIZE;
710 }
711 
712 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
713 			  struct netlink_ext_ack *extack)
714 {
715 	struct net *net = sock_net(skb->sk);
716 	struct nlattr *tb[NETNSA_MAX + 1];
717 	struct nlattr *nla;
718 	struct sk_buff *msg;
719 	struct net *peer;
720 	int err, id;
721 
722 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
723 			  rtnl_net_policy, extack);
724 	if (err < 0)
725 		return err;
726 	if (tb[NETNSA_PID]) {
727 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
728 		nla = tb[NETNSA_PID];
729 	} else if (tb[NETNSA_FD]) {
730 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
731 		nla = tb[NETNSA_FD];
732 	} else {
733 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
734 		return -EINVAL;
735 	}
736 
737 	if (IS_ERR(peer)) {
738 		NL_SET_BAD_ATTR(extack, nla);
739 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
740 		return PTR_ERR(peer);
741 	}
742 
743 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
744 	if (!msg) {
745 		err = -ENOMEM;
746 		goto out;
747 	}
748 
749 	id = peernet2id(net, peer);
750 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
751 			    RTM_NEWNSID, net, id);
752 	if (err < 0)
753 		goto err_out;
754 
755 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
756 	goto out;
757 
758 err_out:
759 	nlmsg_free(msg);
760 out:
761 	put_net(peer);
762 	return err;
763 }
764 
765 struct rtnl_net_dump_cb {
766 	struct net *net;
767 	struct sk_buff *skb;
768 	struct netlink_callback *cb;
769 	int idx;
770 	int s_idx;
771 };
772 
773 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
774 {
775 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
776 	int ret;
777 
778 	if (net_cb->idx < net_cb->s_idx)
779 		goto cont;
780 
781 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
782 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
783 			    RTM_NEWNSID, net_cb->net, id);
784 	if (ret < 0)
785 		return ret;
786 
787 cont:
788 	net_cb->idx++;
789 	return 0;
790 }
791 
792 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
793 {
794 	struct net *net = sock_net(skb->sk);
795 	struct rtnl_net_dump_cb net_cb = {
796 		.net = net,
797 		.skb = skb,
798 		.cb = cb,
799 		.idx = 0,
800 		.s_idx = cb->args[0],
801 	};
802 
803 	spin_lock_bh(&net->nsid_lock);
804 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
805 	spin_unlock_bh(&net->nsid_lock);
806 
807 	cb->args[0] = net_cb.idx;
808 	return skb->len;
809 }
810 
811 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
812 {
813 	struct sk_buff *msg;
814 	int err = -ENOMEM;
815 
816 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
817 	if (!msg)
818 		goto out;
819 
820 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
821 	if (err < 0)
822 		goto err_out;
823 
824 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
825 	return;
826 
827 err_out:
828 	nlmsg_free(msg);
829 out:
830 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
831 }
832 
833 static int __init net_ns_init(void)
834 {
835 	struct net_generic *ng;
836 
837 #ifdef CONFIG_NET_NS
838 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
839 					SMP_CACHE_BYTES,
840 					SLAB_PANIC, NULL);
841 
842 	/* Create workqueue for cleanup */
843 	netns_wq = create_singlethread_workqueue("netns");
844 	if (!netns_wq)
845 		panic("Could not create netns workq");
846 #endif
847 
848 	ng = net_alloc_generic();
849 	if (!ng)
850 		panic("Could not allocate generic netns");
851 
852 	rcu_assign_pointer(init_net.gen, ng);
853 
854 	mutex_lock(&net_mutex);
855 	if (setup_net(&init_net, &init_user_ns))
856 		panic("Could not setup the initial network namespace");
857 
858 	init_net_initialized = true;
859 
860 	rtnl_lock();
861 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
862 	rtnl_unlock();
863 
864 	mutex_unlock(&net_mutex);
865 
866 	register_pernet_subsys(&net_ns_ops);
867 
868 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
869 		      RTNL_FLAG_DOIT_UNLOCKED);
870 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
871 		      RTNL_FLAG_DOIT_UNLOCKED);
872 
873 	return 0;
874 }
875 
876 pure_initcall(net_ns_init);
877 
878 #ifdef CONFIG_NET_NS
879 static int __register_pernet_operations(struct list_head *list,
880 					struct pernet_operations *ops)
881 {
882 	struct net *net;
883 	int error;
884 	LIST_HEAD(net_exit_list);
885 
886 	list_add_tail(&ops->list, list);
887 	if (ops->init || (ops->id && ops->size)) {
888 		for_each_net(net) {
889 			error = ops_init(ops, net);
890 			if (error)
891 				goto out_undo;
892 			list_add_tail(&net->exit_list, &net_exit_list);
893 		}
894 	}
895 	return 0;
896 
897 out_undo:
898 	/* If I have an error cleanup all namespaces I initialized */
899 	list_del(&ops->list);
900 	ops_exit_list(ops, &net_exit_list);
901 	ops_free_list(ops, &net_exit_list);
902 	return error;
903 }
904 
905 static void __unregister_pernet_operations(struct pernet_operations *ops)
906 {
907 	struct net *net;
908 	LIST_HEAD(net_exit_list);
909 
910 	list_del(&ops->list);
911 	for_each_net(net)
912 		list_add_tail(&net->exit_list, &net_exit_list);
913 	ops_exit_list(ops, &net_exit_list);
914 	ops_free_list(ops, &net_exit_list);
915 }
916 
917 #else
918 
919 static int __register_pernet_operations(struct list_head *list,
920 					struct pernet_operations *ops)
921 {
922 	if (!init_net_initialized) {
923 		list_add_tail(&ops->list, list);
924 		return 0;
925 	}
926 
927 	return ops_init(ops, &init_net);
928 }
929 
930 static void __unregister_pernet_operations(struct pernet_operations *ops)
931 {
932 	if (!init_net_initialized) {
933 		list_del(&ops->list);
934 	} else {
935 		LIST_HEAD(net_exit_list);
936 		list_add(&init_net.exit_list, &net_exit_list);
937 		ops_exit_list(ops, &net_exit_list);
938 		ops_free_list(ops, &net_exit_list);
939 	}
940 }
941 
942 #endif /* CONFIG_NET_NS */
943 
944 static DEFINE_IDA(net_generic_ids);
945 
946 static int register_pernet_operations(struct list_head *list,
947 				      struct pernet_operations *ops)
948 {
949 	int error;
950 
951 	if (ops->id) {
952 again:
953 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
954 		if (error < 0) {
955 			if (error == -EAGAIN) {
956 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
957 				goto again;
958 			}
959 			return error;
960 		}
961 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
962 	}
963 	error = __register_pernet_operations(list, ops);
964 	if (error) {
965 		rcu_barrier();
966 		if (ops->id)
967 			ida_remove(&net_generic_ids, *ops->id);
968 	}
969 
970 	return error;
971 }
972 
973 static void unregister_pernet_operations(struct pernet_operations *ops)
974 {
975 
976 	__unregister_pernet_operations(ops);
977 	rcu_barrier();
978 	if (ops->id)
979 		ida_remove(&net_generic_ids, *ops->id);
980 }
981 
982 /**
983  *      register_pernet_subsys - register a network namespace subsystem
984  *	@ops:  pernet operations structure for the subsystem
985  *
986  *	Register a subsystem which has init and exit functions
987  *	that are called when network namespaces are created and
988  *	destroyed respectively.
989  *
990  *	When registered all network namespace init functions are
991  *	called for every existing network namespace.  Allowing kernel
992  *	modules to have a race free view of the set of network namespaces.
993  *
994  *	When a new network namespace is created all of the init
995  *	methods are called in the order in which they were registered.
996  *
997  *	When a network namespace is destroyed all of the exit methods
998  *	are called in the reverse of the order with which they were
999  *	registered.
1000  */
1001 int register_pernet_subsys(struct pernet_operations *ops)
1002 {
1003 	int error;
1004 	mutex_lock(&net_mutex);
1005 	error =  register_pernet_operations(first_device, ops);
1006 	mutex_unlock(&net_mutex);
1007 	return error;
1008 }
1009 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1010 
1011 /**
1012  *      unregister_pernet_subsys - unregister a network namespace subsystem
1013  *	@ops: pernet operations structure to manipulate
1014  *
1015  *	Remove the pernet operations structure from the list to be
1016  *	used when network namespaces are created or destroyed.  In
1017  *	addition run the exit method for all existing network
1018  *	namespaces.
1019  */
1020 void unregister_pernet_subsys(struct pernet_operations *ops)
1021 {
1022 	mutex_lock(&net_mutex);
1023 	unregister_pernet_operations(ops);
1024 	mutex_unlock(&net_mutex);
1025 }
1026 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1027 
1028 /**
1029  *      register_pernet_device - register a network namespace device
1030  *	@ops:  pernet operations structure for the subsystem
1031  *
1032  *	Register a device which has init and exit functions
1033  *	that are called when network namespaces are created and
1034  *	destroyed respectively.
1035  *
1036  *	When registered all network namespace init functions are
1037  *	called for every existing network namespace.  Allowing kernel
1038  *	modules to have a race free view of the set of network namespaces.
1039  *
1040  *	When a new network namespace is created all of the init
1041  *	methods are called in the order in which they were registered.
1042  *
1043  *	When a network namespace is destroyed all of the exit methods
1044  *	are called in the reverse of the order with which they were
1045  *	registered.
1046  */
1047 int register_pernet_device(struct pernet_operations *ops)
1048 {
1049 	int error;
1050 	mutex_lock(&net_mutex);
1051 	error = register_pernet_operations(&pernet_list, ops);
1052 	if (!error && (first_device == &pernet_list))
1053 		first_device = &ops->list;
1054 	mutex_unlock(&net_mutex);
1055 	return error;
1056 }
1057 EXPORT_SYMBOL_GPL(register_pernet_device);
1058 
1059 /**
1060  *      unregister_pernet_device - unregister a network namespace netdevice
1061  *	@ops: pernet operations structure to manipulate
1062  *
1063  *	Remove the pernet operations structure from the list to be
1064  *	used when network namespaces are created or destroyed.  In
1065  *	addition run the exit method for all existing network
1066  *	namespaces.
1067  */
1068 void unregister_pernet_device(struct pernet_operations *ops)
1069 {
1070 	mutex_lock(&net_mutex);
1071 	if (&ops->list == first_device)
1072 		first_device = first_device->next;
1073 	unregister_pernet_operations(ops);
1074 	mutex_unlock(&net_mutex);
1075 }
1076 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1077 
1078 #ifdef CONFIG_NET_NS
1079 static struct ns_common *netns_get(struct task_struct *task)
1080 {
1081 	struct net *net = NULL;
1082 	struct nsproxy *nsproxy;
1083 
1084 	task_lock(task);
1085 	nsproxy = task->nsproxy;
1086 	if (nsproxy)
1087 		net = get_net(nsproxy->net_ns);
1088 	task_unlock(task);
1089 
1090 	return net ? &net->ns : NULL;
1091 }
1092 
1093 static inline struct net *to_net_ns(struct ns_common *ns)
1094 {
1095 	return container_of(ns, struct net, ns);
1096 }
1097 
1098 static void netns_put(struct ns_common *ns)
1099 {
1100 	put_net(to_net_ns(ns));
1101 }
1102 
1103 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1104 {
1105 	struct net *net = to_net_ns(ns);
1106 
1107 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1108 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1109 		return -EPERM;
1110 
1111 	put_net(nsproxy->net_ns);
1112 	nsproxy->net_ns = get_net(net);
1113 	return 0;
1114 }
1115 
1116 static struct user_namespace *netns_owner(struct ns_common *ns)
1117 {
1118 	return to_net_ns(ns)->user_ns;
1119 }
1120 
1121 const struct proc_ns_operations netns_operations = {
1122 	.name		= "net",
1123 	.type		= CLONE_NEWNET,
1124 	.get		= netns_get,
1125 	.put		= netns_put,
1126 	.install	= netns_install,
1127 	.owner		= netns_owner,
1128 };
1129 #endif
1130