xref: /openbmc/linux/net/core/net_namespace.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 
23 #include <net/sock.h>
24 #include <net/netlink.h>
25 #include <net/net_namespace.h>
26 #include <net/netns/generic.h>
27 
28 /*
29  *	Our network namespace constructor/destructor lists
30  */
31 
32 static LIST_HEAD(pernet_list);
33 static struct list_head *first_device = &pernet_list;
34 
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37 
38 /* Protects net_namespace_list. Nests iside rtnl_lock() */
39 DECLARE_RWSEM(net_rwsem);
40 EXPORT_SYMBOL_GPL(net_rwsem);
41 
42 #ifdef CONFIG_KEYS
43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
44 #endif
45 
46 struct net init_net = {
47 	.count		= REFCOUNT_INIT(1),
48 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
49 #ifdef CONFIG_KEYS
50 	.key_domain	= &init_net_key_domain,
51 #endif
52 };
53 EXPORT_SYMBOL(init_net);
54 
55 static bool init_net_initialized;
56 /*
57  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
58  * init_net_initialized and first_device pointer.
59  * This is internal net namespace object. Please, don't use it
60  * outside.
61  */
62 DECLARE_RWSEM(pernet_ops_rwsem);
63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
64 
65 #define MIN_PERNET_OPS_ID	\
66 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
67 
68 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
69 
70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
71 
72 static struct net_generic *net_alloc_generic(void)
73 {
74 	struct net_generic *ng;
75 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
76 
77 	ng = kzalloc(generic_size, GFP_KERNEL);
78 	if (ng)
79 		ng->s.len = max_gen_ptrs;
80 
81 	return ng;
82 }
83 
84 static int net_assign_generic(struct net *net, unsigned int id, void *data)
85 {
86 	struct net_generic *ng, *old_ng;
87 
88 	BUG_ON(id < MIN_PERNET_OPS_ID);
89 
90 	old_ng = rcu_dereference_protected(net->gen,
91 					   lockdep_is_held(&pernet_ops_rwsem));
92 	if (old_ng->s.len > id) {
93 		old_ng->ptr[id] = data;
94 		return 0;
95 	}
96 
97 	ng = net_alloc_generic();
98 	if (ng == NULL)
99 		return -ENOMEM;
100 
101 	/*
102 	 * Some synchronisation notes:
103 	 *
104 	 * The net_generic explores the net->gen array inside rcu
105 	 * read section. Besides once set the net->gen->ptr[x]
106 	 * pointer never changes (see rules in netns/generic.h).
107 	 *
108 	 * That said, we simply duplicate this array and schedule
109 	 * the old copy for kfree after a grace period.
110 	 */
111 
112 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
113 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
114 	ng->ptr[id] = data;
115 
116 	rcu_assign_pointer(net->gen, ng);
117 	kfree_rcu(old_ng, s.rcu);
118 	return 0;
119 }
120 
121 static int ops_init(const struct pernet_operations *ops, struct net *net)
122 {
123 	int err = -ENOMEM;
124 	void *data = NULL;
125 
126 	if (ops->id && ops->size) {
127 		data = kzalloc(ops->size, GFP_KERNEL);
128 		if (!data)
129 			goto out;
130 
131 		err = net_assign_generic(net, *ops->id, data);
132 		if (err)
133 			goto cleanup;
134 	}
135 	err = 0;
136 	if (ops->init)
137 		err = ops->init(net);
138 	if (!err)
139 		return 0;
140 
141 cleanup:
142 	kfree(data);
143 
144 out:
145 	return err;
146 }
147 
148 static void ops_free(const struct pernet_operations *ops, struct net *net)
149 {
150 	if (ops->id && ops->size) {
151 		kfree(net_generic(net, *ops->id));
152 	}
153 }
154 
155 static void ops_pre_exit_list(const struct pernet_operations *ops,
156 			      struct list_head *net_exit_list)
157 {
158 	struct net *net;
159 
160 	if (ops->pre_exit) {
161 		list_for_each_entry(net, net_exit_list, exit_list)
162 			ops->pre_exit(net);
163 	}
164 }
165 
166 static void ops_exit_list(const struct pernet_operations *ops,
167 			  struct list_head *net_exit_list)
168 {
169 	struct net *net;
170 	if (ops->exit) {
171 		list_for_each_entry(net, net_exit_list, exit_list)
172 			ops->exit(net);
173 	}
174 	if (ops->exit_batch)
175 		ops->exit_batch(net_exit_list);
176 }
177 
178 static void ops_free_list(const struct pernet_operations *ops,
179 			  struct list_head *net_exit_list)
180 {
181 	struct net *net;
182 	if (ops->size && ops->id) {
183 		list_for_each_entry(net, net_exit_list, exit_list)
184 			ops_free(ops, net);
185 	}
186 }
187 
188 /* should be called with nsid_lock held */
189 static int alloc_netid(struct net *net, struct net *peer, int reqid)
190 {
191 	int min = 0, max = 0;
192 
193 	if (reqid >= 0) {
194 		min = reqid;
195 		max = reqid + 1;
196 	}
197 
198 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
199 }
200 
201 /* This function is used by idr_for_each(). If net is equal to peer, the
202  * function returns the id so that idr_for_each() stops. Because we cannot
203  * returns the id 0 (idr_for_each() will not stop), we return the magic value
204  * NET_ID_ZERO (-1) for it.
205  */
206 #define NET_ID_ZERO -1
207 static int net_eq_idr(int id, void *net, void *peer)
208 {
209 	if (net_eq(net, peer))
210 		return id ? : NET_ID_ZERO;
211 	return 0;
212 }
213 
214 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
215  * is set to true, thus the caller knows that the new id must be notified via
216  * rtnl.
217  */
218 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
219 {
220 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
221 	bool alloc_it = *alloc;
222 
223 	*alloc = false;
224 
225 	/* Magic value for id 0. */
226 	if (id == NET_ID_ZERO)
227 		return 0;
228 	if (id > 0)
229 		return id;
230 
231 	if (alloc_it) {
232 		id = alloc_netid(net, peer, -1);
233 		*alloc = true;
234 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
235 	}
236 
237 	return NETNSA_NSID_NOT_ASSIGNED;
238 }
239 
240 /* should be called with nsid_lock held */
241 static int __peernet2id(struct net *net, struct net *peer)
242 {
243 	bool no = false;
244 
245 	return __peernet2id_alloc(net, peer, &no);
246 }
247 
248 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
249 /* This function returns the id of a peer netns. If no id is assigned, one will
250  * be allocated and returned.
251  */
252 int peernet2id_alloc(struct net *net, struct net *peer)
253 {
254 	bool alloc = false, alive = false;
255 	int id;
256 
257 	if (refcount_read(&net->count) == 0)
258 		return NETNSA_NSID_NOT_ASSIGNED;
259 	spin_lock_bh(&net->nsid_lock);
260 	/*
261 	 * When peer is obtained from RCU lists, we may race with
262 	 * its cleanup. Check whether it's alive, and this guarantees
263 	 * we never hash a peer back to net->netns_ids, after it has
264 	 * just been idr_remove()'d from there in cleanup_net().
265 	 */
266 	if (maybe_get_net(peer))
267 		alive = alloc = true;
268 	id = __peernet2id_alloc(net, peer, &alloc);
269 	spin_unlock_bh(&net->nsid_lock);
270 	if (alloc && id >= 0)
271 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
272 	if (alive)
273 		put_net(peer);
274 	return id;
275 }
276 EXPORT_SYMBOL_GPL(peernet2id_alloc);
277 
278 /* This function returns, if assigned, the id of a peer netns. */
279 int peernet2id(struct net *net, struct net *peer)
280 {
281 	int id;
282 
283 	spin_lock_bh(&net->nsid_lock);
284 	id = __peernet2id(net, peer);
285 	spin_unlock_bh(&net->nsid_lock);
286 	return id;
287 }
288 EXPORT_SYMBOL(peernet2id);
289 
290 /* This function returns true is the peer netns has an id assigned into the
291  * current netns.
292  */
293 bool peernet_has_id(struct net *net, struct net *peer)
294 {
295 	return peernet2id(net, peer) >= 0;
296 }
297 
298 struct net *get_net_ns_by_id(struct net *net, int id)
299 {
300 	struct net *peer;
301 
302 	if (id < 0)
303 		return NULL;
304 
305 	rcu_read_lock();
306 	peer = idr_find(&net->netns_ids, id);
307 	if (peer)
308 		peer = maybe_get_net(peer);
309 	rcu_read_unlock();
310 
311 	return peer;
312 }
313 
314 /*
315  * setup_net runs the initializers for the network namespace object.
316  */
317 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
318 {
319 	/* Must be called with pernet_ops_rwsem held */
320 	const struct pernet_operations *ops, *saved_ops;
321 	int error = 0;
322 	LIST_HEAD(net_exit_list);
323 
324 	refcount_set(&net->count, 1);
325 	refcount_set(&net->passive, 1);
326 	get_random_bytes(&net->hash_mix, sizeof(u32));
327 	net->dev_base_seq = 1;
328 	net->user_ns = user_ns;
329 	idr_init(&net->netns_ids);
330 	spin_lock_init(&net->nsid_lock);
331 	mutex_init(&net->ipv4.ra_mutex);
332 
333 	list_for_each_entry(ops, &pernet_list, list) {
334 		error = ops_init(ops, net);
335 		if (error < 0)
336 			goto out_undo;
337 	}
338 	down_write(&net_rwsem);
339 	list_add_tail_rcu(&net->list, &net_namespace_list);
340 	up_write(&net_rwsem);
341 out:
342 	return error;
343 
344 out_undo:
345 	/* Walk through the list backwards calling the exit functions
346 	 * for the pernet modules whose init functions did not fail.
347 	 */
348 	list_add(&net->exit_list, &net_exit_list);
349 	saved_ops = ops;
350 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
351 		ops_pre_exit_list(ops, &net_exit_list);
352 
353 	synchronize_rcu();
354 
355 	ops = saved_ops;
356 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
357 		ops_exit_list(ops, &net_exit_list);
358 
359 	ops = saved_ops;
360 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
361 		ops_free_list(ops, &net_exit_list);
362 
363 	rcu_barrier();
364 	goto out;
365 }
366 
367 static int __net_init net_defaults_init_net(struct net *net)
368 {
369 	net->core.sysctl_somaxconn = SOMAXCONN;
370 	return 0;
371 }
372 
373 static struct pernet_operations net_defaults_ops = {
374 	.init = net_defaults_init_net,
375 };
376 
377 static __init int net_defaults_init(void)
378 {
379 	if (register_pernet_subsys(&net_defaults_ops))
380 		panic("Cannot initialize net default settings");
381 
382 	return 0;
383 }
384 
385 core_initcall(net_defaults_init);
386 
387 #ifdef CONFIG_NET_NS
388 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
389 {
390 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
391 }
392 
393 static void dec_net_namespaces(struct ucounts *ucounts)
394 {
395 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
396 }
397 
398 static struct kmem_cache *net_cachep __ro_after_init;
399 static struct workqueue_struct *netns_wq;
400 
401 static struct net *net_alloc(void)
402 {
403 	struct net *net = NULL;
404 	struct net_generic *ng;
405 
406 	ng = net_alloc_generic();
407 	if (!ng)
408 		goto out;
409 
410 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
411 	if (!net)
412 		goto out_free;
413 
414 #ifdef CONFIG_KEYS
415 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
416 	if (!net->key_domain)
417 		goto out_free_2;
418 	refcount_set(&net->key_domain->usage, 1);
419 #endif
420 
421 	rcu_assign_pointer(net->gen, ng);
422 out:
423 	return net;
424 
425 #ifdef CONFIG_KEYS
426 out_free_2:
427 	kmem_cache_free(net_cachep, net);
428 	net = NULL;
429 #endif
430 out_free:
431 	kfree(ng);
432 	goto out;
433 }
434 
435 static void net_free(struct net *net)
436 {
437 	kfree(rcu_access_pointer(net->gen));
438 	kmem_cache_free(net_cachep, net);
439 }
440 
441 void net_drop_ns(void *p)
442 {
443 	struct net *ns = p;
444 	if (ns && refcount_dec_and_test(&ns->passive))
445 		net_free(ns);
446 }
447 
448 struct net *copy_net_ns(unsigned long flags,
449 			struct user_namespace *user_ns, struct net *old_net)
450 {
451 	struct ucounts *ucounts;
452 	struct net *net;
453 	int rv;
454 
455 	if (!(flags & CLONE_NEWNET))
456 		return get_net(old_net);
457 
458 	ucounts = inc_net_namespaces(user_ns);
459 	if (!ucounts)
460 		return ERR_PTR(-ENOSPC);
461 
462 	net = net_alloc();
463 	if (!net) {
464 		rv = -ENOMEM;
465 		goto dec_ucounts;
466 	}
467 	refcount_set(&net->passive, 1);
468 	net->ucounts = ucounts;
469 	get_user_ns(user_ns);
470 
471 	rv = down_read_killable(&pernet_ops_rwsem);
472 	if (rv < 0)
473 		goto put_userns;
474 
475 	rv = setup_net(net, user_ns);
476 
477 	up_read(&pernet_ops_rwsem);
478 
479 	if (rv < 0) {
480 put_userns:
481 		put_user_ns(user_ns);
482 		net_drop_ns(net);
483 dec_ucounts:
484 		dec_net_namespaces(ucounts);
485 		return ERR_PTR(rv);
486 	}
487 	return net;
488 }
489 
490 /**
491  * net_ns_get_ownership - get sysfs ownership data for @net
492  * @net: network namespace in question (can be NULL)
493  * @uid: kernel user ID for sysfs objects
494  * @gid: kernel group ID for sysfs objects
495  *
496  * Returns the uid/gid pair of root in the user namespace associated with the
497  * given network namespace.
498  */
499 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
500 {
501 	if (net) {
502 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
503 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
504 
505 		if (uid_valid(ns_root_uid))
506 			*uid = ns_root_uid;
507 
508 		if (gid_valid(ns_root_gid))
509 			*gid = ns_root_gid;
510 	} else {
511 		*uid = GLOBAL_ROOT_UID;
512 		*gid = GLOBAL_ROOT_GID;
513 	}
514 }
515 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
516 
517 static void unhash_nsid(struct net *net, struct net *last)
518 {
519 	struct net *tmp;
520 	/* This function is only called from cleanup_net() work,
521 	 * and this work is the only process, that may delete
522 	 * a net from net_namespace_list. So, when the below
523 	 * is executing, the list may only grow. Thus, we do not
524 	 * use for_each_net_rcu() or net_rwsem.
525 	 */
526 	for_each_net(tmp) {
527 		int id;
528 
529 		spin_lock_bh(&tmp->nsid_lock);
530 		id = __peernet2id(tmp, net);
531 		if (id >= 0)
532 			idr_remove(&tmp->netns_ids, id);
533 		spin_unlock_bh(&tmp->nsid_lock);
534 		if (id >= 0)
535 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
536 		if (tmp == last)
537 			break;
538 	}
539 	spin_lock_bh(&net->nsid_lock);
540 	idr_destroy(&net->netns_ids);
541 	spin_unlock_bh(&net->nsid_lock);
542 }
543 
544 static LLIST_HEAD(cleanup_list);
545 
546 static void cleanup_net(struct work_struct *work)
547 {
548 	const struct pernet_operations *ops;
549 	struct net *net, *tmp, *last;
550 	struct llist_node *net_kill_list;
551 	LIST_HEAD(net_exit_list);
552 
553 	/* Atomically snapshot the list of namespaces to cleanup */
554 	net_kill_list = llist_del_all(&cleanup_list);
555 
556 	down_read(&pernet_ops_rwsem);
557 
558 	/* Don't let anyone else find us. */
559 	down_write(&net_rwsem);
560 	llist_for_each_entry(net, net_kill_list, cleanup_list)
561 		list_del_rcu(&net->list);
562 	/* Cache last net. After we unlock rtnl, no one new net
563 	 * added to net_namespace_list can assign nsid pointer
564 	 * to a net from net_kill_list (see peernet2id_alloc()).
565 	 * So, we skip them in unhash_nsid().
566 	 *
567 	 * Note, that unhash_nsid() does not delete nsid links
568 	 * between net_kill_list's nets, as they've already
569 	 * deleted from net_namespace_list. But, this would be
570 	 * useless anyway, as netns_ids are destroyed there.
571 	 */
572 	last = list_last_entry(&net_namespace_list, struct net, list);
573 	up_write(&net_rwsem);
574 
575 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
576 		unhash_nsid(net, last);
577 		list_add_tail(&net->exit_list, &net_exit_list);
578 	}
579 
580 	/* Run all of the network namespace pre_exit methods */
581 	list_for_each_entry_reverse(ops, &pernet_list, list)
582 		ops_pre_exit_list(ops, &net_exit_list);
583 
584 	/*
585 	 * Another CPU might be rcu-iterating the list, wait for it.
586 	 * This needs to be before calling the exit() notifiers, so
587 	 * the rcu_barrier() below isn't sufficient alone.
588 	 * Also the pre_exit() and exit() methods need this barrier.
589 	 */
590 	synchronize_rcu();
591 
592 	/* Run all of the network namespace exit methods */
593 	list_for_each_entry_reverse(ops, &pernet_list, list)
594 		ops_exit_list(ops, &net_exit_list);
595 
596 	/* Free the net generic variables */
597 	list_for_each_entry_reverse(ops, &pernet_list, list)
598 		ops_free_list(ops, &net_exit_list);
599 
600 	up_read(&pernet_ops_rwsem);
601 
602 	/* Ensure there are no outstanding rcu callbacks using this
603 	 * network namespace.
604 	 */
605 	rcu_barrier();
606 
607 	/* Finally it is safe to free my network namespace structure */
608 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
609 		list_del_init(&net->exit_list);
610 		dec_net_namespaces(net->ucounts);
611 		key_remove_domain(net->key_domain);
612 		put_user_ns(net->user_ns);
613 		net_drop_ns(net);
614 	}
615 }
616 
617 /**
618  * net_ns_barrier - wait until concurrent net_cleanup_work is done
619  *
620  * cleanup_net runs from work queue and will first remove namespaces
621  * from the global list, then run net exit functions.
622  *
623  * Call this in module exit path to make sure that all netns
624  * ->exit ops have been invoked before the function is removed.
625  */
626 void net_ns_barrier(void)
627 {
628 	down_write(&pernet_ops_rwsem);
629 	up_write(&pernet_ops_rwsem);
630 }
631 EXPORT_SYMBOL(net_ns_barrier);
632 
633 static DECLARE_WORK(net_cleanup_work, cleanup_net);
634 
635 void __put_net(struct net *net)
636 {
637 	/* Cleanup the network namespace in process context */
638 	if (llist_add(&net->cleanup_list, &cleanup_list))
639 		queue_work(netns_wq, &net_cleanup_work);
640 }
641 EXPORT_SYMBOL_GPL(__put_net);
642 
643 struct net *get_net_ns_by_fd(int fd)
644 {
645 	struct file *file;
646 	struct ns_common *ns;
647 	struct net *net;
648 
649 	file = proc_ns_fget(fd);
650 	if (IS_ERR(file))
651 		return ERR_CAST(file);
652 
653 	ns = get_proc_ns(file_inode(file));
654 	if (ns->ops == &netns_operations)
655 		net = get_net(container_of(ns, struct net, ns));
656 	else
657 		net = ERR_PTR(-EINVAL);
658 
659 	fput(file);
660 	return net;
661 }
662 
663 #else
664 struct net *get_net_ns_by_fd(int fd)
665 {
666 	return ERR_PTR(-EINVAL);
667 }
668 #endif
669 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
670 
671 struct net *get_net_ns_by_pid(pid_t pid)
672 {
673 	struct task_struct *tsk;
674 	struct net *net;
675 
676 	/* Lookup the network namespace */
677 	net = ERR_PTR(-ESRCH);
678 	rcu_read_lock();
679 	tsk = find_task_by_vpid(pid);
680 	if (tsk) {
681 		struct nsproxy *nsproxy;
682 		task_lock(tsk);
683 		nsproxy = tsk->nsproxy;
684 		if (nsproxy)
685 			net = get_net(nsproxy->net_ns);
686 		task_unlock(tsk);
687 	}
688 	rcu_read_unlock();
689 	return net;
690 }
691 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
692 
693 static __net_init int net_ns_net_init(struct net *net)
694 {
695 #ifdef CONFIG_NET_NS
696 	net->ns.ops = &netns_operations;
697 #endif
698 	return ns_alloc_inum(&net->ns);
699 }
700 
701 static __net_exit void net_ns_net_exit(struct net *net)
702 {
703 	ns_free_inum(&net->ns);
704 }
705 
706 static struct pernet_operations __net_initdata net_ns_ops = {
707 	.init = net_ns_net_init,
708 	.exit = net_ns_net_exit,
709 };
710 
711 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
712 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
713 	[NETNSA_NSID]		= { .type = NLA_S32 },
714 	[NETNSA_PID]		= { .type = NLA_U32 },
715 	[NETNSA_FD]		= { .type = NLA_U32 },
716 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
717 };
718 
719 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
720 			  struct netlink_ext_ack *extack)
721 {
722 	struct net *net = sock_net(skb->sk);
723 	struct nlattr *tb[NETNSA_MAX + 1];
724 	struct nlattr *nla;
725 	struct net *peer;
726 	int nsid, err;
727 
728 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
729 				     NETNSA_MAX, rtnl_net_policy, extack);
730 	if (err < 0)
731 		return err;
732 	if (!tb[NETNSA_NSID]) {
733 		NL_SET_ERR_MSG(extack, "nsid is missing");
734 		return -EINVAL;
735 	}
736 	nsid = nla_get_s32(tb[NETNSA_NSID]);
737 
738 	if (tb[NETNSA_PID]) {
739 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
740 		nla = tb[NETNSA_PID];
741 	} else if (tb[NETNSA_FD]) {
742 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
743 		nla = tb[NETNSA_FD];
744 	} else {
745 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
746 		return -EINVAL;
747 	}
748 	if (IS_ERR(peer)) {
749 		NL_SET_BAD_ATTR(extack, nla);
750 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
751 		return PTR_ERR(peer);
752 	}
753 
754 	spin_lock_bh(&net->nsid_lock);
755 	if (__peernet2id(net, peer) >= 0) {
756 		spin_unlock_bh(&net->nsid_lock);
757 		err = -EEXIST;
758 		NL_SET_BAD_ATTR(extack, nla);
759 		NL_SET_ERR_MSG(extack,
760 			       "Peer netns already has a nsid assigned");
761 		goto out;
762 	}
763 
764 	err = alloc_netid(net, peer, nsid);
765 	spin_unlock_bh(&net->nsid_lock);
766 	if (err >= 0) {
767 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
768 		err = 0;
769 	} else if (err == -ENOSPC && nsid >= 0) {
770 		err = -EEXIST;
771 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
772 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
773 	}
774 out:
775 	put_net(peer);
776 	return err;
777 }
778 
779 static int rtnl_net_get_size(void)
780 {
781 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
782 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
783 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
784 	       ;
785 }
786 
787 struct net_fill_args {
788 	u32 portid;
789 	u32 seq;
790 	int flags;
791 	int cmd;
792 	int nsid;
793 	bool add_ref;
794 	int ref_nsid;
795 };
796 
797 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
798 {
799 	struct nlmsghdr *nlh;
800 	struct rtgenmsg *rth;
801 
802 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
803 			args->flags);
804 	if (!nlh)
805 		return -EMSGSIZE;
806 
807 	rth = nlmsg_data(nlh);
808 	rth->rtgen_family = AF_UNSPEC;
809 
810 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
811 		goto nla_put_failure;
812 
813 	if (args->add_ref &&
814 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
815 		goto nla_put_failure;
816 
817 	nlmsg_end(skb, nlh);
818 	return 0;
819 
820 nla_put_failure:
821 	nlmsg_cancel(skb, nlh);
822 	return -EMSGSIZE;
823 }
824 
825 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
826 				    const struct nlmsghdr *nlh,
827 				    struct nlattr **tb,
828 				    struct netlink_ext_ack *extack)
829 {
830 	int i, err;
831 
832 	if (!netlink_strict_get_check(skb))
833 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
834 					      tb, NETNSA_MAX, rtnl_net_policy,
835 					      extack);
836 
837 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
838 					    NETNSA_MAX, rtnl_net_policy,
839 					    extack);
840 	if (err)
841 		return err;
842 
843 	for (i = 0; i <= NETNSA_MAX; i++) {
844 		if (!tb[i])
845 			continue;
846 
847 		switch (i) {
848 		case NETNSA_PID:
849 		case NETNSA_FD:
850 		case NETNSA_NSID:
851 		case NETNSA_TARGET_NSID:
852 			break;
853 		default:
854 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
855 			return -EINVAL;
856 		}
857 	}
858 
859 	return 0;
860 }
861 
862 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
863 			  struct netlink_ext_ack *extack)
864 {
865 	struct net *net = sock_net(skb->sk);
866 	struct nlattr *tb[NETNSA_MAX + 1];
867 	struct net_fill_args fillargs = {
868 		.portid = NETLINK_CB(skb).portid,
869 		.seq = nlh->nlmsg_seq,
870 		.cmd = RTM_NEWNSID,
871 	};
872 	struct net *peer, *target = net;
873 	struct nlattr *nla;
874 	struct sk_buff *msg;
875 	int err;
876 
877 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
878 	if (err < 0)
879 		return err;
880 	if (tb[NETNSA_PID]) {
881 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
882 		nla = tb[NETNSA_PID];
883 	} else if (tb[NETNSA_FD]) {
884 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
885 		nla = tb[NETNSA_FD];
886 	} else if (tb[NETNSA_NSID]) {
887 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
888 		if (!peer)
889 			peer = ERR_PTR(-ENOENT);
890 		nla = tb[NETNSA_NSID];
891 	} else {
892 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
893 		return -EINVAL;
894 	}
895 
896 	if (IS_ERR(peer)) {
897 		NL_SET_BAD_ATTR(extack, nla);
898 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
899 		return PTR_ERR(peer);
900 	}
901 
902 	if (tb[NETNSA_TARGET_NSID]) {
903 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
904 
905 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
906 		if (IS_ERR(target)) {
907 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
908 			NL_SET_ERR_MSG(extack,
909 				       "Target netns reference is invalid");
910 			err = PTR_ERR(target);
911 			goto out;
912 		}
913 		fillargs.add_ref = true;
914 		fillargs.ref_nsid = peernet2id(net, peer);
915 	}
916 
917 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
918 	if (!msg) {
919 		err = -ENOMEM;
920 		goto out;
921 	}
922 
923 	fillargs.nsid = peernet2id(target, peer);
924 	err = rtnl_net_fill(msg, &fillargs);
925 	if (err < 0)
926 		goto err_out;
927 
928 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
929 	goto out;
930 
931 err_out:
932 	nlmsg_free(msg);
933 out:
934 	if (fillargs.add_ref)
935 		put_net(target);
936 	put_net(peer);
937 	return err;
938 }
939 
940 struct rtnl_net_dump_cb {
941 	struct net *tgt_net;
942 	struct net *ref_net;
943 	struct sk_buff *skb;
944 	struct net_fill_args fillargs;
945 	int idx;
946 	int s_idx;
947 };
948 
949 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
950 {
951 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
952 	int ret;
953 
954 	if (net_cb->idx < net_cb->s_idx)
955 		goto cont;
956 
957 	net_cb->fillargs.nsid = id;
958 	if (net_cb->fillargs.add_ref)
959 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
960 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
961 	if (ret < 0)
962 		return ret;
963 
964 cont:
965 	net_cb->idx++;
966 	return 0;
967 }
968 
969 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
970 				   struct rtnl_net_dump_cb *net_cb,
971 				   struct netlink_callback *cb)
972 {
973 	struct netlink_ext_ack *extack = cb->extack;
974 	struct nlattr *tb[NETNSA_MAX + 1];
975 	int err, i;
976 
977 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
978 					    NETNSA_MAX, rtnl_net_policy,
979 					    extack);
980 	if (err < 0)
981 		return err;
982 
983 	for (i = 0; i <= NETNSA_MAX; i++) {
984 		if (!tb[i])
985 			continue;
986 
987 		if (i == NETNSA_TARGET_NSID) {
988 			struct net *net;
989 
990 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
991 			if (IS_ERR(net)) {
992 				NL_SET_BAD_ATTR(extack, tb[i]);
993 				NL_SET_ERR_MSG(extack,
994 					       "Invalid target network namespace id");
995 				return PTR_ERR(net);
996 			}
997 			net_cb->fillargs.add_ref = true;
998 			net_cb->ref_net = net_cb->tgt_net;
999 			net_cb->tgt_net = net;
1000 		} else {
1001 			NL_SET_BAD_ATTR(extack, tb[i]);
1002 			NL_SET_ERR_MSG(extack,
1003 				       "Unsupported attribute in dump request");
1004 			return -EINVAL;
1005 		}
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1012 {
1013 	struct rtnl_net_dump_cb net_cb = {
1014 		.tgt_net = sock_net(skb->sk),
1015 		.skb = skb,
1016 		.fillargs = {
1017 			.portid = NETLINK_CB(cb->skb).portid,
1018 			.seq = cb->nlh->nlmsg_seq,
1019 			.flags = NLM_F_MULTI,
1020 			.cmd = RTM_NEWNSID,
1021 		},
1022 		.idx = 0,
1023 		.s_idx = cb->args[0],
1024 	};
1025 	int err = 0;
1026 
1027 	if (cb->strict_check) {
1028 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1029 		if (err < 0)
1030 			goto end;
1031 	}
1032 
1033 	spin_lock_bh(&net_cb.tgt_net->nsid_lock);
1034 	if (net_cb.fillargs.add_ref &&
1035 	    !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
1036 	    !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
1037 		spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1038 		err = -EAGAIN;
1039 		goto end;
1040 	}
1041 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1042 	if (net_cb.fillargs.add_ref &&
1043 	    !net_eq(net_cb.ref_net, net_cb.tgt_net))
1044 		spin_unlock_bh(&net_cb.ref_net->nsid_lock);
1045 	spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
1046 
1047 	cb->args[0] = net_cb.idx;
1048 end:
1049 	if (net_cb.fillargs.add_ref)
1050 		put_net(net_cb.tgt_net);
1051 	return err < 0 ? err : skb->len;
1052 }
1053 
1054 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
1055 {
1056 	struct net_fill_args fillargs = {
1057 		.cmd = cmd,
1058 		.nsid = id,
1059 	};
1060 	struct sk_buff *msg;
1061 	int err = -ENOMEM;
1062 
1063 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1064 	if (!msg)
1065 		goto out;
1066 
1067 	err = rtnl_net_fill(msg, &fillargs);
1068 	if (err < 0)
1069 		goto err_out;
1070 
1071 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
1072 	return;
1073 
1074 err_out:
1075 	nlmsg_free(msg);
1076 out:
1077 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1078 }
1079 
1080 static int __init net_ns_init(void)
1081 {
1082 	struct net_generic *ng;
1083 
1084 #ifdef CONFIG_NET_NS
1085 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1086 					SMP_CACHE_BYTES,
1087 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1088 
1089 	/* Create workqueue for cleanup */
1090 	netns_wq = create_singlethread_workqueue("netns");
1091 	if (!netns_wq)
1092 		panic("Could not create netns workq");
1093 #endif
1094 
1095 	ng = net_alloc_generic();
1096 	if (!ng)
1097 		panic("Could not allocate generic netns");
1098 
1099 	rcu_assign_pointer(init_net.gen, ng);
1100 
1101 	down_write(&pernet_ops_rwsem);
1102 	if (setup_net(&init_net, &init_user_ns))
1103 		panic("Could not setup the initial network namespace");
1104 
1105 	init_net_initialized = true;
1106 	up_write(&pernet_ops_rwsem);
1107 
1108 	if (register_pernet_subsys(&net_ns_ops))
1109 		panic("Could not register network namespace subsystems");
1110 
1111 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1112 		      RTNL_FLAG_DOIT_UNLOCKED);
1113 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1114 		      RTNL_FLAG_DOIT_UNLOCKED);
1115 
1116 	return 0;
1117 }
1118 
1119 pure_initcall(net_ns_init);
1120 
1121 #ifdef CONFIG_NET_NS
1122 static int __register_pernet_operations(struct list_head *list,
1123 					struct pernet_operations *ops)
1124 {
1125 	struct net *net;
1126 	int error;
1127 	LIST_HEAD(net_exit_list);
1128 
1129 	list_add_tail(&ops->list, list);
1130 	if (ops->init || (ops->id && ops->size)) {
1131 		/* We held write locked pernet_ops_rwsem, and parallel
1132 		 * setup_net() and cleanup_net() are not possible.
1133 		 */
1134 		for_each_net(net) {
1135 			error = ops_init(ops, net);
1136 			if (error)
1137 				goto out_undo;
1138 			list_add_tail(&net->exit_list, &net_exit_list);
1139 		}
1140 	}
1141 	return 0;
1142 
1143 out_undo:
1144 	/* If I have an error cleanup all namespaces I initialized */
1145 	list_del(&ops->list);
1146 	ops_pre_exit_list(ops, &net_exit_list);
1147 	synchronize_rcu();
1148 	ops_exit_list(ops, &net_exit_list);
1149 	ops_free_list(ops, &net_exit_list);
1150 	return error;
1151 }
1152 
1153 static void __unregister_pernet_operations(struct pernet_operations *ops)
1154 {
1155 	struct net *net;
1156 	LIST_HEAD(net_exit_list);
1157 
1158 	list_del(&ops->list);
1159 	/* See comment in __register_pernet_operations() */
1160 	for_each_net(net)
1161 		list_add_tail(&net->exit_list, &net_exit_list);
1162 	ops_pre_exit_list(ops, &net_exit_list);
1163 	synchronize_rcu();
1164 	ops_exit_list(ops, &net_exit_list);
1165 	ops_free_list(ops, &net_exit_list);
1166 }
1167 
1168 #else
1169 
1170 static int __register_pernet_operations(struct list_head *list,
1171 					struct pernet_operations *ops)
1172 {
1173 	if (!init_net_initialized) {
1174 		list_add_tail(&ops->list, list);
1175 		return 0;
1176 	}
1177 
1178 	return ops_init(ops, &init_net);
1179 }
1180 
1181 static void __unregister_pernet_operations(struct pernet_operations *ops)
1182 {
1183 	if (!init_net_initialized) {
1184 		list_del(&ops->list);
1185 	} else {
1186 		LIST_HEAD(net_exit_list);
1187 		list_add(&init_net.exit_list, &net_exit_list);
1188 		ops_pre_exit_list(ops, &net_exit_list);
1189 		synchronize_rcu();
1190 		ops_exit_list(ops, &net_exit_list);
1191 		ops_free_list(ops, &net_exit_list);
1192 	}
1193 }
1194 
1195 #endif /* CONFIG_NET_NS */
1196 
1197 static DEFINE_IDA(net_generic_ids);
1198 
1199 static int register_pernet_operations(struct list_head *list,
1200 				      struct pernet_operations *ops)
1201 {
1202 	int error;
1203 
1204 	if (ops->id) {
1205 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1206 				GFP_KERNEL);
1207 		if (error < 0)
1208 			return error;
1209 		*ops->id = error;
1210 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1211 	}
1212 	error = __register_pernet_operations(list, ops);
1213 	if (error) {
1214 		rcu_barrier();
1215 		if (ops->id)
1216 			ida_free(&net_generic_ids, *ops->id);
1217 	}
1218 
1219 	return error;
1220 }
1221 
1222 static void unregister_pernet_operations(struct pernet_operations *ops)
1223 {
1224 	__unregister_pernet_operations(ops);
1225 	rcu_barrier();
1226 	if (ops->id)
1227 		ida_free(&net_generic_ids, *ops->id);
1228 }
1229 
1230 /**
1231  *      register_pernet_subsys - register a network namespace subsystem
1232  *	@ops:  pernet operations structure for the subsystem
1233  *
1234  *	Register a subsystem which has init and exit functions
1235  *	that are called when network namespaces are created and
1236  *	destroyed respectively.
1237  *
1238  *	When registered all network namespace init functions are
1239  *	called for every existing network namespace.  Allowing kernel
1240  *	modules to have a race free view of the set of network namespaces.
1241  *
1242  *	When a new network namespace is created all of the init
1243  *	methods are called in the order in which they were registered.
1244  *
1245  *	When a network namespace is destroyed all of the exit methods
1246  *	are called in the reverse of the order with which they were
1247  *	registered.
1248  */
1249 int register_pernet_subsys(struct pernet_operations *ops)
1250 {
1251 	int error;
1252 	down_write(&pernet_ops_rwsem);
1253 	error =  register_pernet_operations(first_device, ops);
1254 	up_write(&pernet_ops_rwsem);
1255 	return error;
1256 }
1257 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1258 
1259 /**
1260  *      unregister_pernet_subsys - unregister a network namespace subsystem
1261  *	@ops: pernet operations structure to manipulate
1262  *
1263  *	Remove the pernet operations structure from the list to be
1264  *	used when network namespaces are created or destroyed.  In
1265  *	addition run the exit method for all existing network
1266  *	namespaces.
1267  */
1268 void unregister_pernet_subsys(struct pernet_operations *ops)
1269 {
1270 	down_write(&pernet_ops_rwsem);
1271 	unregister_pernet_operations(ops);
1272 	up_write(&pernet_ops_rwsem);
1273 }
1274 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1275 
1276 /**
1277  *      register_pernet_device - register a network namespace device
1278  *	@ops:  pernet operations structure for the subsystem
1279  *
1280  *	Register a device which has init and exit functions
1281  *	that are called when network namespaces are created and
1282  *	destroyed respectively.
1283  *
1284  *	When registered all network namespace init functions are
1285  *	called for every existing network namespace.  Allowing kernel
1286  *	modules to have a race free view of the set of network namespaces.
1287  *
1288  *	When a new network namespace is created all of the init
1289  *	methods are called in the order in which they were registered.
1290  *
1291  *	When a network namespace is destroyed all of the exit methods
1292  *	are called in the reverse of the order with which they were
1293  *	registered.
1294  */
1295 int register_pernet_device(struct pernet_operations *ops)
1296 {
1297 	int error;
1298 	down_write(&pernet_ops_rwsem);
1299 	error = register_pernet_operations(&pernet_list, ops);
1300 	if (!error && (first_device == &pernet_list))
1301 		first_device = &ops->list;
1302 	up_write(&pernet_ops_rwsem);
1303 	return error;
1304 }
1305 EXPORT_SYMBOL_GPL(register_pernet_device);
1306 
1307 /**
1308  *      unregister_pernet_device - unregister a network namespace netdevice
1309  *	@ops: pernet operations structure to manipulate
1310  *
1311  *	Remove the pernet operations structure from the list to be
1312  *	used when network namespaces are created or destroyed.  In
1313  *	addition run the exit method for all existing network
1314  *	namespaces.
1315  */
1316 void unregister_pernet_device(struct pernet_operations *ops)
1317 {
1318 	down_write(&pernet_ops_rwsem);
1319 	if (&ops->list == first_device)
1320 		first_device = first_device->next;
1321 	unregister_pernet_operations(ops);
1322 	up_write(&pernet_ops_rwsem);
1323 }
1324 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1325 
1326 #ifdef CONFIG_NET_NS
1327 static struct ns_common *netns_get(struct task_struct *task)
1328 {
1329 	struct net *net = NULL;
1330 	struct nsproxy *nsproxy;
1331 
1332 	task_lock(task);
1333 	nsproxy = task->nsproxy;
1334 	if (nsproxy)
1335 		net = get_net(nsproxy->net_ns);
1336 	task_unlock(task);
1337 
1338 	return net ? &net->ns : NULL;
1339 }
1340 
1341 static inline struct net *to_net_ns(struct ns_common *ns)
1342 {
1343 	return container_of(ns, struct net, ns);
1344 }
1345 
1346 static void netns_put(struct ns_common *ns)
1347 {
1348 	put_net(to_net_ns(ns));
1349 }
1350 
1351 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1352 {
1353 	struct net *net = to_net_ns(ns);
1354 
1355 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1356 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1357 		return -EPERM;
1358 
1359 	put_net(nsproxy->net_ns);
1360 	nsproxy->net_ns = get_net(net);
1361 	return 0;
1362 }
1363 
1364 static struct user_namespace *netns_owner(struct ns_common *ns)
1365 {
1366 	return to_net_ns(ns)->user_ns;
1367 }
1368 
1369 const struct proc_ns_operations netns_operations = {
1370 	.name		= "net",
1371 	.type		= CLONE_NEWNET,
1372 	.get		= netns_get,
1373 	.put		= netns_put,
1374 	.install	= netns_install,
1375 	.owner		= netns_owner,
1376 };
1377 #endif
1378