1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/workqueue.h> 4 #include <linux/rtnetlink.h> 5 #include <linux/cache.h> 6 #include <linux/slab.h> 7 #include <linux/list.h> 8 #include <linux/delay.h> 9 #include <linux/sched.h> 10 #include <linux/idr.h> 11 #include <linux/rculist.h> 12 #include <linux/nsproxy.h> 13 #include <linux/fs.h> 14 #include <linux/proc_ns.h> 15 #include <linux/file.h> 16 #include <linux/export.h> 17 #include <linux/user_namespace.h> 18 #include <linux/net_namespace.h> 19 #include <linux/sched/task.h> 20 #include <linux/uidgid.h> 21 22 #include <net/sock.h> 23 #include <net/netlink.h> 24 #include <net/net_namespace.h> 25 #include <net/netns/generic.h> 26 27 /* 28 * Our network namespace constructor/destructor lists 29 */ 30 31 static LIST_HEAD(pernet_list); 32 static struct list_head *first_device = &pernet_list; 33 34 LIST_HEAD(net_namespace_list); 35 EXPORT_SYMBOL_GPL(net_namespace_list); 36 37 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 38 DECLARE_RWSEM(net_rwsem); 39 EXPORT_SYMBOL_GPL(net_rwsem); 40 41 struct net init_net = { 42 .count = REFCOUNT_INIT(1), 43 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 44 }; 45 EXPORT_SYMBOL(init_net); 46 47 static bool init_net_initialized; 48 /* 49 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 50 * init_net_initialized and first_device pointer. 51 * This is internal net namespace object. Please, don't use it 52 * outside. 53 */ 54 DECLARE_RWSEM(pernet_ops_rwsem); 55 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 56 57 #define MIN_PERNET_OPS_ID \ 58 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 59 60 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 61 62 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 63 64 static struct net_generic *net_alloc_generic(void) 65 { 66 struct net_generic *ng; 67 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 68 69 ng = kzalloc(generic_size, GFP_KERNEL); 70 if (ng) 71 ng->s.len = max_gen_ptrs; 72 73 return ng; 74 } 75 76 static int net_assign_generic(struct net *net, unsigned int id, void *data) 77 { 78 struct net_generic *ng, *old_ng; 79 80 BUG_ON(id < MIN_PERNET_OPS_ID); 81 82 old_ng = rcu_dereference_protected(net->gen, 83 lockdep_is_held(&pernet_ops_rwsem)); 84 if (old_ng->s.len > id) { 85 old_ng->ptr[id] = data; 86 return 0; 87 } 88 89 ng = net_alloc_generic(); 90 if (ng == NULL) 91 return -ENOMEM; 92 93 /* 94 * Some synchronisation notes: 95 * 96 * The net_generic explores the net->gen array inside rcu 97 * read section. Besides once set the net->gen->ptr[x] 98 * pointer never changes (see rules in netns/generic.h). 99 * 100 * That said, we simply duplicate this array and schedule 101 * the old copy for kfree after a grace period. 102 */ 103 104 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 105 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 106 ng->ptr[id] = data; 107 108 rcu_assign_pointer(net->gen, ng); 109 kfree_rcu(old_ng, s.rcu); 110 return 0; 111 } 112 113 static int ops_init(const struct pernet_operations *ops, struct net *net) 114 { 115 int err = -ENOMEM; 116 void *data = NULL; 117 118 if (ops->id && ops->size) { 119 data = kzalloc(ops->size, GFP_KERNEL); 120 if (!data) 121 goto out; 122 123 err = net_assign_generic(net, *ops->id, data); 124 if (err) 125 goto cleanup; 126 } 127 err = 0; 128 if (ops->init) 129 err = ops->init(net); 130 if (!err) 131 return 0; 132 133 cleanup: 134 kfree(data); 135 136 out: 137 return err; 138 } 139 140 static void ops_free(const struct pernet_operations *ops, struct net *net) 141 { 142 if (ops->id && ops->size) { 143 kfree(net_generic(net, *ops->id)); 144 } 145 } 146 147 static void ops_exit_list(const struct pernet_operations *ops, 148 struct list_head *net_exit_list) 149 { 150 struct net *net; 151 if (ops->exit) { 152 list_for_each_entry(net, net_exit_list, exit_list) 153 ops->exit(net); 154 } 155 if (ops->exit_batch) 156 ops->exit_batch(net_exit_list); 157 } 158 159 static void ops_free_list(const struct pernet_operations *ops, 160 struct list_head *net_exit_list) 161 { 162 struct net *net; 163 if (ops->size && ops->id) { 164 list_for_each_entry(net, net_exit_list, exit_list) 165 ops_free(ops, net); 166 } 167 } 168 169 /* should be called with nsid_lock held */ 170 static int alloc_netid(struct net *net, struct net *peer, int reqid) 171 { 172 int min = 0, max = 0; 173 174 if (reqid >= 0) { 175 min = reqid; 176 max = reqid + 1; 177 } 178 179 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 180 } 181 182 /* This function is used by idr_for_each(). If net is equal to peer, the 183 * function returns the id so that idr_for_each() stops. Because we cannot 184 * returns the id 0 (idr_for_each() will not stop), we return the magic value 185 * NET_ID_ZERO (-1) for it. 186 */ 187 #define NET_ID_ZERO -1 188 static int net_eq_idr(int id, void *net, void *peer) 189 { 190 if (net_eq(net, peer)) 191 return id ? : NET_ID_ZERO; 192 return 0; 193 } 194 195 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 196 * is set to true, thus the caller knows that the new id must be notified via 197 * rtnl. 198 */ 199 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 200 { 201 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 202 bool alloc_it = *alloc; 203 204 *alloc = false; 205 206 /* Magic value for id 0. */ 207 if (id == NET_ID_ZERO) 208 return 0; 209 if (id > 0) 210 return id; 211 212 if (alloc_it) { 213 id = alloc_netid(net, peer, -1); 214 *alloc = true; 215 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 216 } 217 218 return NETNSA_NSID_NOT_ASSIGNED; 219 } 220 221 /* should be called with nsid_lock held */ 222 static int __peernet2id(struct net *net, struct net *peer) 223 { 224 bool no = false; 225 226 return __peernet2id_alloc(net, peer, &no); 227 } 228 229 static void rtnl_net_notifyid(struct net *net, int cmd, int id); 230 /* This function returns the id of a peer netns. If no id is assigned, one will 231 * be allocated and returned. 232 */ 233 int peernet2id_alloc(struct net *net, struct net *peer) 234 { 235 bool alloc = false, alive = false; 236 int id; 237 238 if (refcount_read(&net->count) == 0) 239 return NETNSA_NSID_NOT_ASSIGNED; 240 spin_lock_bh(&net->nsid_lock); 241 /* 242 * When peer is obtained from RCU lists, we may race with 243 * its cleanup. Check whether it's alive, and this guarantees 244 * we never hash a peer back to net->netns_ids, after it has 245 * just been idr_remove()'d from there in cleanup_net(). 246 */ 247 if (maybe_get_net(peer)) 248 alive = alloc = true; 249 id = __peernet2id_alloc(net, peer, &alloc); 250 spin_unlock_bh(&net->nsid_lock); 251 if (alloc && id >= 0) 252 rtnl_net_notifyid(net, RTM_NEWNSID, id); 253 if (alive) 254 put_net(peer); 255 return id; 256 } 257 EXPORT_SYMBOL_GPL(peernet2id_alloc); 258 259 /* This function returns, if assigned, the id of a peer netns. */ 260 int peernet2id(struct net *net, struct net *peer) 261 { 262 int id; 263 264 spin_lock_bh(&net->nsid_lock); 265 id = __peernet2id(net, peer); 266 spin_unlock_bh(&net->nsid_lock); 267 return id; 268 } 269 EXPORT_SYMBOL(peernet2id); 270 271 /* This function returns true is the peer netns has an id assigned into the 272 * current netns. 273 */ 274 bool peernet_has_id(struct net *net, struct net *peer) 275 { 276 return peernet2id(net, peer) >= 0; 277 } 278 279 struct net *get_net_ns_by_id(struct net *net, int id) 280 { 281 struct net *peer; 282 283 if (id < 0) 284 return NULL; 285 286 rcu_read_lock(); 287 peer = idr_find(&net->netns_ids, id); 288 if (peer) 289 peer = maybe_get_net(peer); 290 rcu_read_unlock(); 291 292 return peer; 293 } 294 295 /* 296 * setup_net runs the initializers for the network namespace object. 297 */ 298 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 299 { 300 /* Must be called with pernet_ops_rwsem held */ 301 const struct pernet_operations *ops, *saved_ops; 302 int error = 0; 303 LIST_HEAD(net_exit_list); 304 305 refcount_set(&net->count, 1); 306 refcount_set(&net->passive, 1); 307 get_random_bytes(&net->hash_mix, sizeof(u32)); 308 net->dev_base_seq = 1; 309 net->user_ns = user_ns; 310 idr_init(&net->netns_ids); 311 spin_lock_init(&net->nsid_lock); 312 mutex_init(&net->ipv4.ra_mutex); 313 314 list_for_each_entry(ops, &pernet_list, list) { 315 error = ops_init(ops, net); 316 if (error < 0) 317 goto out_undo; 318 } 319 down_write(&net_rwsem); 320 list_add_tail_rcu(&net->list, &net_namespace_list); 321 up_write(&net_rwsem); 322 out: 323 return error; 324 325 out_undo: 326 /* Walk through the list backwards calling the exit functions 327 * for the pernet modules whose init functions did not fail. 328 */ 329 list_add(&net->exit_list, &net_exit_list); 330 saved_ops = ops; 331 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 332 ops_exit_list(ops, &net_exit_list); 333 334 ops = saved_ops; 335 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 336 ops_free_list(ops, &net_exit_list); 337 338 rcu_barrier(); 339 goto out; 340 } 341 342 static int __net_init net_defaults_init_net(struct net *net) 343 { 344 net->core.sysctl_somaxconn = SOMAXCONN; 345 return 0; 346 } 347 348 static struct pernet_operations net_defaults_ops = { 349 .init = net_defaults_init_net, 350 }; 351 352 static __init int net_defaults_init(void) 353 { 354 if (register_pernet_subsys(&net_defaults_ops)) 355 panic("Cannot initialize net default settings"); 356 357 return 0; 358 } 359 360 core_initcall(net_defaults_init); 361 362 #ifdef CONFIG_NET_NS 363 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 364 { 365 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 366 } 367 368 static void dec_net_namespaces(struct ucounts *ucounts) 369 { 370 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 371 } 372 373 static struct kmem_cache *net_cachep __ro_after_init; 374 static struct workqueue_struct *netns_wq; 375 376 static struct net *net_alloc(void) 377 { 378 struct net *net = NULL; 379 struct net_generic *ng; 380 381 ng = net_alloc_generic(); 382 if (!ng) 383 goto out; 384 385 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 386 if (!net) 387 goto out_free; 388 389 rcu_assign_pointer(net->gen, ng); 390 out: 391 return net; 392 393 out_free: 394 kfree(ng); 395 goto out; 396 } 397 398 static void net_free(struct net *net) 399 { 400 kfree(rcu_access_pointer(net->gen)); 401 kmem_cache_free(net_cachep, net); 402 } 403 404 void net_drop_ns(void *p) 405 { 406 struct net *ns = p; 407 if (ns && refcount_dec_and_test(&ns->passive)) 408 net_free(ns); 409 } 410 411 struct net *copy_net_ns(unsigned long flags, 412 struct user_namespace *user_ns, struct net *old_net) 413 { 414 struct ucounts *ucounts; 415 struct net *net; 416 int rv; 417 418 if (!(flags & CLONE_NEWNET)) 419 return get_net(old_net); 420 421 ucounts = inc_net_namespaces(user_ns); 422 if (!ucounts) 423 return ERR_PTR(-ENOSPC); 424 425 net = net_alloc(); 426 if (!net) { 427 rv = -ENOMEM; 428 goto dec_ucounts; 429 } 430 refcount_set(&net->passive, 1); 431 net->ucounts = ucounts; 432 get_user_ns(user_ns); 433 434 rv = down_read_killable(&pernet_ops_rwsem); 435 if (rv < 0) 436 goto put_userns; 437 438 rv = setup_net(net, user_ns); 439 440 up_read(&pernet_ops_rwsem); 441 442 if (rv < 0) { 443 put_userns: 444 put_user_ns(user_ns); 445 net_drop_ns(net); 446 dec_ucounts: 447 dec_net_namespaces(ucounts); 448 return ERR_PTR(rv); 449 } 450 return net; 451 } 452 453 /** 454 * net_ns_get_ownership - get sysfs ownership data for @net 455 * @net: network namespace in question (can be NULL) 456 * @uid: kernel user ID for sysfs objects 457 * @gid: kernel group ID for sysfs objects 458 * 459 * Returns the uid/gid pair of root in the user namespace associated with the 460 * given network namespace. 461 */ 462 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 463 { 464 if (net) { 465 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 466 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 467 468 if (uid_valid(ns_root_uid)) 469 *uid = ns_root_uid; 470 471 if (gid_valid(ns_root_gid)) 472 *gid = ns_root_gid; 473 } else { 474 *uid = GLOBAL_ROOT_UID; 475 *gid = GLOBAL_ROOT_GID; 476 } 477 } 478 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 479 480 static void unhash_nsid(struct net *net, struct net *last) 481 { 482 struct net *tmp; 483 /* This function is only called from cleanup_net() work, 484 * and this work is the only process, that may delete 485 * a net from net_namespace_list. So, when the below 486 * is executing, the list may only grow. Thus, we do not 487 * use for_each_net_rcu() or net_rwsem. 488 */ 489 for_each_net(tmp) { 490 int id; 491 492 spin_lock_bh(&tmp->nsid_lock); 493 id = __peernet2id(tmp, net); 494 if (id >= 0) 495 idr_remove(&tmp->netns_ids, id); 496 spin_unlock_bh(&tmp->nsid_lock); 497 if (id >= 0) 498 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 499 if (tmp == last) 500 break; 501 } 502 spin_lock_bh(&net->nsid_lock); 503 idr_destroy(&net->netns_ids); 504 spin_unlock_bh(&net->nsid_lock); 505 } 506 507 static LLIST_HEAD(cleanup_list); 508 509 static void cleanup_net(struct work_struct *work) 510 { 511 const struct pernet_operations *ops; 512 struct net *net, *tmp, *last; 513 struct llist_node *net_kill_list; 514 LIST_HEAD(net_exit_list); 515 516 /* Atomically snapshot the list of namespaces to cleanup */ 517 net_kill_list = llist_del_all(&cleanup_list); 518 519 down_read(&pernet_ops_rwsem); 520 521 /* Don't let anyone else find us. */ 522 down_write(&net_rwsem); 523 llist_for_each_entry(net, net_kill_list, cleanup_list) 524 list_del_rcu(&net->list); 525 /* Cache last net. After we unlock rtnl, no one new net 526 * added to net_namespace_list can assign nsid pointer 527 * to a net from net_kill_list (see peernet2id_alloc()). 528 * So, we skip them in unhash_nsid(). 529 * 530 * Note, that unhash_nsid() does not delete nsid links 531 * between net_kill_list's nets, as they've already 532 * deleted from net_namespace_list. But, this would be 533 * useless anyway, as netns_ids are destroyed there. 534 */ 535 last = list_last_entry(&net_namespace_list, struct net, list); 536 up_write(&net_rwsem); 537 538 llist_for_each_entry(net, net_kill_list, cleanup_list) { 539 unhash_nsid(net, last); 540 list_add_tail(&net->exit_list, &net_exit_list); 541 } 542 543 /* 544 * Another CPU might be rcu-iterating the list, wait for it. 545 * This needs to be before calling the exit() notifiers, so 546 * the rcu_barrier() below isn't sufficient alone. 547 */ 548 synchronize_rcu(); 549 550 /* Run all of the network namespace exit methods */ 551 list_for_each_entry_reverse(ops, &pernet_list, list) 552 ops_exit_list(ops, &net_exit_list); 553 554 /* Free the net generic variables */ 555 list_for_each_entry_reverse(ops, &pernet_list, list) 556 ops_free_list(ops, &net_exit_list); 557 558 up_read(&pernet_ops_rwsem); 559 560 /* Ensure there are no outstanding rcu callbacks using this 561 * network namespace. 562 */ 563 rcu_barrier(); 564 565 /* Finally it is safe to free my network namespace structure */ 566 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 567 list_del_init(&net->exit_list); 568 dec_net_namespaces(net->ucounts); 569 put_user_ns(net->user_ns); 570 net_drop_ns(net); 571 } 572 } 573 574 /** 575 * net_ns_barrier - wait until concurrent net_cleanup_work is done 576 * 577 * cleanup_net runs from work queue and will first remove namespaces 578 * from the global list, then run net exit functions. 579 * 580 * Call this in module exit path to make sure that all netns 581 * ->exit ops have been invoked before the function is removed. 582 */ 583 void net_ns_barrier(void) 584 { 585 down_write(&pernet_ops_rwsem); 586 up_write(&pernet_ops_rwsem); 587 } 588 EXPORT_SYMBOL(net_ns_barrier); 589 590 static DECLARE_WORK(net_cleanup_work, cleanup_net); 591 592 void __put_net(struct net *net) 593 { 594 /* Cleanup the network namespace in process context */ 595 if (llist_add(&net->cleanup_list, &cleanup_list)) 596 queue_work(netns_wq, &net_cleanup_work); 597 } 598 EXPORT_SYMBOL_GPL(__put_net); 599 600 struct net *get_net_ns_by_fd(int fd) 601 { 602 struct file *file; 603 struct ns_common *ns; 604 struct net *net; 605 606 file = proc_ns_fget(fd); 607 if (IS_ERR(file)) 608 return ERR_CAST(file); 609 610 ns = get_proc_ns(file_inode(file)); 611 if (ns->ops == &netns_operations) 612 net = get_net(container_of(ns, struct net, ns)); 613 else 614 net = ERR_PTR(-EINVAL); 615 616 fput(file); 617 return net; 618 } 619 620 #else 621 struct net *get_net_ns_by_fd(int fd) 622 { 623 return ERR_PTR(-EINVAL); 624 } 625 #endif 626 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 627 628 struct net *get_net_ns_by_pid(pid_t pid) 629 { 630 struct task_struct *tsk; 631 struct net *net; 632 633 /* Lookup the network namespace */ 634 net = ERR_PTR(-ESRCH); 635 rcu_read_lock(); 636 tsk = find_task_by_vpid(pid); 637 if (tsk) { 638 struct nsproxy *nsproxy; 639 task_lock(tsk); 640 nsproxy = tsk->nsproxy; 641 if (nsproxy) 642 net = get_net(nsproxy->net_ns); 643 task_unlock(tsk); 644 } 645 rcu_read_unlock(); 646 return net; 647 } 648 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 649 650 static __net_init int net_ns_net_init(struct net *net) 651 { 652 #ifdef CONFIG_NET_NS 653 net->ns.ops = &netns_operations; 654 #endif 655 return ns_alloc_inum(&net->ns); 656 } 657 658 static __net_exit void net_ns_net_exit(struct net *net) 659 { 660 ns_free_inum(&net->ns); 661 } 662 663 static struct pernet_operations __net_initdata net_ns_ops = { 664 .init = net_ns_net_init, 665 .exit = net_ns_net_exit, 666 }; 667 668 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 669 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 670 [NETNSA_NSID] = { .type = NLA_S32 }, 671 [NETNSA_PID] = { .type = NLA_U32 }, 672 [NETNSA_FD] = { .type = NLA_U32 }, 673 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 674 }; 675 676 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 677 struct netlink_ext_ack *extack) 678 { 679 struct net *net = sock_net(skb->sk); 680 struct nlattr *tb[NETNSA_MAX + 1]; 681 struct nlattr *nla; 682 struct net *peer; 683 int nsid, err; 684 685 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 686 NETNSA_MAX, rtnl_net_policy, extack); 687 if (err < 0) 688 return err; 689 if (!tb[NETNSA_NSID]) { 690 NL_SET_ERR_MSG(extack, "nsid is missing"); 691 return -EINVAL; 692 } 693 nsid = nla_get_s32(tb[NETNSA_NSID]); 694 695 if (tb[NETNSA_PID]) { 696 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 697 nla = tb[NETNSA_PID]; 698 } else if (tb[NETNSA_FD]) { 699 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 700 nla = tb[NETNSA_FD]; 701 } else { 702 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 703 return -EINVAL; 704 } 705 if (IS_ERR(peer)) { 706 NL_SET_BAD_ATTR(extack, nla); 707 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 708 return PTR_ERR(peer); 709 } 710 711 spin_lock_bh(&net->nsid_lock); 712 if (__peernet2id(net, peer) >= 0) { 713 spin_unlock_bh(&net->nsid_lock); 714 err = -EEXIST; 715 NL_SET_BAD_ATTR(extack, nla); 716 NL_SET_ERR_MSG(extack, 717 "Peer netns already has a nsid assigned"); 718 goto out; 719 } 720 721 err = alloc_netid(net, peer, nsid); 722 spin_unlock_bh(&net->nsid_lock); 723 if (err >= 0) { 724 rtnl_net_notifyid(net, RTM_NEWNSID, err); 725 err = 0; 726 } else if (err == -ENOSPC && nsid >= 0) { 727 err = -EEXIST; 728 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 729 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 730 } 731 out: 732 put_net(peer); 733 return err; 734 } 735 736 static int rtnl_net_get_size(void) 737 { 738 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 739 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 740 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 741 ; 742 } 743 744 struct net_fill_args { 745 u32 portid; 746 u32 seq; 747 int flags; 748 int cmd; 749 int nsid; 750 bool add_ref; 751 int ref_nsid; 752 }; 753 754 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 755 { 756 struct nlmsghdr *nlh; 757 struct rtgenmsg *rth; 758 759 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 760 args->flags); 761 if (!nlh) 762 return -EMSGSIZE; 763 764 rth = nlmsg_data(nlh); 765 rth->rtgen_family = AF_UNSPEC; 766 767 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 768 goto nla_put_failure; 769 770 if (args->add_ref && 771 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 772 goto nla_put_failure; 773 774 nlmsg_end(skb, nlh); 775 return 0; 776 777 nla_put_failure: 778 nlmsg_cancel(skb, nlh); 779 return -EMSGSIZE; 780 } 781 782 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 783 const struct nlmsghdr *nlh, 784 struct nlattr **tb, 785 struct netlink_ext_ack *extack) 786 { 787 int i, err; 788 789 if (!netlink_strict_get_check(skb)) 790 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 791 tb, NETNSA_MAX, rtnl_net_policy, 792 extack); 793 794 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 795 NETNSA_MAX, rtnl_net_policy, 796 extack); 797 if (err) 798 return err; 799 800 for (i = 0; i <= NETNSA_MAX; i++) { 801 if (!tb[i]) 802 continue; 803 804 switch (i) { 805 case NETNSA_PID: 806 case NETNSA_FD: 807 case NETNSA_NSID: 808 case NETNSA_TARGET_NSID: 809 break; 810 default: 811 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 812 return -EINVAL; 813 } 814 } 815 816 return 0; 817 } 818 819 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 820 struct netlink_ext_ack *extack) 821 { 822 struct net *net = sock_net(skb->sk); 823 struct nlattr *tb[NETNSA_MAX + 1]; 824 struct net_fill_args fillargs = { 825 .portid = NETLINK_CB(skb).portid, 826 .seq = nlh->nlmsg_seq, 827 .cmd = RTM_NEWNSID, 828 }; 829 struct net *peer, *target = net; 830 struct nlattr *nla; 831 struct sk_buff *msg; 832 int err; 833 834 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 835 if (err < 0) 836 return err; 837 if (tb[NETNSA_PID]) { 838 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 839 nla = tb[NETNSA_PID]; 840 } else if (tb[NETNSA_FD]) { 841 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 842 nla = tb[NETNSA_FD]; 843 } else if (tb[NETNSA_NSID]) { 844 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 845 if (!peer) 846 peer = ERR_PTR(-ENOENT); 847 nla = tb[NETNSA_NSID]; 848 } else { 849 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 850 return -EINVAL; 851 } 852 853 if (IS_ERR(peer)) { 854 NL_SET_BAD_ATTR(extack, nla); 855 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 856 return PTR_ERR(peer); 857 } 858 859 if (tb[NETNSA_TARGET_NSID]) { 860 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 861 862 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 863 if (IS_ERR(target)) { 864 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 865 NL_SET_ERR_MSG(extack, 866 "Target netns reference is invalid"); 867 err = PTR_ERR(target); 868 goto out; 869 } 870 fillargs.add_ref = true; 871 fillargs.ref_nsid = peernet2id(net, peer); 872 } 873 874 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 875 if (!msg) { 876 err = -ENOMEM; 877 goto out; 878 } 879 880 fillargs.nsid = peernet2id(target, peer); 881 err = rtnl_net_fill(msg, &fillargs); 882 if (err < 0) 883 goto err_out; 884 885 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 886 goto out; 887 888 err_out: 889 nlmsg_free(msg); 890 out: 891 if (fillargs.add_ref) 892 put_net(target); 893 put_net(peer); 894 return err; 895 } 896 897 struct rtnl_net_dump_cb { 898 struct net *tgt_net; 899 struct net *ref_net; 900 struct sk_buff *skb; 901 struct net_fill_args fillargs; 902 int idx; 903 int s_idx; 904 }; 905 906 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 907 { 908 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 909 int ret; 910 911 if (net_cb->idx < net_cb->s_idx) 912 goto cont; 913 914 net_cb->fillargs.nsid = id; 915 if (net_cb->fillargs.add_ref) 916 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 917 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 918 if (ret < 0) 919 return ret; 920 921 cont: 922 net_cb->idx++; 923 return 0; 924 } 925 926 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 927 struct rtnl_net_dump_cb *net_cb, 928 struct netlink_callback *cb) 929 { 930 struct netlink_ext_ack *extack = cb->extack; 931 struct nlattr *tb[NETNSA_MAX + 1]; 932 int err, i; 933 934 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 935 NETNSA_MAX, rtnl_net_policy, 936 extack); 937 if (err < 0) 938 return err; 939 940 for (i = 0; i <= NETNSA_MAX; i++) { 941 if (!tb[i]) 942 continue; 943 944 if (i == NETNSA_TARGET_NSID) { 945 struct net *net; 946 947 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 948 if (IS_ERR(net)) { 949 NL_SET_BAD_ATTR(extack, tb[i]); 950 NL_SET_ERR_MSG(extack, 951 "Invalid target network namespace id"); 952 return PTR_ERR(net); 953 } 954 net_cb->fillargs.add_ref = true; 955 net_cb->ref_net = net_cb->tgt_net; 956 net_cb->tgt_net = net; 957 } else { 958 NL_SET_BAD_ATTR(extack, tb[i]); 959 NL_SET_ERR_MSG(extack, 960 "Unsupported attribute in dump request"); 961 return -EINVAL; 962 } 963 } 964 965 return 0; 966 } 967 968 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 969 { 970 struct rtnl_net_dump_cb net_cb = { 971 .tgt_net = sock_net(skb->sk), 972 .skb = skb, 973 .fillargs = { 974 .portid = NETLINK_CB(cb->skb).portid, 975 .seq = cb->nlh->nlmsg_seq, 976 .flags = NLM_F_MULTI, 977 .cmd = RTM_NEWNSID, 978 }, 979 .idx = 0, 980 .s_idx = cb->args[0], 981 }; 982 int err = 0; 983 984 if (cb->strict_check) { 985 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 986 if (err < 0) 987 goto end; 988 } 989 990 spin_lock_bh(&net_cb.tgt_net->nsid_lock); 991 if (net_cb.fillargs.add_ref && 992 !net_eq(net_cb.ref_net, net_cb.tgt_net) && 993 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) { 994 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 995 err = -EAGAIN; 996 goto end; 997 } 998 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 999 if (net_cb.fillargs.add_ref && 1000 !net_eq(net_cb.ref_net, net_cb.tgt_net)) 1001 spin_unlock_bh(&net_cb.ref_net->nsid_lock); 1002 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1003 1004 cb->args[0] = net_cb.idx; 1005 end: 1006 if (net_cb.fillargs.add_ref) 1007 put_net(net_cb.tgt_net); 1008 return err < 0 ? err : skb->len; 1009 } 1010 1011 static void rtnl_net_notifyid(struct net *net, int cmd, int id) 1012 { 1013 struct net_fill_args fillargs = { 1014 .cmd = cmd, 1015 .nsid = id, 1016 }; 1017 struct sk_buff *msg; 1018 int err = -ENOMEM; 1019 1020 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1021 if (!msg) 1022 goto out; 1023 1024 err = rtnl_net_fill(msg, &fillargs); 1025 if (err < 0) 1026 goto err_out; 1027 1028 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 1029 return; 1030 1031 err_out: 1032 nlmsg_free(msg); 1033 out: 1034 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1035 } 1036 1037 static int __init net_ns_init(void) 1038 { 1039 struct net_generic *ng; 1040 1041 #ifdef CONFIG_NET_NS 1042 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1043 SMP_CACHE_BYTES, 1044 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1045 1046 /* Create workqueue for cleanup */ 1047 netns_wq = create_singlethread_workqueue("netns"); 1048 if (!netns_wq) 1049 panic("Could not create netns workq"); 1050 #endif 1051 1052 ng = net_alloc_generic(); 1053 if (!ng) 1054 panic("Could not allocate generic netns"); 1055 1056 rcu_assign_pointer(init_net.gen, ng); 1057 1058 down_write(&pernet_ops_rwsem); 1059 if (setup_net(&init_net, &init_user_ns)) 1060 panic("Could not setup the initial network namespace"); 1061 1062 init_net_initialized = true; 1063 up_write(&pernet_ops_rwsem); 1064 1065 if (register_pernet_subsys(&net_ns_ops)) 1066 panic("Could not register network namespace subsystems"); 1067 1068 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1069 RTNL_FLAG_DOIT_UNLOCKED); 1070 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1071 RTNL_FLAG_DOIT_UNLOCKED); 1072 1073 return 0; 1074 } 1075 1076 pure_initcall(net_ns_init); 1077 1078 #ifdef CONFIG_NET_NS 1079 static int __register_pernet_operations(struct list_head *list, 1080 struct pernet_operations *ops) 1081 { 1082 struct net *net; 1083 int error; 1084 LIST_HEAD(net_exit_list); 1085 1086 list_add_tail(&ops->list, list); 1087 if (ops->init || (ops->id && ops->size)) { 1088 /* We held write locked pernet_ops_rwsem, and parallel 1089 * setup_net() and cleanup_net() are not possible. 1090 */ 1091 for_each_net(net) { 1092 error = ops_init(ops, net); 1093 if (error) 1094 goto out_undo; 1095 list_add_tail(&net->exit_list, &net_exit_list); 1096 } 1097 } 1098 return 0; 1099 1100 out_undo: 1101 /* If I have an error cleanup all namespaces I initialized */ 1102 list_del(&ops->list); 1103 ops_exit_list(ops, &net_exit_list); 1104 ops_free_list(ops, &net_exit_list); 1105 return error; 1106 } 1107 1108 static void __unregister_pernet_operations(struct pernet_operations *ops) 1109 { 1110 struct net *net; 1111 LIST_HEAD(net_exit_list); 1112 1113 list_del(&ops->list); 1114 /* See comment in __register_pernet_operations() */ 1115 for_each_net(net) 1116 list_add_tail(&net->exit_list, &net_exit_list); 1117 ops_exit_list(ops, &net_exit_list); 1118 ops_free_list(ops, &net_exit_list); 1119 } 1120 1121 #else 1122 1123 static int __register_pernet_operations(struct list_head *list, 1124 struct pernet_operations *ops) 1125 { 1126 if (!init_net_initialized) { 1127 list_add_tail(&ops->list, list); 1128 return 0; 1129 } 1130 1131 return ops_init(ops, &init_net); 1132 } 1133 1134 static void __unregister_pernet_operations(struct pernet_operations *ops) 1135 { 1136 if (!init_net_initialized) { 1137 list_del(&ops->list); 1138 } else { 1139 LIST_HEAD(net_exit_list); 1140 list_add(&init_net.exit_list, &net_exit_list); 1141 ops_exit_list(ops, &net_exit_list); 1142 ops_free_list(ops, &net_exit_list); 1143 } 1144 } 1145 1146 #endif /* CONFIG_NET_NS */ 1147 1148 static DEFINE_IDA(net_generic_ids); 1149 1150 static int register_pernet_operations(struct list_head *list, 1151 struct pernet_operations *ops) 1152 { 1153 int error; 1154 1155 if (ops->id) { 1156 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1157 GFP_KERNEL); 1158 if (error < 0) 1159 return error; 1160 *ops->id = error; 1161 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1162 } 1163 error = __register_pernet_operations(list, ops); 1164 if (error) { 1165 rcu_barrier(); 1166 if (ops->id) 1167 ida_free(&net_generic_ids, *ops->id); 1168 } 1169 1170 return error; 1171 } 1172 1173 static void unregister_pernet_operations(struct pernet_operations *ops) 1174 { 1175 __unregister_pernet_operations(ops); 1176 rcu_barrier(); 1177 if (ops->id) 1178 ida_free(&net_generic_ids, *ops->id); 1179 } 1180 1181 /** 1182 * register_pernet_subsys - register a network namespace subsystem 1183 * @ops: pernet operations structure for the subsystem 1184 * 1185 * Register a subsystem which has init and exit functions 1186 * that are called when network namespaces are created and 1187 * destroyed respectively. 1188 * 1189 * When registered all network namespace init functions are 1190 * called for every existing network namespace. Allowing kernel 1191 * modules to have a race free view of the set of network namespaces. 1192 * 1193 * When a new network namespace is created all of the init 1194 * methods are called in the order in which they were registered. 1195 * 1196 * When a network namespace is destroyed all of the exit methods 1197 * are called in the reverse of the order with which they were 1198 * registered. 1199 */ 1200 int register_pernet_subsys(struct pernet_operations *ops) 1201 { 1202 int error; 1203 down_write(&pernet_ops_rwsem); 1204 error = register_pernet_operations(first_device, ops); 1205 up_write(&pernet_ops_rwsem); 1206 return error; 1207 } 1208 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1209 1210 /** 1211 * unregister_pernet_subsys - unregister a network namespace subsystem 1212 * @ops: pernet operations structure to manipulate 1213 * 1214 * Remove the pernet operations structure from the list to be 1215 * used when network namespaces are created or destroyed. In 1216 * addition run the exit method for all existing network 1217 * namespaces. 1218 */ 1219 void unregister_pernet_subsys(struct pernet_operations *ops) 1220 { 1221 down_write(&pernet_ops_rwsem); 1222 unregister_pernet_operations(ops); 1223 up_write(&pernet_ops_rwsem); 1224 } 1225 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1226 1227 /** 1228 * register_pernet_device - register a network namespace device 1229 * @ops: pernet operations structure for the subsystem 1230 * 1231 * Register a device which has init and exit functions 1232 * that are called when network namespaces are created and 1233 * destroyed respectively. 1234 * 1235 * When registered all network namespace init functions are 1236 * called for every existing network namespace. Allowing kernel 1237 * modules to have a race free view of the set of network namespaces. 1238 * 1239 * When a new network namespace is created all of the init 1240 * methods are called in the order in which they were registered. 1241 * 1242 * When a network namespace is destroyed all of the exit methods 1243 * are called in the reverse of the order with which they were 1244 * registered. 1245 */ 1246 int register_pernet_device(struct pernet_operations *ops) 1247 { 1248 int error; 1249 down_write(&pernet_ops_rwsem); 1250 error = register_pernet_operations(&pernet_list, ops); 1251 if (!error && (first_device == &pernet_list)) 1252 first_device = &ops->list; 1253 up_write(&pernet_ops_rwsem); 1254 return error; 1255 } 1256 EXPORT_SYMBOL_GPL(register_pernet_device); 1257 1258 /** 1259 * unregister_pernet_device - unregister a network namespace netdevice 1260 * @ops: pernet operations structure to manipulate 1261 * 1262 * Remove the pernet operations structure from the list to be 1263 * used when network namespaces are created or destroyed. In 1264 * addition run the exit method for all existing network 1265 * namespaces. 1266 */ 1267 void unregister_pernet_device(struct pernet_operations *ops) 1268 { 1269 down_write(&pernet_ops_rwsem); 1270 if (&ops->list == first_device) 1271 first_device = first_device->next; 1272 unregister_pernet_operations(ops); 1273 up_write(&pernet_ops_rwsem); 1274 } 1275 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1276 1277 #ifdef CONFIG_NET_NS 1278 static struct ns_common *netns_get(struct task_struct *task) 1279 { 1280 struct net *net = NULL; 1281 struct nsproxy *nsproxy; 1282 1283 task_lock(task); 1284 nsproxy = task->nsproxy; 1285 if (nsproxy) 1286 net = get_net(nsproxy->net_ns); 1287 task_unlock(task); 1288 1289 return net ? &net->ns : NULL; 1290 } 1291 1292 static inline struct net *to_net_ns(struct ns_common *ns) 1293 { 1294 return container_of(ns, struct net, ns); 1295 } 1296 1297 static void netns_put(struct ns_common *ns) 1298 { 1299 put_net(to_net_ns(ns)); 1300 } 1301 1302 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1303 { 1304 struct net *net = to_net_ns(ns); 1305 1306 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1307 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1308 return -EPERM; 1309 1310 put_net(nsproxy->net_ns); 1311 nsproxy->net_ns = get_net(net); 1312 return 0; 1313 } 1314 1315 static struct user_namespace *netns_owner(struct ns_common *ns) 1316 { 1317 return to_net_ns(ns)->user_ns; 1318 } 1319 1320 const struct proc_ns_operations netns_operations = { 1321 .name = "net", 1322 .type = CLONE_NEWNET, 1323 .get = netns_get, 1324 .put = netns_put, 1325 .install = netns_install, 1326 .owner = netns_owner, 1327 }; 1328 #endif 1329