xref: /openbmc/linux/net/core/net_namespace.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 #include <linux/uidgid.h>
21 
22 #include <net/sock.h>
23 #include <net/netlink.h>
24 #include <net/net_namespace.h>
25 #include <net/netns/generic.h>
26 
27 /*
28  *	Our network namespace constructor/destructor lists
29  */
30 
31 static LIST_HEAD(pernet_list);
32 static struct list_head *first_device = &pernet_list;
33 
34 LIST_HEAD(net_namespace_list);
35 EXPORT_SYMBOL_GPL(net_namespace_list);
36 
37 /* Protects net_namespace_list. Nests iside rtnl_lock() */
38 DECLARE_RWSEM(net_rwsem);
39 EXPORT_SYMBOL_GPL(net_rwsem);
40 
41 struct net init_net = {
42 	.count		= REFCOUNT_INIT(1),
43 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
44 };
45 EXPORT_SYMBOL(init_net);
46 
47 static bool init_net_initialized;
48 /*
49  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
50  * init_net_initialized and first_device pointer.
51  * This is internal net namespace object. Please, don't use it
52  * outside.
53  */
54 DECLARE_RWSEM(pernet_ops_rwsem);
55 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
56 
57 #define MIN_PERNET_OPS_ID	\
58 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
59 
60 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
61 
62 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
63 
64 static struct net_generic *net_alloc_generic(void)
65 {
66 	struct net_generic *ng;
67 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
68 
69 	ng = kzalloc(generic_size, GFP_KERNEL);
70 	if (ng)
71 		ng->s.len = max_gen_ptrs;
72 
73 	return ng;
74 }
75 
76 static int net_assign_generic(struct net *net, unsigned int id, void *data)
77 {
78 	struct net_generic *ng, *old_ng;
79 
80 	BUG_ON(id < MIN_PERNET_OPS_ID);
81 
82 	old_ng = rcu_dereference_protected(net->gen,
83 					   lockdep_is_held(&pernet_ops_rwsem));
84 	if (old_ng->s.len > id) {
85 		old_ng->ptr[id] = data;
86 		return 0;
87 	}
88 
89 	ng = net_alloc_generic();
90 	if (ng == NULL)
91 		return -ENOMEM;
92 
93 	/*
94 	 * Some synchronisation notes:
95 	 *
96 	 * The net_generic explores the net->gen array inside rcu
97 	 * read section. Besides once set the net->gen->ptr[x]
98 	 * pointer never changes (see rules in netns/generic.h).
99 	 *
100 	 * That said, we simply duplicate this array and schedule
101 	 * the old copy for kfree after a grace period.
102 	 */
103 
104 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
105 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
106 	ng->ptr[id] = data;
107 
108 	rcu_assign_pointer(net->gen, ng);
109 	kfree_rcu(old_ng, s.rcu);
110 	return 0;
111 }
112 
113 static int ops_init(const struct pernet_operations *ops, struct net *net)
114 {
115 	int err = -ENOMEM;
116 	void *data = NULL;
117 
118 	if (ops->id && ops->size) {
119 		data = kzalloc(ops->size, GFP_KERNEL);
120 		if (!data)
121 			goto out;
122 
123 		err = net_assign_generic(net, *ops->id, data);
124 		if (err)
125 			goto cleanup;
126 	}
127 	err = 0;
128 	if (ops->init)
129 		err = ops->init(net);
130 	if (!err)
131 		return 0;
132 
133 cleanup:
134 	kfree(data);
135 
136 out:
137 	return err;
138 }
139 
140 static void ops_free(const struct pernet_operations *ops, struct net *net)
141 {
142 	if (ops->id && ops->size) {
143 		kfree(net_generic(net, *ops->id));
144 	}
145 }
146 
147 static void ops_exit_list(const struct pernet_operations *ops,
148 			  struct list_head *net_exit_list)
149 {
150 	struct net *net;
151 	if (ops->exit) {
152 		list_for_each_entry(net, net_exit_list, exit_list)
153 			ops->exit(net);
154 	}
155 	if (ops->exit_batch)
156 		ops->exit_batch(net_exit_list);
157 }
158 
159 static void ops_free_list(const struct pernet_operations *ops,
160 			  struct list_head *net_exit_list)
161 {
162 	struct net *net;
163 	if (ops->size && ops->id) {
164 		list_for_each_entry(net, net_exit_list, exit_list)
165 			ops_free(ops, net);
166 	}
167 }
168 
169 /* should be called with nsid_lock held */
170 static int alloc_netid(struct net *net, struct net *peer, int reqid)
171 {
172 	int min = 0, max = 0;
173 
174 	if (reqid >= 0) {
175 		min = reqid;
176 		max = reqid + 1;
177 	}
178 
179 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
180 }
181 
182 /* This function is used by idr_for_each(). If net is equal to peer, the
183  * function returns the id so that idr_for_each() stops. Because we cannot
184  * returns the id 0 (idr_for_each() will not stop), we return the magic value
185  * NET_ID_ZERO (-1) for it.
186  */
187 #define NET_ID_ZERO -1
188 static int net_eq_idr(int id, void *net, void *peer)
189 {
190 	if (net_eq(net, peer))
191 		return id ? : NET_ID_ZERO;
192 	return 0;
193 }
194 
195 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
196  * is set to true, thus the caller knows that the new id must be notified via
197  * rtnl.
198  */
199 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
200 {
201 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
202 	bool alloc_it = *alloc;
203 
204 	*alloc = false;
205 
206 	/* Magic value for id 0. */
207 	if (id == NET_ID_ZERO)
208 		return 0;
209 	if (id > 0)
210 		return id;
211 
212 	if (alloc_it) {
213 		id = alloc_netid(net, peer, -1);
214 		*alloc = true;
215 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
216 	}
217 
218 	return NETNSA_NSID_NOT_ASSIGNED;
219 }
220 
221 /* should be called with nsid_lock held */
222 static int __peernet2id(struct net *net, struct net *peer)
223 {
224 	bool no = false;
225 
226 	return __peernet2id_alloc(net, peer, &no);
227 }
228 
229 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
230 /* This function returns the id of a peer netns. If no id is assigned, one will
231  * be allocated and returned.
232  */
233 int peernet2id_alloc(struct net *net, struct net *peer)
234 {
235 	bool alloc = false, alive = false;
236 	int id;
237 
238 	if (refcount_read(&net->count) == 0)
239 		return NETNSA_NSID_NOT_ASSIGNED;
240 	spin_lock_bh(&net->nsid_lock);
241 	/*
242 	 * When peer is obtained from RCU lists, we may race with
243 	 * its cleanup. Check whether it's alive, and this guarantees
244 	 * we never hash a peer back to net->netns_ids, after it has
245 	 * just been idr_remove()'d from there in cleanup_net().
246 	 */
247 	if (maybe_get_net(peer))
248 		alive = alloc = true;
249 	id = __peernet2id_alloc(net, peer, &alloc);
250 	spin_unlock_bh(&net->nsid_lock);
251 	if (alloc && id >= 0)
252 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
253 	if (alive)
254 		put_net(peer);
255 	return id;
256 }
257 EXPORT_SYMBOL_GPL(peernet2id_alloc);
258 
259 /* This function returns, if assigned, the id of a peer netns. */
260 int peernet2id(struct net *net, struct net *peer)
261 {
262 	int id;
263 
264 	spin_lock_bh(&net->nsid_lock);
265 	id = __peernet2id(net, peer);
266 	spin_unlock_bh(&net->nsid_lock);
267 	return id;
268 }
269 EXPORT_SYMBOL(peernet2id);
270 
271 /* This function returns true is the peer netns has an id assigned into the
272  * current netns.
273  */
274 bool peernet_has_id(struct net *net, struct net *peer)
275 {
276 	return peernet2id(net, peer) >= 0;
277 }
278 
279 struct net *get_net_ns_by_id(struct net *net, int id)
280 {
281 	struct net *peer;
282 
283 	if (id < 0)
284 		return NULL;
285 
286 	rcu_read_lock();
287 	peer = idr_find(&net->netns_ids, id);
288 	if (peer)
289 		peer = maybe_get_net(peer);
290 	rcu_read_unlock();
291 
292 	return peer;
293 }
294 
295 /*
296  * setup_net runs the initializers for the network namespace object.
297  */
298 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
299 {
300 	/* Must be called with pernet_ops_rwsem held */
301 	const struct pernet_operations *ops, *saved_ops;
302 	int error = 0;
303 	LIST_HEAD(net_exit_list);
304 
305 	refcount_set(&net->count, 1);
306 	refcount_set(&net->passive, 1);
307 	net->dev_base_seq = 1;
308 	net->user_ns = user_ns;
309 	idr_init(&net->netns_ids);
310 	spin_lock_init(&net->nsid_lock);
311 	mutex_init(&net->ipv4.ra_mutex);
312 
313 	list_for_each_entry(ops, &pernet_list, list) {
314 		error = ops_init(ops, net);
315 		if (error < 0)
316 			goto out_undo;
317 	}
318 	down_write(&net_rwsem);
319 	list_add_tail_rcu(&net->list, &net_namespace_list);
320 	up_write(&net_rwsem);
321 out:
322 	return error;
323 
324 out_undo:
325 	/* Walk through the list backwards calling the exit functions
326 	 * for the pernet modules whose init functions did not fail.
327 	 */
328 	list_add(&net->exit_list, &net_exit_list);
329 	saved_ops = ops;
330 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
331 		ops_exit_list(ops, &net_exit_list);
332 
333 	ops = saved_ops;
334 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
335 		ops_free_list(ops, &net_exit_list);
336 
337 	rcu_barrier();
338 	goto out;
339 }
340 
341 static int __net_init net_defaults_init_net(struct net *net)
342 {
343 	net->core.sysctl_somaxconn = SOMAXCONN;
344 	return 0;
345 }
346 
347 static struct pernet_operations net_defaults_ops = {
348 	.init = net_defaults_init_net,
349 };
350 
351 static __init int net_defaults_init(void)
352 {
353 	if (register_pernet_subsys(&net_defaults_ops))
354 		panic("Cannot initialize net default settings");
355 
356 	return 0;
357 }
358 
359 core_initcall(net_defaults_init);
360 
361 #ifdef CONFIG_NET_NS
362 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
363 {
364 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
365 }
366 
367 static void dec_net_namespaces(struct ucounts *ucounts)
368 {
369 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
370 }
371 
372 static struct kmem_cache *net_cachep __ro_after_init;
373 static struct workqueue_struct *netns_wq;
374 
375 static struct net *net_alloc(void)
376 {
377 	struct net *net = NULL;
378 	struct net_generic *ng;
379 
380 	ng = net_alloc_generic();
381 	if (!ng)
382 		goto out;
383 
384 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
385 	if (!net)
386 		goto out_free;
387 
388 	rcu_assign_pointer(net->gen, ng);
389 out:
390 	return net;
391 
392 out_free:
393 	kfree(ng);
394 	goto out;
395 }
396 
397 static void net_free(struct net *net)
398 {
399 	kfree(rcu_access_pointer(net->gen));
400 	kmem_cache_free(net_cachep, net);
401 }
402 
403 void net_drop_ns(void *p)
404 {
405 	struct net *ns = p;
406 	if (ns && refcount_dec_and_test(&ns->passive))
407 		net_free(ns);
408 }
409 
410 struct net *copy_net_ns(unsigned long flags,
411 			struct user_namespace *user_ns, struct net *old_net)
412 {
413 	struct ucounts *ucounts;
414 	struct net *net;
415 	int rv;
416 
417 	if (!(flags & CLONE_NEWNET))
418 		return get_net(old_net);
419 
420 	ucounts = inc_net_namespaces(user_ns);
421 	if (!ucounts)
422 		return ERR_PTR(-ENOSPC);
423 
424 	net = net_alloc();
425 	if (!net) {
426 		rv = -ENOMEM;
427 		goto dec_ucounts;
428 	}
429 	refcount_set(&net->passive, 1);
430 	net->ucounts = ucounts;
431 	get_user_ns(user_ns);
432 
433 	rv = down_read_killable(&pernet_ops_rwsem);
434 	if (rv < 0)
435 		goto put_userns;
436 
437 	rv = setup_net(net, user_ns);
438 
439 	up_read(&pernet_ops_rwsem);
440 
441 	if (rv < 0) {
442 put_userns:
443 		put_user_ns(user_ns);
444 		net_drop_ns(net);
445 dec_ucounts:
446 		dec_net_namespaces(ucounts);
447 		return ERR_PTR(rv);
448 	}
449 	return net;
450 }
451 
452 /**
453  * net_ns_get_ownership - get sysfs ownership data for @net
454  * @net: network namespace in question (can be NULL)
455  * @uid: kernel user ID for sysfs objects
456  * @gid: kernel group ID for sysfs objects
457  *
458  * Returns the uid/gid pair of root in the user namespace associated with the
459  * given network namespace.
460  */
461 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
462 {
463 	if (net) {
464 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
465 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
466 
467 		if (uid_valid(ns_root_uid))
468 			*uid = ns_root_uid;
469 
470 		if (gid_valid(ns_root_gid))
471 			*gid = ns_root_gid;
472 	} else {
473 		*uid = GLOBAL_ROOT_UID;
474 		*gid = GLOBAL_ROOT_GID;
475 	}
476 }
477 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
478 
479 static void unhash_nsid(struct net *net, struct net *last)
480 {
481 	struct net *tmp;
482 	/* This function is only called from cleanup_net() work,
483 	 * and this work is the only process, that may delete
484 	 * a net from net_namespace_list. So, when the below
485 	 * is executing, the list may only grow. Thus, we do not
486 	 * use for_each_net_rcu() or net_rwsem.
487 	 */
488 	for_each_net(tmp) {
489 		int id;
490 
491 		spin_lock_bh(&tmp->nsid_lock);
492 		id = __peernet2id(tmp, net);
493 		if (id >= 0)
494 			idr_remove(&tmp->netns_ids, id);
495 		spin_unlock_bh(&tmp->nsid_lock);
496 		if (id >= 0)
497 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
498 		if (tmp == last)
499 			break;
500 	}
501 	spin_lock_bh(&net->nsid_lock);
502 	idr_destroy(&net->netns_ids);
503 	spin_unlock_bh(&net->nsid_lock);
504 }
505 
506 static LLIST_HEAD(cleanup_list);
507 
508 static void cleanup_net(struct work_struct *work)
509 {
510 	const struct pernet_operations *ops;
511 	struct net *net, *tmp, *last;
512 	struct llist_node *net_kill_list;
513 	LIST_HEAD(net_exit_list);
514 
515 	/* Atomically snapshot the list of namespaces to cleanup */
516 	net_kill_list = llist_del_all(&cleanup_list);
517 
518 	down_read(&pernet_ops_rwsem);
519 
520 	/* Don't let anyone else find us. */
521 	down_write(&net_rwsem);
522 	llist_for_each_entry(net, net_kill_list, cleanup_list)
523 		list_del_rcu(&net->list);
524 	/* Cache last net. After we unlock rtnl, no one new net
525 	 * added to net_namespace_list can assign nsid pointer
526 	 * to a net from net_kill_list (see peernet2id_alloc()).
527 	 * So, we skip them in unhash_nsid().
528 	 *
529 	 * Note, that unhash_nsid() does not delete nsid links
530 	 * between net_kill_list's nets, as they've already
531 	 * deleted from net_namespace_list. But, this would be
532 	 * useless anyway, as netns_ids are destroyed there.
533 	 */
534 	last = list_last_entry(&net_namespace_list, struct net, list);
535 	up_write(&net_rwsem);
536 
537 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
538 		unhash_nsid(net, last);
539 		list_add_tail(&net->exit_list, &net_exit_list);
540 	}
541 
542 	/*
543 	 * Another CPU might be rcu-iterating the list, wait for it.
544 	 * This needs to be before calling the exit() notifiers, so
545 	 * the rcu_barrier() below isn't sufficient alone.
546 	 */
547 	synchronize_rcu();
548 
549 	/* Run all of the network namespace exit methods */
550 	list_for_each_entry_reverse(ops, &pernet_list, list)
551 		ops_exit_list(ops, &net_exit_list);
552 
553 	/* Free the net generic variables */
554 	list_for_each_entry_reverse(ops, &pernet_list, list)
555 		ops_free_list(ops, &net_exit_list);
556 
557 	up_read(&pernet_ops_rwsem);
558 
559 	/* Ensure there are no outstanding rcu callbacks using this
560 	 * network namespace.
561 	 */
562 	rcu_barrier();
563 
564 	/* Finally it is safe to free my network namespace structure */
565 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
566 		list_del_init(&net->exit_list);
567 		dec_net_namespaces(net->ucounts);
568 		put_user_ns(net->user_ns);
569 		net_drop_ns(net);
570 	}
571 }
572 
573 /**
574  * net_ns_barrier - wait until concurrent net_cleanup_work is done
575  *
576  * cleanup_net runs from work queue and will first remove namespaces
577  * from the global list, then run net exit functions.
578  *
579  * Call this in module exit path to make sure that all netns
580  * ->exit ops have been invoked before the function is removed.
581  */
582 void net_ns_barrier(void)
583 {
584 	down_write(&pernet_ops_rwsem);
585 	up_write(&pernet_ops_rwsem);
586 }
587 EXPORT_SYMBOL(net_ns_barrier);
588 
589 static DECLARE_WORK(net_cleanup_work, cleanup_net);
590 
591 void __put_net(struct net *net)
592 {
593 	/* Cleanup the network namespace in process context */
594 	if (llist_add(&net->cleanup_list, &cleanup_list))
595 		queue_work(netns_wq, &net_cleanup_work);
596 }
597 EXPORT_SYMBOL_GPL(__put_net);
598 
599 struct net *get_net_ns_by_fd(int fd)
600 {
601 	struct file *file;
602 	struct ns_common *ns;
603 	struct net *net;
604 
605 	file = proc_ns_fget(fd);
606 	if (IS_ERR(file))
607 		return ERR_CAST(file);
608 
609 	ns = get_proc_ns(file_inode(file));
610 	if (ns->ops == &netns_operations)
611 		net = get_net(container_of(ns, struct net, ns));
612 	else
613 		net = ERR_PTR(-EINVAL);
614 
615 	fput(file);
616 	return net;
617 }
618 
619 #else
620 struct net *get_net_ns_by_fd(int fd)
621 {
622 	return ERR_PTR(-EINVAL);
623 }
624 #endif
625 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
626 
627 struct net *get_net_ns_by_pid(pid_t pid)
628 {
629 	struct task_struct *tsk;
630 	struct net *net;
631 
632 	/* Lookup the network namespace */
633 	net = ERR_PTR(-ESRCH);
634 	rcu_read_lock();
635 	tsk = find_task_by_vpid(pid);
636 	if (tsk) {
637 		struct nsproxy *nsproxy;
638 		task_lock(tsk);
639 		nsproxy = tsk->nsproxy;
640 		if (nsproxy)
641 			net = get_net(nsproxy->net_ns);
642 		task_unlock(tsk);
643 	}
644 	rcu_read_unlock();
645 	return net;
646 }
647 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
648 
649 static __net_init int net_ns_net_init(struct net *net)
650 {
651 #ifdef CONFIG_NET_NS
652 	net->ns.ops = &netns_operations;
653 #endif
654 	return ns_alloc_inum(&net->ns);
655 }
656 
657 static __net_exit void net_ns_net_exit(struct net *net)
658 {
659 	ns_free_inum(&net->ns);
660 }
661 
662 static struct pernet_operations __net_initdata net_ns_ops = {
663 	.init = net_ns_net_init,
664 	.exit = net_ns_net_exit,
665 };
666 
667 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
668 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
669 	[NETNSA_NSID]		= { .type = NLA_S32 },
670 	[NETNSA_PID]		= { .type = NLA_U32 },
671 	[NETNSA_FD]		= { .type = NLA_U32 },
672 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
673 };
674 
675 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
676 			  struct netlink_ext_ack *extack)
677 {
678 	struct net *net = sock_net(skb->sk);
679 	struct nlattr *tb[NETNSA_MAX + 1];
680 	struct nlattr *nla;
681 	struct net *peer;
682 	int nsid, err;
683 
684 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
685 			  rtnl_net_policy, extack);
686 	if (err < 0)
687 		return err;
688 	if (!tb[NETNSA_NSID]) {
689 		NL_SET_ERR_MSG(extack, "nsid is missing");
690 		return -EINVAL;
691 	}
692 	nsid = nla_get_s32(tb[NETNSA_NSID]);
693 
694 	if (tb[NETNSA_PID]) {
695 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
696 		nla = tb[NETNSA_PID];
697 	} else if (tb[NETNSA_FD]) {
698 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
699 		nla = tb[NETNSA_FD];
700 	} else {
701 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
702 		return -EINVAL;
703 	}
704 	if (IS_ERR(peer)) {
705 		NL_SET_BAD_ATTR(extack, nla);
706 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
707 		return PTR_ERR(peer);
708 	}
709 
710 	spin_lock_bh(&net->nsid_lock);
711 	if (__peernet2id(net, peer) >= 0) {
712 		spin_unlock_bh(&net->nsid_lock);
713 		err = -EEXIST;
714 		NL_SET_BAD_ATTR(extack, nla);
715 		NL_SET_ERR_MSG(extack,
716 			       "Peer netns already has a nsid assigned");
717 		goto out;
718 	}
719 
720 	err = alloc_netid(net, peer, nsid);
721 	spin_unlock_bh(&net->nsid_lock);
722 	if (err >= 0) {
723 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
724 		err = 0;
725 	} else if (err == -ENOSPC && nsid >= 0) {
726 		err = -EEXIST;
727 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
728 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
729 	}
730 out:
731 	put_net(peer);
732 	return err;
733 }
734 
735 static int rtnl_net_get_size(void)
736 {
737 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
738 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
739 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
740 	       ;
741 }
742 
743 struct net_fill_args {
744 	u32 portid;
745 	u32 seq;
746 	int flags;
747 	int cmd;
748 	int nsid;
749 	bool add_ref;
750 	int ref_nsid;
751 };
752 
753 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
754 {
755 	struct nlmsghdr *nlh;
756 	struct rtgenmsg *rth;
757 
758 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
759 			args->flags);
760 	if (!nlh)
761 		return -EMSGSIZE;
762 
763 	rth = nlmsg_data(nlh);
764 	rth->rtgen_family = AF_UNSPEC;
765 
766 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
767 		goto nla_put_failure;
768 
769 	if (args->add_ref &&
770 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
771 		goto nla_put_failure;
772 
773 	nlmsg_end(skb, nlh);
774 	return 0;
775 
776 nla_put_failure:
777 	nlmsg_cancel(skb, nlh);
778 	return -EMSGSIZE;
779 }
780 
781 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
782 				    const struct nlmsghdr *nlh,
783 				    struct nlattr **tb,
784 				    struct netlink_ext_ack *extack)
785 {
786 	int i, err;
787 
788 	if (!netlink_strict_get_check(skb))
789 		return nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
790 				   rtnl_net_policy, extack);
791 
792 	err = nlmsg_parse_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
793 				 rtnl_net_policy, extack);
794 	if (err)
795 		return err;
796 
797 	for (i = 0; i <= NETNSA_MAX; i++) {
798 		if (!tb[i])
799 			continue;
800 
801 		switch (i) {
802 		case NETNSA_PID:
803 		case NETNSA_FD:
804 		case NETNSA_NSID:
805 		case NETNSA_TARGET_NSID:
806 			break;
807 		default:
808 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
809 			return -EINVAL;
810 		}
811 	}
812 
813 	return 0;
814 }
815 
816 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
817 			  struct netlink_ext_ack *extack)
818 {
819 	struct net *net = sock_net(skb->sk);
820 	struct nlattr *tb[NETNSA_MAX + 1];
821 	struct net_fill_args fillargs = {
822 		.portid = NETLINK_CB(skb).portid,
823 		.seq = nlh->nlmsg_seq,
824 		.cmd = RTM_NEWNSID,
825 	};
826 	struct net *peer, *target = net;
827 	struct nlattr *nla;
828 	struct sk_buff *msg;
829 	int err;
830 
831 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
832 	if (err < 0)
833 		return err;
834 	if (tb[NETNSA_PID]) {
835 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
836 		nla = tb[NETNSA_PID];
837 	} else if (tb[NETNSA_FD]) {
838 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
839 		nla = tb[NETNSA_FD];
840 	} else if (tb[NETNSA_NSID]) {
841 		peer = get_net_ns_by_id(net, nla_get_u32(tb[NETNSA_NSID]));
842 		if (!peer)
843 			peer = ERR_PTR(-ENOENT);
844 		nla = tb[NETNSA_NSID];
845 	} else {
846 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
847 		return -EINVAL;
848 	}
849 
850 	if (IS_ERR(peer)) {
851 		NL_SET_BAD_ATTR(extack, nla);
852 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
853 		return PTR_ERR(peer);
854 	}
855 
856 	if (tb[NETNSA_TARGET_NSID]) {
857 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
858 
859 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
860 		if (IS_ERR(target)) {
861 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
862 			NL_SET_ERR_MSG(extack,
863 				       "Target netns reference is invalid");
864 			err = PTR_ERR(target);
865 			goto out;
866 		}
867 		fillargs.add_ref = true;
868 		fillargs.ref_nsid = peernet2id(net, peer);
869 	}
870 
871 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
872 	if (!msg) {
873 		err = -ENOMEM;
874 		goto out;
875 	}
876 
877 	fillargs.nsid = peernet2id(target, peer);
878 	err = rtnl_net_fill(msg, &fillargs);
879 	if (err < 0)
880 		goto err_out;
881 
882 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
883 	goto out;
884 
885 err_out:
886 	nlmsg_free(msg);
887 out:
888 	if (fillargs.add_ref)
889 		put_net(target);
890 	put_net(peer);
891 	return err;
892 }
893 
894 struct rtnl_net_dump_cb {
895 	struct net *tgt_net;
896 	struct net *ref_net;
897 	struct sk_buff *skb;
898 	struct net_fill_args fillargs;
899 	int idx;
900 	int s_idx;
901 };
902 
903 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
904 {
905 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
906 	int ret;
907 
908 	if (net_cb->idx < net_cb->s_idx)
909 		goto cont;
910 
911 	net_cb->fillargs.nsid = id;
912 	if (net_cb->fillargs.add_ref)
913 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
914 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
915 	if (ret < 0)
916 		return ret;
917 
918 cont:
919 	net_cb->idx++;
920 	return 0;
921 }
922 
923 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
924 				   struct rtnl_net_dump_cb *net_cb,
925 				   struct netlink_callback *cb)
926 {
927 	struct netlink_ext_ack *extack = cb->extack;
928 	struct nlattr *tb[NETNSA_MAX + 1];
929 	int err, i;
930 
931 	err = nlmsg_parse_strict(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
932 				 rtnl_net_policy, extack);
933 	if (err < 0)
934 		return err;
935 
936 	for (i = 0; i <= NETNSA_MAX; i++) {
937 		if (!tb[i])
938 			continue;
939 
940 		if (i == NETNSA_TARGET_NSID) {
941 			struct net *net;
942 
943 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
944 			if (IS_ERR(net)) {
945 				NL_SET_BAD_ATTR(extack, tb[i]);
946 				NL_SET_ERR_MSG(extack,
947 					       "Invalid target network namespace id");
948 				return PTR_ERR(net);
949 			}
950 			net_cb->fillargs.add_ref = true;
951 			net_cb->ref_net = net_cb->tgt_net;
952 			net_cb->tgt_net = net;
953 		} else {
954 			NL_SET_BAD_ATTR(extack, tb[i]);
955 			NL_SET_ERR_MSG(extack,
956 				       "Unsupported attribute in dump request");
957 			return -EINVAL;
958 		}
959 	}
960 
961 	return 0;
962 }
963 
964 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
965 {
966 	struct rtnl_net_dump_cb net_cb = {
967 		.tgt_net = sock_net(skb->sk),
968 		.skb = skb,
969 		.fillargs = {
970 			.portid = NETLINK_CB(cb->skb).portid,
971 			.seq = cb->nlh->nlmsg_seq,
972 			.flags = NLM_F_MULTI,
973 			.cmd = RTM_NEWNSID,
974 		},
975 		.idx = 0,
976 		.s_idx = cb->args[0],
977 	};
978 	int err = 0;
979 
980 	if (cb->strict_check) {
981 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
982 		if (err < 0)
983 			goto end;
984 	}
985 
986 	spin_lock_bh(&net_cb.tgt_net->nsid_lock);
987 	if (net_cb.fillargs.add_ref &&
988 	    !net_eq(net_cb.ref_net, net_cb.tgt_net) &&
989 	    !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) {
990 		spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
991 		err = -EAGAIN;
992 		goto end;
993 	}
994 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
995 	if (net_cb.fillargs.add_ref &&
996 	    !net_eq(net_cb.ref_net, net_cb.tgt_net))
997 		spin_unlock_bh(&net_cb.ref_net->nsid_lock);
998 	spin_unlock_bh(&net_cb.tgt_net->nsid_lock);
999 
1000 	cb->args[0] = net_cb.idx;
1001 end:
1002 	if (net_cb.fillargs.add_ref)
1003 		put_net(net_cb.tgt_net);
1004 	return err < 0 ? err : skb->len;
1005 }
1006 
1007 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
1008 {
1009 	struct net_fill_args fillargs = {
1010 		.cmd = cmd,
1011 		.nsid = id,
1012 	};
1013 	struct sk_buff *msg;
1014 	int err = -ENOMEM;
1015 
1016 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1017 	if (!msg)
1018 		goto out;
1019 
1020 	err = rtnl_net_fill(msg, &fillargs);
1021 	if (err < 0)
1022 		goto err_out;
1023 
1024 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
1025 	return;
1026 
1027 err_out:
1028 	nlmsg_free(msg);
1029 out:
1030 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1031 }
1032 
1033 static int __init net_ns_init(void)
1034 {
1035 	struct net_generic *ng;
1036 
1037 #ifdef CONFIG_NET_NS
1038 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1039 					SMP_CACHE_BYTES,
1040 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1041 
1042 	/* Create workqueue for cleanup */
1043 	netns_wq = create_singlethread_workqueue("netns");
1044 	if (!netns_wq)
1045 		panic("Could not create netns workq");
1046 #endif
1047 
1048 	ng = net_alloc_generic();
1049 	if (!ng)
1050 		panic("Could not allocate generic netns");
1051 
1052 	rcu_assign_pointer(init_net.gen, ng);
1053 
1054 	down_write(&pernet_ops_rwsem);
1055 	if (setup_net(&init_net, &init_user_ns))
1056 		panic("Could not setup the initial network namespace");
1057 
1058 	init_net_initialized = true;
1059 	up_write(&pernet_ops_rwsem);
1060 
1061 	if (register_pernet_subsys(&net_ns_ops))
1062 		panic("Could not register network namespace subsystems");
1063 
1064 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1065 		      RTNL_FLAG_DOIT_UNLOCKED);
1066 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1067 		      RTNL_FLAG_DOIT_UNLOCKED);
1068 
1069 	return 0;
1070 }
1071 
1072 pure_initcall(net_ns_init);
1073 
1074 #ifdef CONFIG_NET_NS
1075 static int __register_pernet_operations(struct list_head *list,
1076 					struct pernet_operations *ops)
1077 {
1078 	struct net *net;
1079 	int error;
1080 	LIST_HEAD(net_exit_list);
1081 
1082 	list_add_tail(&ops->list, list);
1083 	if (ops->init || (ops->id && ops->size)) {
1084 		/* We held write locked pernet_ops_rwsem, and parallel
1085 		 * setup_net() and cleanup_net() are not possible.
1086 		 */
1087 		for_each_net(net) {
1088 			error = ops_init(ops, net);
1089 			if (error)
1090 				goto out_undo;
1091 			list_add_tail(&net->exit_list, &net_exit_list);
1092 		}
1093 	}
1094 	return 0;
1095 
1096 out_undo:
1097 	/* If I have an error cleanup all namespaces I initialized */
1098 	list_del(&ops->list);
1099 	ops_exit_list(ops, &net_exit_list);
1100 	ops_free_list(ops, &net_exit_list);
1101 	return error;
1102 }
1103 
1104 static void __unregister_pernet_operations(struct pernet_operations *ops)
1105 {
1106 	struct net *net;
1107 	LIST_HEAD(net_exit_list);
1108 
1109 	list_del(&ops->list);
1110 	/* See comment in __register_pernet_operations() */
1111 	for_each_net(net)
1112 		list_add_tail(&net->exit_list, &net_exit_list);
1113 	ops_exit_list(ops, &net_exit_list);
1114 	ops_free_list(ops, &net_exit_list);
1115 }
1116 
1117 #else
1118 
1119 static int __register_pernet_operations(struct list_head *list,
1120 					struct pernet_operations *ops)
1121 {
1122 	if (!init_net_initialized) {
1123 		list_add_tail(&ops->list, list);
1124 		return 0;
1125 	}
1126 
1127 	return ops_init(ops, &init_net);
1128 }
1129 
1130 static void __unregister_pernet_operations(struct pernet_operations *ops)
1131 {
1132 	if (!init_net_initialized) {
1133 		list_del(&ops->list);
1134 	} else {
1135 		LIST_HEAD(net_exit_list);
1136 		list_add(&init_net.exit_list, &net_exit_list);
1137 		ops_exit_list(ops, &net_exit_list);
1138 		ops_free_list(ops, &net_exit_list);
1139 	}
1140 }
1141 
1142 #endif /* CONFIG_NET_NS */
1143 
1144 static DEFINE_IDA(net_generic_ids);
1145 
1146 static int register_pernet_operations(struct list_head *list,
1147 				      struct pernet_operations *ops)
1148 {
1149 	int error;
1150 
1151 	if (ops->id) {
1152 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1153 				GFP_KERNEL);
1154 		if (error < 0)
1155 			return error;
1156 		*ops->id = error;
1157 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1158 	}
1159 	error = __register_pernet_operations(list, ops);
1160 	if (error) {
1161 		rcu_barrier();
1162 		if (ops->id)
1163 			ida_free(&net_generic_ids, *ops->id);
1164 	}
1165 
1166 	return error;
1167 }
1168 
1169 static void unregister_pernet_operations(struct pernet_operations *ops)
1170 {
1171 	__unregister_pernet_operations(ops);
1172 	rcu_barrier();
1173 	if (ops->id)
1174 		ida_free(&net_generic_ids, *ops->id);
1175 }
1176 
1177 /**
1178  *      register_pernet_subsys - register a network namespace subsystem
1179  *	@ops:  pernet operations structure for the subsystem
1180  *
1181  *	Register a subsystem which has init and exit functions
1182  *	that are called when network namespaces are created and
1183  *	destroyed respectively.
1184  *
1185  *	When registered all network namespace init functions are
1186  *	called for every existing network namespace.  Allowing kernel
1187  *	modules to have a race free view of the set of network namespaces.
1188  *
1189  *	When a new network namespace is created all of the init
1190  *	methods are called in the order in which they were registered.
1191  *
1192  *	When a network namespace is destroyed all of the exit methods
1193  *	are called in the reverse of the order with which they were
1194  *	registered.
1195  */
1196 int register_pernet_subsys(struct pernet_operations *ops)
1197 {
1198 	int error;
1199 	down_write(&pernet_ops_rwsem);
1200 	error =  register_pernet_operations(first_device, ops);
1201 	up_write(&pernet_ops_rwsem);
1202 	return error;
1203 }
1204 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1205 
1206 /**
1207  *      unregister_pernet_subsys - unregister a network namespace subsystem
1208  *	@ops: pernet operations structure to manipulate
1209  *
1210  *	Remove the pernet operations structure from the list to be
1211  *	used when network namespaces are created or destroyed.  In
1212  *	addition run the exit method for all existing network
1213  *	namespaces.
1214  */
1215 void unregister_pernet_subsys(struct pernet_operations *ops)
1216 {
1217 	down_write(&pernet_ops_rwsem);
1218 	unregister_pernet_operations(ops);
1219 	up_write(&pernet_ops_rwsem);
1220 }
1221 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1222 
1223 /**
1224  *      register_pernet_device - register a network namespace device
1225  *	@ops:  pernet operations structure for the subsystem
1226  *
1227  *	Register a device which has init and exit functions
1228  *	that are called when network namespaces are created and
1229  *	destroyed respectively.
1230  *
1231  *	When registered all network namespace init functions are
1232  *	called for every existing network namespace.  Allowing kernel
1233  *	modules to have a race free view of the set of network namespaces.
1234  *
1235  *	When a new network namespace is created all of the init
1236  *	methods are called in the order in which they were registered.
1237  *
1238  *	When a network namespace is destroyed all of the exit methods
1239  *	are called in the reverse of the order with which they were
1240  *	registered.
1241  */
1242 int register_pernet_device(struct pernet_operations *ops)
1243 {
1244 	int error;
1245 	down_write(&pernet_ops_rwsem);
1246 	error = register_pernet_operations(&pernet_list, ops);
1247 	if (!error && (first_device == &pernet_list))
1248 		first_device = &ops->list;
1249 	up_write(&pernet_ops_rwsem);
1250 	return error;
1251 }
1252 EXPORT_SYMBOL_GPL(register_pernet_device);
1253 
1254 /**
1255  *      unregister_pernet_device - unregister a network namespace netdevice
1256  *	@ops: pernet operations structure to manipulate
1257  *
1258  *	Remove the pernet operations structure from the list to be
1259  *	used when network namespaces are created or destroyed.  In
1260  *	addition run the exit method for all existing network
1261  *	namespaces.
1262  */
1263 void unregister_pernet_device(struct pernet_operations *ops)
1264 {
1265 	down_write(&pernet_ops_rwsem);
1266 	if (&ops->list == first_device)
1267 		first_device = first_device->next;
1268 	unregister_pernet_operations(ops);
1269 	up_write(&pernet_ops_rwsem);
1270 }
1271 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1272 
1273 #ifdef CONFIG_NET_NS
1274 static struct ns_common *netns_get(struct task_struct *task)
1275 {
1276 	struct net *net = NULL;
1277 	struct nsproxy *nsproxy;
1278 
1279 	task_lock(task);
1280 	nsproxy = task->nsproxy;
1281 	if (nsproxy)
1282 		net = get_net(nsproxy->net_ns);
1283 	task_unlock(task);
1284 
1285 	return net ? &net->ns : NULL;
1286 }
1287 
1288 static inline struct net *to_net_ns(struct ns_common *ns)
1289 {
1290 	return container_of(ns, struct net, ns);
1291 }
1292 
1293 static void netns_put(struct ns_common *ns)
1294 {
1295 	put_net(to_net_ns(ns));
1296 }
1297 
1298 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1299 {
1300 	struct net *net = to_net_ns(ns);
1301 
1302 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1303 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1304 		return -EPERM;
1305 
1306 	put_net(nsproxy->net_ns);
1307 	nsproxy->net_ns = get_net(net);
1308 	return 0;
1309 }
1310 
1311 static struct user_namespace *netns_owner(struct ns_common *ns)
1312 {
1313 	return to_net_ns(ns)->user_ns;
1314 }
1315 
1316 const struct proc_ns_operations netns_operations = {
1317 	.name		= "net",
1318 	.type		= CLONE_NEWNET,
1319 	.get		= netns_get,
1320 	.put		= netns_put,
1321 	.install	= netns_install,
1322 	.owner		= netns_owner,
1323 };
1324 #endif
1325