1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 24 #include <net/sock.h> 25 #include <net/netlink.h> 26 #include <net/net_namespace.h> 27 #include <net/netns/generic.h> 28 29 /* 30 * Our network namespace constructor/destructor lists 31 */ 32 33 static LIST_HEAD(pernet_list); 34 static struct list_head *first_device = &pernet_list; 35 36 LIST_HEAD(net_namespace_list); 37 EXPORT_SYMBOL_GPL(net_namespace_list); 38 39 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 40 DECLARE_RWSEM(net_rwsem); 41 EXPORT_SYMBOL_GPL(net_rwsem); 42 43 #ifdef CONFIG_KEYS 44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 45 #endif 46 47 struct net init_net; 48 EXPORT_SYMBOL(init_net); 49 50 static bool init_net_initialized; 51 /* 52 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 53 * init_net_initialized and first_device pointer. 54 * This is internal net namespace object. Please, don't use it 55 * outside. 56 */ 57 DECLARE_RWSEM(pernet_ops_rwsem); 58 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 DEFINE_COOKIE(net_cookie); 68 69 static struct net_generic *net_alloc_generic(void) 70 { 71 struct net_generic *ng; 72 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 73 74 ng = kzalloc(generic_size, GFP_KERNEL); 75 if (ng) 76 ng->s.len = max_gen_ptrs; 77 78 return ng; 79 } 80 81 static int net_assign_generic(struct net *net, unsigned int id, void *data) 82 { 83 struct net_generic *ng, *old_ng; 84 85 BUG_ON(id < MIN_PERNET_OPS_ID); 86 87 old_ng = rcu_dereference_protected(net->gen, 88 lockdep_is_held(&pernet_ops_rwsem)); 89 if (old_ng->s.len > id) { 90 old_ng->ptr[id] = data; 91 return 0; 92 } 93 94 ng = net_alloc_generic(); 95 if (!ng) 96 return -ENOMEM; 97 98 /* 99 * Some synchronisation notes: 100 * 101 * The net_generic explores the net->gen array inside rcu 102 * read section. Besides once set the net->gen->ptr[x] 103 * pointer never changes (see rules in netns/generic.h). 104 * 105 * That said, we simply duplicate this array and schedule 106 * the old copy for kfree after a grace period. 107 */ 108 109 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 110 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 111 ng->ptr[id] = data; 112 113 rcu_assign_pointer(net->gen, ng); 114 kfree_rcu(old_ng, s.rcu); 115 return 0; 116 } 117 118 static int ops_init(const struct pernet_operations *ops, struct net *net) 119 { 120 struct net_generic *ng; 121 int err = -ENOMEM; 122 void *data = NULL; 123 124 if (ops->id && ops->size) { 125 data = kzalloc(ops->size, GFP_KERNEL); 126 if (!data) 127 goto out; 128 129 err = net_assign_generic(net, *ops->id, data); 130 if (err) 131 goto cleanup; 132 } 133 err = 0; 134 if (ops->init) 135 err = ops->init(net); 136 if (!err) 137 return 0; 138 139 if (ops->id && ops->size) { 140 cleanup: 141 ng = rcu_dereference_protected(net->gen, 142 lockdep_is_held(&pernet_ops_rwsem)); 143 ng->ptr[*ops->id] = NULL; 144 } 145 146 kfree(data); 147 148 out: 149 return err; 150 } 151 152 static void ops_pre_exit_list(const struct pernet_operations *ops, 153 struct list_head *net_exit_list) 154 { 155 struct net *net; 156 157 if (ops->pre_exit) { 158 list_for_each_entry(net, net_exit_list, exit_list) 159 ops->pre_exit(net); 160 } 161 } 162 163 static void ops_exit_list(const struct pernet_operations *ops, 164 struct list_head *net_exit_list) 165 { 166 struct net *net; 167 if (ops->exit) { 168 list_for_each_entry(net, net_exit_list, exit_list) { 169 ops->exit(net); 170 cond_resched(); 171 } 172 } 173 if (ops->exit_batch) 174 ops->exit_batch(net_exit_list); 175 } 176 177 static void ops_free_list(const struct pernet_operations *ops, 178 struct list_head *net_exit_list) 179 { 180 struct net *net; 181 if (ops->size && ops->id) { 182 list_for_each_entry(net, net_exit_list, exit_list) 183 kfree(net_generic(net, *ops->id)); 184 } 185 } 186 187 /* should be called with nsid_lock held */ 188 static int alloc_netid(struct net *net, struct net *peer, int reqid) 189 { 190 int min = 0, max = 0; 191 192 if (reqid >= 0) { 193 min = reqid; 194 max = reqid + 1; 195 } 196 197 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 198 } 199 200 /* This function is used by idr_for_each(). If net is equal to peer, the 201 * function returns the id so that idr_for_each() stops. Because we cannot 202 * returns the id 0 (idr_for_each() will not stop), we return the magic value 203 * NET_ID_ZERO (-1) for it. 204 */ 205 #define NET_ID_ZERO -1 206 static int net_eq_idr(int id, void *net, void *peer) 207 { 208 if (net_eq(net, peer)) 209 return id ? : NET_ID_ZERO; 210 return 0; 211 } 212 213 /* Must be called from RCU-critical section or with nsid_lock held */ 214 static int __peernet2id(const struct net *net, struct net *peer) 215 { 216 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 217 218 /* Magic value for id 0. */ 219 if (id == NET_ID_ZERO) 220 return 0; 221 if (id > 0) 222 return id; 223 224 return NETNSA_NSID_NOT_ASSIGNED; 225 } 226 227 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 228 struct nlmsghdr *nlh, gfp_t gfp); 229 /* This function returns the id of a peer netns. If no id is assigned, one will 230 * be allocated and returned. 231 */ 232 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 233 { 234 int id; 235 236 if (refcount_read(&net->ns.count) == 0) 237 return NETNSA_NSID_NOT_ASSIGNED; 238 239 spin_lock_bh(&net->nsid_lock); 240 id = __peernet2id(net, peer); 241 if (id >= 0) { 242 spin_unlock_bh(&net->nsid_lock); 243 return id; 244 } 245 246 /* When peer is obtained from RCU lists, we may race with 247 * its cleanup. Check whether it's alive, and this guarantees 248 * we never hash a peer back to net->netns_ids, after it has 249 * just been idr_remove()'d from there in cleanup_net(). 250 */ 251 if (!maybe_get_net(peer)) { 252 spin_unlock_bh(&net->nsid_lock); 253 return NETNSA_NSID_NOT_ASSIGNED; 254 } 255 256 id = alloc_netid(net, peer, -1); 257 spin_unlock_bh(&net->nsid_lock); 258 259 put_net(peer); 260 if (id < 0) 261 return NETNSA_NSID_NOT_ASSIGNED; 262 263 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 264 265 return id; 266 } 267 EXPORT_SYMBOL_GPL(peernet2id_alloc); 268 269 /* This function returns, if assigned, the id of a peer netns. */ 270 int peernet2id(const struct net *net, struct net *peer) 271 { 272 int id; 273 274 rcu_read_lock(); 275 id = __peernet2id(net, peer); 276 rcu_read_unlock(); 277 278 return id; 279 } 280 EXPORT_SYMBOL(peernet2id); 281 282 /* This function returns true is the peer netns has an id assigned into the 283 * current netns. 284 */ 285 bool peernet_has_id(const struct net *net, struct net *peer) 286 { 287 return peernet2id(net, peer) >= 0; 288 } 289 290 struct net *get_net_ns_by_id(const struct net *net, int id) 291 { 292 struct net *peer; 293 294 if (id < 0) 295 return NULL; 296 297 rcu_read_lock(); 298 peer = idr_find(&net->netns_ids, id); 299 if (peer) 300 peer = maybe_get_net(peer); 301 rcu_read_unlock(); 302 303 return peer; 304 } 305 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 306 307 /* 308 * setup_net runs the initializers for the network namespace object. 309 */ 310 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 311 { 312 /* Must be called with pernet_ops_rwsem held */ 313 const struct pernet_operations *ops, *saved_ops; 314 int error = 0; 315 LIST_HEAD(net_exit_list); 316 317 refcount_set(&net->ns.count, 1); 318 ref_tracker_dir_init(&net->refcnt_tracker, 128); 319 320 refcount_set(&net->passive, 1); 321 get_random_bytes(&net->hash_mix, sizeof(u32)); 322 preempt_disable(); 323 net->net_cookie = gen_cookie_next(&net_cookie); 324 preempt_enable(); 325 net->dev_base_seq = 1; 326 net->user_ns = user_ns; 327 idr_init(&net->netns_ids); 328 spin_lock_init(&net->nsid_lock); 329 mutex_init(&net->ipv4.ra_mutex); 330 331 list_for_each_entry(ops, &pernet_list, list) { 332 error = ops_init(ops, net); 333 if (error < 0) 334 goto out_undo; 335 } 336 down_write(&net_rwsem); 337 list_add_tail_rcu(&net->list, &net_namespace_list); 338 up_write(&net_rwsem); 339 out: 340 return error; 341 342 out_undo: 343 /* Walk through the list backwards calling the exit functions 344 * for the pernet modules whose init functions did not fail. 345 */ 346 list_add(&net->exit_list, &net_exit_list); 347 saved_ops = ops; 348 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 349 ops_pre_exit_list(ops, &net_exit_list); 350 351 synchronize_rcu(); 352 353 ops = saved_ops; 354 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 355 ops_exit_list(ops, &net_exit_list); 356 357 ops = saved_ops; 358 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 359 ops_free_list(ops, &net_exit_list); 360 361 rcu_barrier(); 362 goto out; 363 } 364 365 static int __net_init net_defaults_init_net(struct net *net) 366 { 367 net->core.sysctl_somaxconn = SOMAXCONN; 368 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 369 370 return 0; 371 } 372 373 static struct pernet_operations net_defaults_ops = { 374 .init = net_defaults_init_net, 375 }; 376 377 static __init int net_defaults_init(void) 378 { 379 if (register_pernet_subsys(&net_defaults_ops)) 380 panic("Cannot initialize net default settings"); 381 382 return 0; 383 } 384 385 core_initcall(net_defaults_init); 386 387 #ifdef CONFIG_NET_NS 388 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 389 { 390 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 391 } 392 393 static void dec_net_namespaces(struct ucounts *ucounts) 394 { 395 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 396 } 397 398 static struct kmem_cache *net_cachep __ro_after_init; 399 static struct workqueue_struct *netns_wq; 400 401 static struct net *net_alloc(void) 402 { 403 struct net *net = NULL; 404 struct net_generic *ng; 405 406 ng = net_alloc_generic(); 407 if (!ng) 408 goto out; 409 410 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 411 if (!net) 412 goto out_free; 413 414 #ifdef CONFIG_KEYS 415 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 416 if (!net->key_domain) 417 goto out_free_2; 418 refcount_set(&net->key_domain->usage, 1); 419 #endif 420 421 rcu_assign_pointer(net->gen, ng); 422 out: 423 return net; 424 425 #ifdef CONFIG_KEYS 426 out_free_2: 427 kmem_cache_free(net_cachep, net); 428 net = NULL; 429 #endif 430 out_free: 431 kfree(ng); 432 goto out; 433 } 434 435 static void net_free(struct net *net) 436 { 437 if (refcount_dec_and_test(&net->passive)) { 438 kfree(rcu_access_pointer(net->gen)); 439 kmem_cache_free(net_cachep, net); 440 } 441 } 442 443 void net_drop_ns(void *p) 444 { 445 struct net *net = (struct net *)p; 446 447 if (net) 448 net_free(net); 449 } 450 451 struct net *copy_net_ns(unsigned long flags, 452 struct user_namespace *user_ns, struct net *old_net) 453 { 454 struct ucounts *ucounts; 455 struct net *net; 456 int rv; 457 458 if (!(flags & CLONE_NEWNET)) 459 return get_net(old_net); 460 461 ucounts = inc_net_namespaces(user_ns); 462 if (!ucounts) 463 return ERR_PTR(-ENOSPC); 464 465 net = net_alloc(); 466 if (!net) { 467 rv = -ENOMEM; 468 goto dec_ucounts; 469 } 470 refcount_set(&net->passive, 1); 471 net->ucounts = ucounts; 472 get_user_ns(user_ns); 473 474 rv = down_read_killable(&pernet_ops_rwsem); 475 if (rv < 0) 476 goto put_userns; 477 478 rv = setup_net(net, user_ns); 479 480 up_read(&pernet_ops_rwsem); 481 482 if (rv < 0) { 483 put_userns: 484 #ifdef CONFIG_KEYS 485 key_remove_domain(net->key_domain); 486 #endif 487 put_user_ns(user_ns); 488 net_free(net); 489 dec_ucounts: 490 dec_net_namespaces(ucounts); 491 return ERR_PTR(rv); 492 } 493 return net; 494 } 495 496 /** 497 * net_ns_get_ownership - get sysfs ownership data for @net 498 * @net: network namespace in question (can be NULL) 499 * @uid: kernel user ID for sysfs objects 500 * @gid: kernel group ID for sysfs objects 501 * 502 * Returns the uid/gid pair of root in the user namespace associated with the 503 * given network namespace. 504 */ 505 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 506 { 507 if (net) { 508 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 509 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 510 511 if (uid_valid(ns_root_uid)) 512 *uid = ns_root_uid; 513 514 if (gid_valid(ns_root_gid)) 515 *gid = ns_root_gid; 516 } else { 517 *uid = GLOBAL_ROOT_UID; 518 *gid = GLOBAL_ROOT_GID; 519 } 520 } 521 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 522 523 static void unhash_nsid(struct net *net, struct net *last) 524 { 525 struct net *tmp; 526 /* This function is only called from cleanup_net() work, 527 * and this work is the only process, that may delete 528 * a net from net_namespace_list. So, when the below 529 * is executing, the list may only grow. Thus, we do not 530 * use for_each_net_rcu() or net_rwsem. 531 */ 532 for_each_net(tmp) { 533 int id; 534 535 spin_lock_bh(&tmp->nsid_lock); 536 id = __peernet2id(tmp, net); 537 if (id >= 0) 538 idr_remove(&tmp->netns_ids, id); 539 spin_unlock_bh(&tmp->nsid_lock); 540 if (id >= 0) 541 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 542 GFP_KERNEL); 543 if (tmp == last) 544 break; 545 } 546 spin_lock_bh(&net->nsid_lock); 547 idr_destroy(&net->netns_ids); 548 spin_unlock_bh(&net->nsid_lock); 549 } 550 551 static LLIST_HEAD(cleanup_list); 552 553 static void cleanup_net(struct work_struct *work) 554 { 555 const struct pernet_operations *ops; 556 struct net *net, *tmp, *last; 557 struct llist_node *net_kill_list; 558 LIST_HEAD(net_exit_list); 559 560 /* Atomically snapshot the list of namespaces to cleanup */ 561 net_kill_list = llist_del_all(&cleanup_list); 562 563 down_read(&pernet_ops_rwsem); 564 565 /* Don't let anyone else find us. */ 566 down_write(&net_rwsem); 567 llist_for_each_entry(net, net_kill_list, cleanup_list) 568 list_del_rcu(&net->list); 569 /* Cache last net. After we unlock rtnl, no one new net 570 * added to net_namespace_list can assign nsid pointer 571 * to a net from net_kill_list (see peernet2id_alloc()). 572 * So, we skip them in unhash_nsid(). 573 * 574 * Note, that unhash_nsid() does not delete nsid links 575 * between net_kill_list's nets, as they've already 576 * deleted from net_namespace_list. But, this would be 577 * useless anyway, as netns_ids are destroyed there. 578 */ 579 last = list_last_entry(&net_namespace_list, struct net, list); 580 up_write(&net_rwsem); 581 582 llist_for_each_entry(net, net_kill_list, cleanup_list) { 583 unhash_nsid(net, last); 584 list_add_tail(&net->exit_list, &net_exit_list); 585 } 586 587 /* Run all of the network namespace pre_exit methods */ 588 list_for_each_entry_reverse(ops, &pernet_list, list) 589 ops_pre_exit_list(ops, &net_exit_list); 590 591 /* 592 * Another CPU might be rcu-iterating the list, wait for it. 593 * This needs to be before calling the exit() notifiers, so 594 * the rcu_barrier() below isn't sufficient alone. 595 * Also the pre_exit() and exit() methods need this barrier. 596 */ 597 synchronize_rcu(); 598 599 /* Run all of the network namespace exit methods */ 600 list_for_each_entry_reverse(ops, &pernet_list, list) 601 ops_exit_list(ops, &net_exit_list); 602 603 /* Free the net generic variables */ 604 list_for_each_entry_reverse(ops, &pernet_list, list) 605 ops_free_list(ops, &net_exit_list); 606 607 up_read(&pernet_ops_rwsem); 608 609 /* Ensure there are no outstanding rcu callbacks using this 610 * network namespace. 611 */ 612 rcu_barrier(); 613 614 /* Finally it is safe to free my network namespace structure */ 615 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 616 list_del_init(&net->exit_list); 617 dec_net_namespaces(net->ucounts); 618 #ifdef CONFIG_KEYS 619 key_remove_domain(net->key_domain); 620 #endif 621 put_user_ns(net->user_ns); 622 net_free(net); 623 } 624 } 625 626 /** 627 * net_ns_barrier - wait until concurrent net_cleanup_work is done 628 * 629 * cleanup_net runs from work queue and will first remove namespaces 630 * from the global list, then run net exit functions. 631 * 632 * Call this in module exit path to make sure that all netns 633 * ->exit ops have been invoked before the function is removed. 634 */ 635 void net_ns_barrier(void) 636 { 637 down_write(&pernet_ops_rwsem); 638 up_write(&pernet_ops_rwsem); 639 } 640 EXPORT_SYMBOL(net_ns_barrier); 641 642 static DECLARE_WORK(net_cleanup_work, cleanup_net); 643 644 void __put_net(struct net *net) 645 { 646 ref_tracker_dir_exit(&net->refcnt_tracker); 647 /* Cleanup the network namespace in process context */ 648 if (llist_add(&net->cleanup_list, &cleanup_list)) 649 queue_work(netns_wq, &net_cleanup_work); 650 } 651 EXPORT_SYMBOL_GPL(__put_net); 652 653 /** 654 * get_net_ns - increment the refcount of the network namespace 655 * @ns: common namespace (net) 656 * 657 * Returns the net's common namespace. 658 */ 659 struct ns_common *get_net_ns(struct ns_common *ns) 660 { 661 return &get_net(container_of(ns, struct net, ns))->ns; 662 } 663 EXPORT_SYMBOL_GPL(get_net_ns); 664 665 struct net *get_net_ns_by_fd(int fd) 666 { 667 struct file *file; 668 struct ns_common *ns; 669 struct net *net; 670 671 file = proc_ns_fget(fd); 672 if (IS_ERR(file)) 673 return ERR_CAST(file); 674 675 ns = get_proc_ns(file_inode(file)); 676 if (ns->ops == &netns_operations) 677 net = get_net(container_of(ns, struct net, ns)); 678 else 679 net = ERR_PTR(-EINVAL); 680 681 fput(file); 682 return net; 683 } 684 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 685 #endif 686 687 struct net *get_net_ns_by_pid(pid_t pid) 688 { 689 struct task_struct *tsk; 690 struct net *net; 691 692 /* Lookup the network namespace */ 693 net = ERR_PTR(-ESRCH); 694 rcu_read_lock(); 695 tsk = find_task_by_vpid(pid); 696 if (tsk) { 697 struct nsproxy *nsproxy; 698 task_lock(tsk); 699 nsproxy = tsk->nsproxy; 700 if (nsproxy) 701 net = get_net(nsproxy->net_ns); 702 task_unlock(tsk); 703 } 704 rcu_read_unlock(); 705 return net; 706 } 707 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 708 709 static __net_init int net_ns_net_init(struct net *net) 710 { 711 #ifdef CONFIG_NET_NS 712 net->ns.ops = &netns_operations; 713 #endif 714 return ns_alloc_inum(&net->ns); 715 } 716 717 static __net_exit void net_ns_net_exit(struct net *net) 718 { 719 ns_free_inum(&net->ns); 720 } 721 722 static struct pernet_operations __net_initdata net_ns_ops = { 723 .init = net_ns_net_init, 724 .exit = net_ns_net_exit, 725 }; 726 727 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 728 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 729 [NETNSA_NSID] = { .type = NLA_S32 }, 730 [NETNSA_PID] = { .type = NLA_U32 }, 731 [NETNSA_FD] = { .type = NLA_U32 }, 732 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 733 }; 734 735 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 736 struct netlink_ext_ack *extack) 737 { 738 struct net *net = sock_net(skb->sk); 739 struct nlattr *tb[NETNSA_MAX + 1]; 740 struct nlattr *nla; 741 struct net *peer; 742 int nsid, err; 743 744 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 745 NETNSA_MAX, rtnl_net_policy, extack); 746 if (err < 0) 747 return err; 748 if (!tb[NETNSA_NSID]) { 749 NL_SET_ERR_MSG(extack, "nsid is missing"); 750 return -EINVAL; 751 } 752 nsid = nla_get_s32(tb[NETNSA_NSID]); 753 754 if (tb[NETNSA_PID]) { 755 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 756 nla = tb[NETNSA_PID]; 757 } else if (tb[NETNSA_FD]) { 758 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 759 nla = tb[NETNSA_FD]; 760 } else { 761 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 762 return -EINVAL; 763 } 764 if (IS_ERR(peer)) { 765 NL_SET_BAD_ATTR(extack, nla); 766 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 767 return PTR_ERR(peer); 768 } 769 770 spin_lock_bh(&net->nsid_lock); 771 if (__peernet2id(net, peer) >= 0) { 772 spin_unlock_bh(&net->nsid_lock); 773 err = -EEXIST; 774 NL_SET_BAD_ATTR(extack, nla); 775 NL_SET_ERR_MSG(extack, 776 "Peer netns already has a nsid assigned"); 777 goto out; 778 } 779 780 err = alloc_netid(net, peer, nsid); 781 spin_unlock_bh(&net->nsid_lock); 782 if (err >= 0) { 783 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 784 nlh, GFP_KERNEL); 785 err = 0; 786 } else if (err == -ENOSPC && nsid >= 0) { 787 err = -EEXIST; 788 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 789 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 790 } 791 out: 792 put_net(peer); 793 return err; 794 } 795 796 static int rtnl_net_get_size(void) 797 { 798 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 799 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 800 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 801 ; 802 } 803 804 struct net_fill_args { 805 u32 portid; 806 u32 seq; 807 int flags; 808 int cmd; 809 int nsid; 810 bool add_ref; 811 int ref_nsid; 812 }; 813 814 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 815 { 816 struct nlmsghdr *nlh; 817 struct rtgenmsg *rth; 818 819 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 820 args->flags); 821 if (!nlh) 822 return -EMSGSIZE; 823 824 rth = nlmsg_data(nlh); 825 rth->rtgen_family = AF_UNSPEC; 826 827 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 828 goto nla_put_failure; 829 830 if (args->add_ref && 831 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 832 goto nla_put_failure; 833 834 nlmsg_end(skb, nlh); 835 return 0; 836 837 nla_put_failure: 838 nlmsg_cancel(skb, nlh); 839 return -EMSGSIZE; 840 } 841 842 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 843 const struct nlmsghdr *nlh, 844 struct nlattr **tb, 845 struct netlink_ext_ack *extack) 846 { 847 int i, err; 848 849 if (!netlink_strict_get_check(skb)) 850 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 851 tb, NETNSA_MAX, rtnl_net_policy, 852 extack); 853 854 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 855 NETNSA_MAX, rtnl_net_policy, 856 extack); 857 if (err) 858 return err; 859 860 for (i = 0; i <= NETNSA_MAX; i++) { 861 if (!tb[i]) 862 continue; 863 864 switch (i) { 865 case NETNSA_PID: 866 case NETNSA_FD: 867 case NETNSA_NSID: 868 case NETNSA_TARGET_NSID: 869 break; 870 default: 871 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 872 return -EINVAL; 873 } 874 } 875 876 return 0; 877 } 878 879 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 880 struct netlink_ext_ack *extack) 881 { 882 struct net *net = sock_net(skb->sk); 883 struct nlattr *tb[NETNSA_MAX + 1]; 884 struct net_fill_args fillargs = { 885 .portid = NETLINK_CB(skb).portid, 886 .seq = nlh->nlmsg_seq, 887 .cmd = RTM_NEWNSID, 888 }; 889 struct net *peer, *target = net; 890 struct nlattr *nla; 891 struct sk_buff *msg; 892 int err; 893 894 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 895 if (err < 0) 896 return err; 897 if (tb[NETNSA_PID]) { 898 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 899 nla = tb[NETNSA_PID]; 900 } else if (tb[NETNSA_FD]) { 901 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 902 nla = tb[NETNSA_FD]; 903 } else if (tb[NETNSA_NSID]) { 904 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 905 if (!peer) 906 peer = ERR_PTR(-ENOENT); 907 nla = tb[NETNSA_NSID]; 908 } else { 909 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 910 return -EINVAL; 911 } 912 913 if (IS_ERR(peer)) { 914 NL_SET_BAD_ATTR(extack, nla); 915 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 916 return PTR_ERR(peer); 917 } 918 919 if (tb[NETNSA_TARGET_NSID]) { 920 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 921 922 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 923 if (IS_ERR(target)) { 924 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 925 NL_SET_ERR_MSG(extack, 926 "Target netns reference is invalid"); 927 err = PTR_ERR(target); 928 goto out; 929 } 930 fillargs.add_ref = true; 931 fillargs.ref_nsid = peernet2id(net, peer); 932 } 933 934 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 935 if (!msg) { 936 err = -ENOMEM; 937 goto out; 938 } 939 940 fillargs.nsid = peernet2id(target, peer); 941 err = rtnl_net_fill(msg, &fillargs); 942 if (err < 0) 943 goto err_out; 944 945 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 946 goto out; 947 948 err_out: 949 nlmsg_free(msg); 950 out: 951 if (fillargs.add_ref) 952 put_net(target); 953 put_net(peer); 954 return err; 955 } 956 957 struct rtnl_net_dump_cb { 958 struct net *tgt_net; 959 struct net *ref_net; 960 struct sk_buff *skb; 961 struct net_fill_args fillargs; 962 int idx; 963 int s_idx; 964 }; 965 966 /* Runs in RCU-critical section. */ 967 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 968 { 969 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 970 int ret; 971 972 if (net_cb->idx < net_cb->s_idx) 973 goto cont; 974 975 net_cb->fillargs.nsid = id; 976 if (net_cb->fillargs.add_ref) 977 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 978 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 979 if (ret < 0) 980 return ret; 981 982 cont: 983 net_cb->idx++; 984 return 0; 985 } 986 987 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 988 struct rtnl_net_dump_cb *net_cb, 989 struct netlink_callback *cb) 990 { 991 struct netlink_ext_ack *extack = cb->extack; 992 struct nlattr *tb[NETNSA_MAX + 1]; 993 int err, i; 994 995 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 996 NETNSA_MAX, rtnl_net_policy, 997 extack); 998 if (err < 0) 999 return err; 1000 1001 for (i = 0; i <= NETNSA_MAX; i++) { 1002 if (!tb[i]) 1003 continue; 1004 1005 if (i == NETNSA_TARGET_NSID) { 1006 struct net *net; 1007 1008 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1009 if (IS_ERR(net)) { 1010 NL_SET_BAD_ATTR(extack, tb[i]); 1011 NL_SET_ERR_MSG(extack, 1012 "Invalid target network namespace id"); 1013 return PTR_ERR(net); 1014 } 1015 net_cb->fillargs.add_ref = true; 1016 net_cb->ref_net = net_cb->tgt_net; 1017 net_cb->tgt_net = net; 1018 } else { 1019 NL_SET_BAD_ATTR(extack, tb[i]); 1020 NL_SET_ERR_MSG(extack, 1021 "Unsupported attribute in dump request"); 1022 return -EINVAL; 1023 } 1024 } 1025 1026 return 0; 1027 } 1028 1029 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1030 { 1031 struct rtnl_net_dump_cb net_cb = { 1032 .tgt_net = sock_net(skb->sk), 1033 .skb = skb, 1034 .fillargs = { 1035 .portid = NETLINK_CB(cb->skb).portid, 1036 .seq = cb->nlh->nlmsg_seq, 1037 .flags = NLM_F_MULTI, 1038 .cmd = RTM_NEWNSID, 1039 }, 1040 .idx = 0, 1041 .s_idx = cb->args[0], 1042 }; 1043 int err = 0; 1044 1045 if (cb->strict_check) { 1046 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1047 if (err < 0) 1048 goto end; 1049 } 1050 1051 rcu_read_lock(); 1052 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1053 rcu_read_unlock(); 1054 1055 cb->args[0] = net_cb.idx; 1056 end: 1057 if (net_cb.fillargs.add_ref) 1058 put_net(net_cb.tgt_net); 1059 return err < 0 ? err : skb->len; 1060 } 1061 1062 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1063 struct nlmsghdr *nlh, gfp_t gfp) 1064 { 1065 struct net_fill_args fillargs = { 1066 .portid = portid, 1067 .seq = nlh ? nlh->nlmsg_seq : 0, 1068 .cmd = cmd, 1069 .nsid = id, 1070 }; 1071 struct sk_buff *msg; 1072 int err = -ENOMEM; 1073 1074 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1075 if (!msg) 1076 goto out; 1077 1078 err = rtnl_net_fill(msg, &fillargs); 1079 if (err < 0) 1080 goto err_out; 1081 1082 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1083 return; 1084 1085 err_out: 1086 nlmsg_free(msg); 1087 out: 1088 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1089 } 1090 1091 void __init net_ns_init(void) 1092 { 1093 struct net_generic *ng; 1094 1095 #ifdef CONFIG_NET_NS 1096 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1097 SMP_CACHE_BYTES, 1098 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1099 1100 /* Create workqueue for cleanup */ 1101 netns_wq = create_singlethread_workqueue("netns"); 1102 if (!netns_wq) 1103 panic("Could not create netns workq"); 1104 #endif 1105 1106 ng = net_alloc_generic(); 1107 if (!ng) 1108 panic("Could not allocate generic netns"); 1109 1110 rcu_assign_pointer(init_net.gen, ng); 1111 1112 #ifdef CONFIG_KEYS 1113 init_net.key_domain = &init_net_key_domain; 1114 #endif 1115 down_write(&pernet_ops_rwsem); 1116 if (setup_net(&init_net, &init_user_ns)) 1117 panic("Could not setup the initial network namespace"); 1118 1119 init_net_initialized = true; 1120 up_write(&pernet_ops_rwsem); 1121 1122 if (register_pernet_subsys(&net_ns_ops)) 1123 panic("Could not register network namespace subsystems"); 1124 1125 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1126 RTNL_FLAG_DOIT_UNLOCKED); 1127 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1128 RTNL_FLAG_DOIT_UNLOCKED); 1129 } 1130 1131 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1132 { 1133 ops_pre_exit_list(ops, net_exit_list); 1134 synchronize_rcu(); 1135 ops_exit_list(ops, net_exit_list); 1136 ops_free_list(ops, net_exit_list); 1137 } 1138 1139 #ifdef CONFIG_NET_NS 1140 static int __register_pernet_operations(struct list_head *list, 1141 struct pernet_operations *ops) 1142 { 1143 struct net *net; 1144 int error; 1145 LIST_HEAD(net_exit_list); 1146 1147 list_add_tail(&ops->list, list); 1148 if (ops->init || (ops->id && ops->size)) { 1149 /* We held write locked pernet_ops_rwsem, and parallel 1150 * setup_net() and cleanup_net() are not possible. 1151 */ 1152 for_each_net(net) { 1153 error = ops_init(ops, net); 1154 if (error) 1155 goto out_undo; 1156 list_add_tail(&net->exit_list, &net_exit_list); 1157 } 1158 } 1159 return 0; 1160 1161 out_undo: 1162 /* If I have an error cleanup all namespaces I initialized */ 1163 list_del(&ops->list); 1164 free_exit_list(ops, &net_exit_list); 1165 return error; 1166 } 1167 1168 static void __unregister_pernet_operations(struct pernet_operations *ops) 1169 { 1170 struct net *net; 1171 LIST_HEAD(net_exit_list); 1172 1173 list_del(&ops->list); 1174 /* See comment in __register_pernet_operations() */ 1175 for_each_net(net) 1176 list_add_tail(&net->exit_list, &net_exit_list); 1177 1178 free_exit_list(ops, &net_exit_list); 1179 } 1180 1181 #else 1182 1183 static int __register_pernet_operations(struct list_head *list, 1184 struct pernet_operations *ops) 1185 { 1186 if (!init_net_initialized) { 1187 list_add_tail(&ops->list, list); 1188 return 0; 1189 } 1190 1191 return ops_init(ops, &init_net); 1192 } 1193 1194 static void __unregister_pernet_operations(struct pernet_operations *ops) 1195 { 1196 if (!init_net_initialized) { 1197 list_del(&ops->list); 1198 } else { 1199 LIST_HEAD(net_exit_list); 1200 list_add(&init_net.exit_list, &net_exit_list); 1201 free_exit_list(ops, &net_exit_list); 1202 } 1203 } 1204 1205 #endif /* CONFIG_NET_NS */ 1206 1207 static DEFINE_IDA(net_generic_ids); 1208 1209 static int register_pernet_operations(struct list_head *list, 1210 struct pernet_operations *ops) 1211 { 1212 int error; 1213 1214 if (ops->id) { 1215 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1216 GFP_KERNEL); 1217 if (error < 0) 1218 return error; 1219 *ops->id = error; 1220 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1221 } 1222 error = __register_pernet_operations(list, ops); 1223 if (error) { 1224 rcu_barrier(); 1225 if (ops->id) 1226 ida_free(&net_generic_ids, *ops->id); 1227 } 1228 1229 return error; 1230 } 1231 1232 static void unregister_pernet_operations(struct pernet_operations *ops) 1233 { 1234 __unregister_pernet_operations(ops); 1235 rcu_barrier(); 1236 if (ops->id) 1237 ida_free(&net_generic_ids, *ops->id); 1238 } 1239 1240 /** 1241 * register_pernet_subsys - register a network namespace subsystem 1242 * @ops: pernet operations structure for the subsystem 1243 * 1244 * Register a subsystem which has init and exit functions 1245 * that are called when network namespaces are created and 1246 * destroyed respectively. 1247 * 1248 * When registered all network namespace init functions are 1249 * called for every existing network namespace. Allowing kernel 1250 * modules to have a race free view of the set of network namespaces. 1251 * 1252 * When a new network namespace is created all of the init 1253 * methods are called in the order in which they were registered. 1254 * 1255 * When a network namespace is destroyed all of the exit methods 1256 * are called in the reverse of the order with which they were 1257 * registered. 1258 */ 1259 int register_pernet_subsys(struct pernet_operations *ops) 1260 { 1261 int error; 1262 down_write(&pernet_ops_rwsem); 1263 error = register_pernet_operations(first_device, ops); 1264 up_write(&pernet_ops_rwsem); 1265 return error; 1266 } 1267 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1268 1269 /** 1270 * unregister_pernet_subsys - unregister a network namespace subsystem 1271 * @ops: pernet operations structure to manipulate 1272 * 1273 * Remove the pernet operations structure from the list to be 1274 * used when network namespaces are created or destroyed. In 1275 * addition run the exit method for all existing network 1276 * namespaces. 1277 */ 1278 void unregister_pernet_subsys(struct pernet_operations *ops) 1279 { 1280 down_write(&pernet_ops_rwsem); 1281 unregister_pernet_operations(ops); 1282 up_write(&pernet_ops_rwsem); 1283 } 1284 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1285 1286 /** 1287 * register_pernet_device - register a network namespace device 1288 * @ops: pernet operations structure for the subsystem 1289 * 1290 * Register a device which has init and exit functions 1291 * that are called when network namespaces are created and 1292 * destroyed respectively. 1293 * 1294 * When registered all network namespace init functions are 1295 * called for every existing network namespace. Allowing kernel 1296 * modules to have a race free view of the set of network namespaces. 1297 * 1298 * When a new network namespace is created all of the init 1299 * methods are called in the order in which they were registered. 1300 * 1301 * When a network namespace is destroyed all of the exit methods 1302 * are called in the reverse of the order with which they were 1303 * registered. 1304 */ 1305 int register_pernet_device(struct pernet_operations *ops) 1306 { 1307 int error; 1308 down_write(&pernet_ops_rwsem); 1309 error = register_pernet_operations(&pernet_list, ops); 1310 if (!error && (first_device == &pernet_list)) 1311 first_device = &ops->list; 1312 up_write(&pernet_ops_rwsem); 1313 return error; 1314 } 1315 EXPORT_SYMBOL_GPL(register_pernet_device); 1316 1317 /** 1318 * unregister_pernet_device - unregister a network namespace netdevice 1319 * @ops: pernet operations structure to manipulate 1320 * 1321 * Remove the pernet operations structure from the list to be 1322 * used when network namespaces are created or destroyed. In 1323 * addition run the exit method for all existing network 1324 * namespaces. 1325 */ 1326 void unregister_pernet_device(struct pernet_operations *ops) 1327 { 1328 down_write(&pernet_ops_rwsem); 1329 if (&ops->list == first_device) 1330 first_device = first_device->next; 1331 unregister_pernet_operations(ops); 1332 up_write(&pernet_ops_rwsem); 1333 } 1334 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1335 1336 #ifdef CONFIG_NET_NS 1337 static struct ns_common *netns_get(struct task_struct *task) 1338 { 1339 struct net *net = NULL; 1340 struct nsproxy *nsproxy; 1341 1342 task_lock(task); 1343 nsproxy = task->nsproxy; 1344 if (nsproxy) 1345 net = get_net(nsproxy->net_ns); 1346 task_unlock(task); 1347 1348 return net ? &net->ns : NULL; 1349 } 1350 1351 static inline struct net *to_net_ns(struct ns_common *ns) 1352 { 1353 return container_of(ns, struct net, ns); 1354 } 1355 1356 static void netns_put(struct ns_common *ns) 1357 { 1358 put_net(to_net_ns(ns)); 1359 } 1360 1361 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1362 { 1363 struct nsproxy *nsproxy = nsset->nsproxy; 1364 struct net *net = to_net_ns(ns); 1365 1366 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1367 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1368 return -EPERM; 1369 1370 put_net(nsproxy->net_ns); 1371 nsproxy->net_ns = get_net(net); 1372 return 0; 1373 } 1374 1375 static struct user_namespace *netns_owner(struct ns_common *ns) 1376 { 1377 return to_net_ns(ns)->user_ns; 1378 } 1379 1380 const struct proc_ns_operations netns_operations = { 1381 .name = "net", 1382 .type = CLONE_NEWNET, 1383 .get = netns_get, 1384 .put = netns_put, 1385 .install = netns_install, 1386 .owner = netns_owner, 1387 }; 1388 #endif 1389