1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 23 #include <net/sock.h> 24 #include <net/netlink.h> 25 #include <net/net_namespace.h> 26 #include <net/netns/generic.h> 27 28 /* 29 * Our network namespace constructor/destructor lists 30 */ 31 32 static LIST_HEAD(pernet_list); 33 static struct list_head *first_device = &pernet_list; 34 35 LIST_HEAD(net_namespace_list); 36 EXPORT_SYMBOL_GPL(net_namespace_list); 37 38 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 39 DECLARE_RWSEM(net_rwsem); 40 EXPORT_SYMBOL_GPL(net_rwsem); 41 42 #ifdef CONFIG_KEYS 43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 44 #endif 45 46 struct net init_net = { 47 .count = REFCOUNT_INIT(1), 48 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 49 #ifdef CONFIG_KEYS 50 .key_domain = &init_net_key_domain, 51 #endif 52 }; 53 EXPORT_SYMBOL(init_net); 54 55 static bool init_net_initialized; 56 /* 57 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 58 * init_net_initialized and first_device pointer. 59 * This is internal net namespace object. Please, don't use it 60 * outside. 61 */ 62 DECLARE_RWSEM(pernet_ops_rwsem); 63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 64 65 #define MIN_PERNET_OPS_ID \ 66 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 67 68 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 69 70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 71 72 static atomic64_t cookie_gen; 73 74 u64 net_gen_cookie(struct net *net) 75 { 76 while (1) { 77 u64 res = atomic64_read(&net->net_cookie); 78 79 if (res) 80 return res; 81 res = atomic64_inc_return(&cookie_gen); 82 atomic64_cmpxchg(&net->net_cookie, 0, res); 83 } 84 } 85 86 static struct net_generic *net_alloc_generic(void) 87 { 88 struct net_generic *ng; 89 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 90 91 ng = kzalloc(generic_size, GFP_KERNEL); 92 if (ng) 93 ng->s.len = max_gen_ptrs; 94 95 return ng; 96 } 97 98 static int net_assign_generic(struct net *net, unsigned int id, void *data) 99 { 100 struct net_generic *ng, *old_ng; 101 102 BUG_ON(id < MIN_PERNET_OPS_ID); 103 104 old_ng = rcu_dereference_protected(net->gen, 105 lockdep_is_held(&pernet_ops_rwsem)); 106 if (old_ng->s.len > id) { 107 old_ng->ptr[id] = data; 108 return 0; 109 } 110 111 ng = net_alloc_generic(); 112 if (ng == NULL) 113 return -ENOMEM; 114 115 /* 116 * Some synchronisation notes: 117 * 118 * The net_generic explores the net->gen array inside rcu 119 * read section. Besides once set the net->gen->ptr[x] 120 * pointer never changes (see rules in netns/generic.h). 121 * 122 * That said, we simply duplicate this array and schedule 123 * the old copy for kfree after a grace period. 124 */ 125 126 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 127 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 128 ng->ptr[id] = data; 129 130 rcu_assign_pointer(net->gen, ng); 131 kfree_rcu(old_ng, s.rcu); 132 return 0; 133 } 134 135 static int ops_init(const struct pernet_operations *ops, struct net *net) 136 { 137 int err = -ENOMEM; 138 void *data = NULL; 139 140 if (ops->id && ops->size) { 141 data = kzalloc(ops->size, GFP_KERNEL); 142 if (!data) 143 goto out; 144 145 err = net_assign_generic(net, *ops->id, data); 146 if (err) 147 goto cleanup; 148 } 149 err = 0; 150 if (ops->init) 151 err = ops->init(net); 152 if (!err) 153 return 0; 154 155 cleanup: 156 kfree(data); 157 158 out: 159 return err; 160 } 161 162 static void ops_free(const struct pernet_operations *ops, struct net *net) 163 { 164 if (ops->id && ops->size) { 165 kfree(net_generic(net, *ops->id)); 166 } 167 } 168 169 static void ops_pre_exit_list(const struct pernet_operations *ops, 170 struct list_head *net_exit_list) 171 { 172 struct net *net; 173 174 if (ops->pre_exit) { 175 list_for_each_entry(net, net_exit_list, exit_list) 176 ops->pre_exit(net); 177 } 178 } 179 180 static void ops_exit_list(const struct pernet_operations *ops, 181 struct list_head *net_exit_list) 182 { 183 struct net *net; 184 if (ops->exit) { 185 list_for_each_entry(net, net_exit_list, exit_list) 186 ops->exit(net); 187 } 188 if (ops->exit_batch) 189 ops->exit_batch(net_exit_list); 190 } 191 192 static void ops_free_list(const struct pernet_operations *ops, 193 struct list_head *net_exit_list) 194 { 195 struct net *net; 196 if (ops->size && ops->id) { 197 list_for_each_entry(net, net_exit_list, exit_list) 198 ops_free(ops, net); 199 } 200 } 201 202 /* should be called with nsid_lock held */ 203 static int alloc_netid(struct net *net, struct net *peer, int reqid) 204 { 205 int min = 0, max = 0; 206 207 if (reqid >= 0) { 208 min = reqid; 209 max = reqid + 1; 210 } 211 212 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 213 } 214 215 /* This function is used by idr_for_each(). If net is equal to peer, the 216 * function returns the id so that idr_for_each() stops. Because we cannot 217 * returns the id 0 (idr_for_each() will not stop), we return the magic value 218 * NET_ID_ZERO (-1) for it. 219 */ 220 #define NET_ID_ZERO -1 221 static int net_eq_idr(int id, void *net, void *peer) 222 { 223 if (net_eq(net, peer)) 224 return id ? : NET_ID_ZERO; 225 return 0; 226 } 227 228 /* Must be called from RCU-critical section or with nsid_lock held */ 229 static int __peernet2id(const struct net *net, struct net *peer) 230 { 231 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 232 233 /* Magic value for id 0. */ 234 if (id == NET_ID_ZERO) 235 return 0; 236 if (id > 0) 237 return id; 238 239 return NETNSA_NSID_NOT_ASSIGNED; 240 } 241 242 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 243 struct nlmsghdr *nlh, gfp_t gfp); 244 /* This function returns the id of a peer netns. If no id is assigned, one will 245 * be allocated and returned. 246 */ 247 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 248 { 249 int id; 250 251 if (refcount_read(&net->count) == 0) 252 return NETNSA_NSID_NOT_ASSIGNED; 253 254 spin_lock(&net->nsid_lock); 255 id = __peernet2id(net, peer); 256 if (id >= 0) { 257 spin_unlock(&net->nsid_lock); 258 return id; 259 } 260 261 /* When peer is obtained from RCU lists, we may race with 262 * its cleanup. Check whether it's alive, and this guarantees 263 * we never hash a peer back to net->netns_ids, after it has 264 * just been idr_remove()'d from there in cleanup_net(). 265 */ 266 if (!maybe_get_net(peer)) { 267 spin_unlock(&net->nsid_lock); 268 return NETNSA_NSID_NOT_ASSIGNED; 269 } 270 271 id = alloc_netid(net, peer, -1); 272 spin_unlock(&net->nsid_lock); 273 274 put_net(peer); 275 if (id < 0) 276 return NETNSA_NSID_NOT_ASSIGNED; 277 278 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 279 280 return id; 281 } 282 EXPORT_SYMBOL_GPL(peernet2id_alloc); 283 284 /* This function returns, if assigned, the id of a peer netns. */ 285 int peernet2id(const struct net *net, struct net *peer) 286 { 287 int id; 288 289 rcu_read_lock(); 290 id = __peernet2id(net, peer); 291 rcu_read_unlock(); 292 293 return id; 294 } 295 EXPORT_SYMBOL(peernet2id); 296 297 /* This function returns true is the peer netns has an id assigned into the 298 * current netns. 299 */ 300 bool peernet_has_id(const struct net *net, struct net *peer) 301 { 302 return peernet2id(net, peer) >= 0; 303 } 304 305 struct net *get_net_ns_by_id(const struct net *net, int id) 306 { 307 struct net *peer; 308 309 if (id < 0) 310 return NULL; 311 312 rcu_read_lock(); 313 peer = idr_find(&net->netns_ids, id); 314 if (peer) 315 peer = maybe_get_net(peer); 316 rcu_read_unlock(); 317 318 return peer; 319 } 320 321 /* 322 * setup_net runs the initializers for the network namespace object. 323 */ 324 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 325 { 326 /* Must be called with pernet_ops_rwsem held */ 327 const struct pernet_operations *ops, *saved_ops; 328 int error = 0; 329 LIST_HEAD(net_exit_list); 330 331 refcount_set(&net->count, 1); 332 refcount_set(&net->passive, 1); 333 get_random_bytes(&net->hash_mix, sizeof(u32)); 334 net->dev_base_seq = 1; 335 net->user_ns = user_ns; 336 idr_init(&net->netns_ids); 337 spin_lock_init(&net->nsid_lock); 338 mutex_init(&net->ipv4.ra_mutex); 339 340 list_for_each_entry(ops, &pernet_list, list) { 341 error = ops_init(ops, net); 342 if (error < 0) 343 goto out_undo; 344 } 345 down_write(&net_rwsem); 346 list_add_tail_rcu(&net->list, &net_namespace_list); 347 up_write(&net_rwsem); 348 out: 349 return error; 350 351 out_undo: 352 /* Walk through the list backwards calling the exit functions 353 * for the pernet modules whose init functions did not fail. 354 */ 355 list_add(&net->exit_list, &net_exit_list); 356 saved_ops = ops; 357 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 358 ops_pre_exit_list(ops, &net_exit_list); 359 360 synchronize_rcu(); 361 362 ops = saved_ops; 363 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 364 ops_exit_list(ops, &net_exit_list); 365 366 ops = saved_ops; 367 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 368 ops_free_list(ops, &net_exit_list); 369 370 rcu_barrier(); 371 goto out; 372 } 373 374 static int __net_init net_defaults_init_net(struct net *net) 375 { 376 net->core.sysctl_somaxconn = SOMAXCONN; 377 return 0; 378 } 379 380 static struct pernet_operations net_defaults_ops = { 381 .init = net_defaults_init_net, 382 }; 383 384 static __init int net_defaults_init(void) 385 { 386 if (register_pernet_subsys(&net_defaults_ops)) 387 panic("Cannot initialize net default settings"); 388 389 return 0; 390 } 391 392 core_initcall(net_defaults_init); 393 394 #ifdef CONFIG_NET_NS 395 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 396 { 397 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 398 } 399 400 static void dec_net_namespaces(struct ucounts *ucounts) 401 { 402 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 403 } 404 405 static struct kmem_cache *net_cachep __ro_after_init; 406 static struct workqueue_struct *netns_wq; 407 408 static struct net *net_alloc(void) 409 { 410 struct net *net = NULL; 411 struct net_generic *ng; 412 413 ng = net_alloc_generic(); 414 if (!ng) 415 goto out; 416 417 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 418 if (!net) 419 goto out_free; 420 421 #ifdef CONFIG_KEYS 422 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 423 if (!net->key_domain) 424 goto out_free_2; 425 refcount_set(&net->key_domain->usage, 1); 426 #endif 427 428 rcu_assign_pointer(net->gen, ng); 429 out: 430 return net; 431 432 #ifdef CONFIG_KEYS 433 out_free_2: 434 kmem_cache_free(net_cachep, net); 435 net = NULL; 436 #endif 437 out_free: 438 kfree(ng); 439 goto out; 440 } 441 442 static void net_free(struct net *net) 443 { 444 kfree(rcu_access_pointer(net->gen)); 445 kmem_cache_free(net_cachep, net); 446 } 447 448 void net_drop_ns(void *p) 449 { 450 struct net *ns = p; 451 if (ns && refcount_dec_and_test(&ns->passive)) 452 net_free(ns); 453 } 454 455 struct net *copy_net_ns(unsigned long flags, 456 struct user_namespace *user_ns, struct net *old_net) 457 { 458 struct ucounts *ucounts; 459 struct net *net; 460 int rv; 461 462 if (!(flags & CLONE_NEWNET)) 463 return get_net(old_net); 464 465 ucounts = inc_net_namespaces(user_ns); 466 if (!ucounts) 467 return ERR_PTR(-ENOSPC); 468 469 net = net_alloc(); 470 if (!net) { 471 rv = -ENOMEM; 472 goto dec_ucounts; 473 } 474 refcount_set(&net->passive, 1); 475 net->ucounts = ucounts; 476 get_user_ns(user_ns); 477 478 rv = down_read_killable(&pernet_ops_rwsem); 479 if (rv < 0) 480 goto put_userns; 481 482 rv = setup_net(net, user_ns); 483 484 up_read(&pernet_ops_rwsem); 485 486 if (rv < 0) { 487 put_userns: 488 key_remove_domain(net->key_domain); 489 put_user_ns(user_ns); 490 net_drop_ns(net); 491 dec_ucounts: 492 dec_net_namespaces(ucounts); 493 return ERR_PTR(rv); 494 } 495 return net; 496 } 497 498 /** 499 * net_ns_get_ownership - get sysfs ownership data for @net 500 * @net: network namespace in question (can be NULL) 501 * @uid: kernel user ID for sysfs objects 502 * @gid: kernel group ID for sysfs objects 503 * 504 * Returns the uid/gid pair of root in the user namespace associated with the 505 * given network namespace. 506 */ 507 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 508 { 509 if (net) { 510 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 511 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 512 513 if (uid_valid(ns_root_uid)) 514 *uid = ns_root_uid; 515 516 if (gid_valid(ns_root_gid)) 517 *gid = ns_root_gid; 518 } else { 519 *uid = GLOBAL_ROOT_UID; 520 *gid = GLOBAL_ROOT_GID; 521 } 522 } 523 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 524 525 static void unhash_nsid(struct net *net, struct net *last) 526 { 527 struct net *tmp; 528 /* This function is only called from cleanup_net() work, 529 * and this work is the only process, that may delete 530 * a net from net_namespace_list. So, when the below 531 * is executing, the list may only grow. Thus, we do not 532 * use for_each_net_rcu() or net_rwsem. 533 */ 534 for_each_net(tmp) { 535 int id; 536 537 spin_lock(&tmp->nsid_lock); 538 id = __peernet2id(tmp, net); 539 if (id >= 0) 540 idr_remove(&tmp->netns_ids, id); 541 spin_unlock(&tmp->nsid_lock); 542 if (id >= 0) 543 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 544 GFP_KERNEL); 545 if (tmp == last) 546 break; 547 } 548 spin_lock(&net->nsid_lock); 549 idr_destroy(&net->netns_ids); 550 spin_unlock(&net->nsid_lock); 551 } 552 553 static LLIST_HEAD(cleanup_list); 554 555 static void cleanup_net(struct work_struct *work) 556 { 557 const struct pernet_operations *ops; 558 struct net *net, *tmp, *last; 559 struct llist_node *net_kill_list; 560 LIST_HEAD(net_exit_list); 561 562 /* Atomically snapshot the list of namespaces to cleanup */ 563 net_kill_list = llist_del_all(&cleanup_list); 564 565 down_read(&pernet_ops_rwsem); 566 567 /* Don't let anyone else find us. */ 568 down_write(&net_rwsem); 569 llist_for_each_entry(net, net_kill_list, cleanup_list) 570 list_del_rcu(&net->list); 571 /* Cache last net. After we unlock rtnl, no one new net 572 * added to net_namespace_list can assign nsid pointer 573 * to a net from net_kill_list (see peernet2id_alloc()). 574 * So, we skip them in unhash_nsid(). 575 * 576 * Note, that unhash_nsid() does not delete nsid links 577 * between net_kill_list's nets, as they've already 578 * deleted from net_namespace_list. But, this would be 579 * useless anyway, as netns_ids are destroyed there. 580 */ 581 last = list_last_entry(&net_namespace_list, struct net, list); 582 up_write(&net_rwsem); 583 584 llist_for_each_entry(net, net_kill_list, cleanup_list) { 585 unhash_nsid(net, last); 586 list_add_tail(&net->exit_list, &net_exit_list); 587 } 588 589 /* Run all of the network namespace pre_exit methods */ 590 list_for_each_entry_reverse(ops, &pernet_list, list) 591 ops_pre_exit_list(ops, &net_exit_list); 592 593 /* 594 * Another CPU might be rcu-iterating the list, wait for it. 595 * This needs to be before calling the exit() notifiers, so 596 * the rcu_barrier() below isn't sufficient alone. 597 * Also the pre_exit() and exit() methods need this barrier. 598 */ 599 synchronize_rcu(); 600 601 /* Run all of the network namespace exit methods */ 602 list_for_each_entry_reverse(ops, &pernet_list, list) 603 ops_exit_list(ops, &net_exit_list); 604 605 /* Free the net generic variables */ 606 list_for_each_entry_reverse(ops, &pernet_list, list) 607 ops_free_list(ops, &net_exit_list); 608 609 up_read(&pernet_ops_rwsem); 610 611 /* Ensure there are no outstanding rcu callbacks using this 612 * network namespace. 613 */ 614 rcu_barrier(); 615 616 /* Finally it is safe to free my network namespace structure */ 617 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 618 list_del_init(&net->exit_list); 619 dec_net_namespaces(net->ucounts); 620 key_remove_domain(net->key_domain); 621 put_user_ns(net->user_ns); 622 net_drop_ns(net); 623 } 624 } 625 626 /** 627 * net_ns_barrier - wait until concurrent net_cleanup_work is done 628 * 629 * cleanup_net runs from work queue and will first remove namespaces 630 * from the global list, then run net exit functions. 631 * 632 * Call this in module exit path to make sure that all netns 633 * ->exit ops have been invoked before the function is removed. 634 */ 635 void net_ns_barrier(void) 636 { 637 down_write(&pernet_ops_rwsem); 638 up_write(&pernet_ops_rwsem); 639 } 640 EXPORT_SYMBOL(net_ns_barrier); 641 642 static DECLARE_WORK(net_cleanup_work, cleanup_net); 643 644 void __put_net(struct net *net) 645 { 646 /* Cleanup the network namespace in process context */ 647 if (llist_add(&net->cleanup_list, &cleanup_list)) 648 queue_work(netns_wq, &net_cleanup_work); 649 } 650 EXPORT_SYMBOL_GPL(__put_net); 651 652 struct net *get_net_ns_by_fd(int fd) 653 { 654 struct file *file; 655 struct ns_common *ns; 656 struct net *net; 657 658 file = proc_ns_fget(fd); 659 if (IS_ERR(file)) 660 return ERR_CAST(file); 661 662 ns = get_proc_ns(file_inode(file)); 663 if (ns->ops == &netns_operations) 664 net = get_net(container_of(ns, struct net, ns)); 665 else 666 net = ERR_PTR(-EINVAL); 667 668 fput(file); 669 return net; 670 } 671 672 #else 673 struct net *get_net_ns_by_fd(int fd) 674 { 675 return ERR_PTR(-EINVAL); 676 } 677 #endif 678 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 679 680 struct net *get_net_ns_by_pid(pid_t pid) 681 { 682 struct task_struct *tsk; 683 struct net *net; 684 685 /* Lookup the network namespace */ 686 net = ERR_PTR(-ESRCH); 687 rcu_read_lock(); 688 tsk = find_task_by_vpid(pid); 689 if (tsk) { 690 struct nsproxy *nsproxy; 691 task_lock(tsk); 692 nsproxy = tsk->nsproxy; 693 if (nsproxy) 694 net = get_net(nsproxy->net_ns); 695 task_unlock(tsk); 696 } 697 rcu_read_unlock(); 698 return net; 699 } 700 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 701 702 static __net_init int net_ns_net_init(struct net *net) 703 { 704 #ifdef CONFIG_NET_NS 705 net->ns.ops = &netns_operations; 706 #endif 707 return ns_alloc_inum(&net->ns); 708 } 709 710 static __net_exit void net_ns_net_exit(struct net *net) 711 { 712 ns_free_inum(&net->ns); 713 } 714 715 static struct pernet_operations __net_initdata net_ns_ops = { 716 .init = net_ns_net_init, 717 .exit = net_ns_net_exit, 718 }; 719 720 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 721 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 722 [NETNSA_NSID] = { .type = NLA_S32 }, 723 [NETNSA_PID] = { .type = NLA_U32 }, 724 [NETNSA_FD] = { .type = NLA_U32 }, 725 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 726 }; 727 728 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 729 struct netlink_ext_ack *extack) 730 { 731 struct net *net = sock_net(skb->sk); 732 struct nlattr *tb[NETNSA_MAX + 1]; 733 struct nlattr *nla; 734 struct net *peer; 735 int nsid, err; 736 737 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 738 NETNSA_MAX, rtnl_net_policy, extack); 739 if (err < 0) 740 return err; 741 if (!tb[NETNSA_NSID]) { 742 NL_SET_ERR_MSG(extack, "nsid is missing"); 743 return -EINVAL; 744 } 745 nsid = nla_get_s32(tb[NETNSA_NSID]); 746 747 if (tb[NETNSA_PID]) { 748 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 749 nla = tb[NETNSA_PID]; 750 } else if (tb[NETNSA_FD]) { 751 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 752 nla = tb[NETNSA_FD]; 753 } else { 754 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 755 return -EINVAL; 756 } 757 if (IS_ERR(peer)) { 758 NL_SET_BAD_ATTR(extack, nla); 759 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 760 return PTR_ERR(peer); 761 } 762 763 spin_lock(&net->nsid_lock); 764 if (__peernet2id(net, peer) >= 0) { 765 spin_unlock(&net->nsid_lock); 766 err = -EEXIST; 767 NL_SET_BAD_ATTR(extack, nla); 768 NL_SET_ERR_MSG(extack, 769 "Peer netns already has a nsid assigned"); 770 goto out; 771 } 772 773 err = alloc_netid(net, peer, nsid); 774 spin_unlock(&net->nsid_lock); 775 if (err >= 0) { 776 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 777 nlh, GFP_KERNEL); 778 err = 0; 779 } else if (err == -ENOSPC && nsid >= 0) { 780 err = -EEXIST; 781 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 782 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 783 } 784 out: 785 put_net(peer); 786 return err; 787 } 788 789 static int rtnl_net_get_size(void) 790 { 791 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 792 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 793 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 794 ; 795 } 796 797 struct net_fill_args { 798 u32 portid; 799 u32 seq; 800 int flags; 801 int cmd; 802 int nsid; 803 bool add_ref; 804 int ref_nsid; 805 }; 806 807 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 808 { 809 struct nlmsghdr *nlh; 810 struct rtgenmsg *rth; 811 812 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 813 args->flags); 814 if (!nlh) 815 return -EMSGSIZE; 816 817 rth = nlmsg_data(nlh); 818 rth->rtgen_family = AF_UNSPEC; 819 820 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 821 goto nla_put_failure; 822 823 if (args->add_ref && 824 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 825 goto nla_put_failure; 826 827 nlmsg_end(skb, nlh); 828 return 0; 829 830 nla_put_failure: 831 nlmsg_cancel(skb, nlh); 832 return -EMSGSIZE; 833 } 834 835 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 836 const struct nlmsghdr *nlh, 837 struct nlattr **tb, 838 struct netlink_ext_ack *extack) 839 { 840 int i, err; 841 842 if (!netlink_strict_get_check(skb)) 843 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 844 tb, NETNSA_MAX, rtnl_net_policy, 845 extack); 846 847 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 848 NETNSA_MAX, rtnl_net_policy, 849 extack); 850 if (err) 851 return err; 852 853 for (i = 0; i <= NETNSA_MAX; i++) { 854 if (!tb[i]) 855 continue; 856 857 switch (i) { 858 case NETNSA_PID: 859 case NETNSA_FD: 860 case NETNSA_NSID: 861 case NETNSA_TARGET_NSID: 862 break; 863 default: 864 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 865 return -EINVAL; 866 } 867 } 868 869 return 0; 870 } 871 872 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 873 struct netlink_ext_ack *extack) 874 { 875 struct net *net = sock_net(skb->sk); 876 struct nlattr *tb[NETNSA_MAX + 1]; 877 struct net_fill_args fillargs = { 878 .portid = NETLINK_CB(skb).portid, 879 .seq = nlh->nlmsg_seq, 880 .cmd = RTM_NEWNSID, 881 }; 882 struct net *peer, *target = net; 883 struct nlattr *nla; 884 struct sk_buff *msg; 885 int err; 886 887 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 888 if (err < 0) 889 return err; 890 if (tb[NETNSA_PID]) { 891 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 892 nla = tb[NETNSA_PID]; 893 } else if (tb[NETNSA_FD]) { 894 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 895 nla = tb[NETNSA_FD]; 896 } else if (tb[NETNSA_NSID]) { 897 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 898 if (!peer) 899 peer = ERR_PTR(-ENOENT); 900 nla = tb[NETNSA_NSID]; 901 } else { 902 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 903 return -EINVAL; 904 } 905 906 if (IS_ERR(peer)) { 907 NL_SET_BAD_ATTR(extack, nla); 908 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 909 return PTR_ERR(peer); 910 } 911 912 if (tb[NETNSA_TARGET_NSID]) { 913 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 914 915 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 916 if (IS_ERR(target)) { 917 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 918 NL_SET_ERR_MSG(extack, 919 "Target netns reference is invalid"); 920 err = PTR_ERR(target); 921 goto out; 922 } 923 fillargs.add_ref = true; 924 fillargs.ref_nsid = peernet2id(net, peer); 925 } 926 927 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 928 if (!msg) { 929 err = -ENOMEM; 930 goto out; 931 } 932 933 fillargs.nsid = peernet2id(target, peer); 934 err = rtnl_net_fill(msg, &fillargs); 935 if (err < 0) 936 goto err_out; 937 938 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 939 goto out; 940 941 err_out: 942 nlmsg_free(msg); 943 out: 944 if (fillargs.add_ref) 945 put_net(target); 946 put_net(peer); 947 return err; 948 } 949 950 struct rtnl_net_dump_cb { 951 struct net *tgt_net; 952 struct net *ref_net; 953 struct sk_buff *skb; 954 struct net_fill_args fillargs; 955 int idx; 956 int s_idx; 957 }; 958 959 /* Runs in RCU-critical section. */ 960 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 961 { 962 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 963 int ret; 964 965 if (net_cb->idx < net_cb->s_idx) 966 goto cont; 967 968 net_cb->fillargs.nsid = id; 969 if (net_cb->fillargs.add_ref) 970 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 971 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 972 if (ret < 0) 973 return ret; 974 975 cont: 976 net_cb->idx++; 977 return 0; 978 } 979 980 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 981 struct rtnl_net_dump_cb *net_cb, 982 struct netlink_callback *cb) 983 { 984 struct netlink_ext_ack *extack = cb->extack; 985 struct nlattr *tb[NETNSA_MAX + 1]; 986 int err, i; 987 988 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 989 NETNSA_MAX, rtnl_net_policy, 990 extack); 991 if (err < 0) 992 return err; 993 994 for (i = 0; i <= NETNSA_MAX; i++) { 995 if (!tb[i]) 996 continue; 997 998 if (i == NETNSA_TARGET_NSID) { 999 struct net *net; 1000 1001 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1002 if (IS_ERR(net)) { 1003 NL_SET_BAD_ATTR(extack, tb[i]); 1004 NL_SET_ERR_MSG(extack, 1005 "Invalid target network namespace id"); 1006 return PTR_ERR(net); 1007 } 1008 net_cb->fillargs.add_ref = true; 1009 net_cb->ref_net = net_cb->tgt_net; 1010 net_cb->tgt_net = net; 1011 } else { 1012 NL_SET_BAD_ATTR(extack, tb[i]); 1013 NL_SET_ERR_MSG(extack, 1014 "Unsupported attribute in dump request"); 1015 return -EINVAL; 1016 } 1017 } 1018 1019 return 0; 1020 } 1021 1022 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1023 { 1024 struct rtnl_net_dump_cb net_cb = { 1025 .tgt_net = sock_net(skb->sk), 1026 .skb = skb, 1027 .fillargs = { 1028 .portid = NETLINK_CB(cb->skb).portid, 1029 .seq = cb->nlh->nlmsg_seq, 1030 .flags = NLM_F_MULTI, 1031 .cmd = RTM_NEWNSID, 1032 }, 1033 .idx = 0, 1034 .s_idx = cb->args[0], 1035 }; 1036 int err = 0; 1037 1038 if (cb->strict_check) { 1039 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1040 if (err < 0) 1041 goto end; 1042 } 1043 1044 rcu_read_lock(); 1045 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1046 rcu_read_unlock(); 1047 1048 cb->args[0] = net_cb.idx; 1049 end: 1050 if (net_cb.fillargs.add_ref) 1051 put_net(net_cb.tgt_net); 1052 return err < 0 ? err : skb->len; 1053 } 1054 1055 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1056 struct nlmsghdr *nlh, gfp_t gfp) 1057 { 1058 struct net_fill_args fillargs = { 1059 .portid = portid, 1060 .seq = nlh ? nlh->nlmsg_seq : 0, 1061 .cmd = cmd, 1062 .nsid = id, 1063 }; 1064 struct sk_buff *msg; 1065 int err = -ENOMEM; 1066 1067 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1068 if (!msg) 1069 goto out; 1070 1071 err = rtnl_net_fill(msg, &fillargs); 1072 if (err < 0) 1073 goto err_out; 1074 1075 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1076 return; 1077 1078 err_out: 1079 nlmsg_free(msg); 1080 out: 1081 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1082 } 1083 1084 static int __init net_ns_init(void) 1085 { 1086 struct net_generic *ng; 1087 1088 #ifdef CONFIG_NET_NS 1089 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1090 SMP_CACHE_BYTES, 1091 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1092 1093 /* Create workqueue for cleanup */ 1094 netns_wq = create_singlethread_workqueue("netns"); 1095 if (!netns_wq) 1096 panic("Could not create netns workq"); 1097 #endif 1098 1099 ng = net_alloc_generic(); 1100 if (!ng) 1101 panic("Could not allocate generic netns"); 1102 1103 rcu_assign_pointer(init_net.gen, ng); 1104 net_gen_cookie(&init_net); 1105 1106 down_write(&pernet_ops_rwsem); 1107 if (setup_net(&init_net, &init_user_ns)) 1108 panic("Could not setup the initial network namespace"); 1109 1110 init_net_initialized = true; 1111 up_write(&pernet_ops_rwsem); 1112 1113 if (register_pernet_subsys(&net_ns_ops)) 1114 panic("Could not register network namespace subsystems"); 1115 1116 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1117 RTNL_FLAG_DOIT_UNLOCKED); 1118 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1119 RTNL_FLAG_DOIT_UNLOCKED); 1120 1121 return 0; 1122 } 1123 1124 pure_initcall(net_ns_init); 1125 1126 #ifdef CONFIG_NET_NS 1127 static int __register_pernet_operations(struct list_head *list, 1128 struct pernet_operations *ops) 1129 { 1130 struct net *net; 1131 int error; 1132 LIST_HEAD(net_exit_list); 1133 1134 list_add_tail(&ops->list, list); 1135 if (ops->init || (ops->id && ops->size)) { 1136 /* We held write locked pernet_ops_rwsem, and parallel 1137 * setup_net() and cleanup_net() are not possible. 1138 */ 1139 for_each_net(net) { 1140 error = ops_init(ops, net); 1141 if (error) 1142 goto out_undo; 1143 list_add_tail(&net->exit_list, &net_exit_list); 1144 } 1145 } 1146 return 0; 1147 1148 out_undo: 1149 /* If I have an error cleanup all namespaces I initialized */ 1150 list_del(&ops->list); 1151 ops_pre_exit_list(ops, &net_exit_list); 1152 synchronize_rcu(); 1153 ops_exit_list(ops, &net_exit_list); 1154 ops_free_list(ops, &net_exit_list); 1155 return error; 1156 } 1157 1158 static void __unregister_pernet_operations(struct pernet_operations *ops) 1159 { 1160 struct net *net; 1161 LIST_HEAD(net_exit_list); 1162 1163 list_del(&ops->list); 1164 /* See comment in __register_pernet_operations() */ 1165 for_each_net(net) 1166 list_add_tail(&net->exit_list, &net_exit_list); 1167 ops_pre_exit_list(ops, &net_exit_list); 1168 synchronize_rcu(); 1169 ops_exit_list(ops, &net_exit_list); 1170 ops_free_list(ops, &net_exit_list); 1171 } 1172 1173 #else 1174 1175 static int __register_pernet_operations(struct list_head *list, 1176 struct pernet_operations *ops) 1177 { 1178 if (!init_net_initialized) { 1179 list_add_tail(&ops->list, list); 1180 return 0; 1181 } 1182 1183 return ops_init(ops, &init_net); 1184 } 1185 1186 static void __unregister_pernet_operations(struct pernet_operations *ops) 1187 { 1188 if (!init_net_initialized) { 1189 list_del(&ops->list); 1190 } else { 1191 LIST_HEAD(net_exit_list); 1192 list_add(&init_net.exit_list, &net_exit_list); 1193 ops_pre_exit_list(ops, &net_exit_list); 1194 synchronize_rcu(); 1195 ops_exit_list(ops, &net_exit_list); 1196 ops_free_list(ops, &net_exit_list); 1197 } 1198 } 1199 1200 #endif /* CONFIG_NET_NS */ 1201 1202 static DEFINE_IDA(net_generic_ids); 1203 1204 static int register_pernet_operations(struct list_head *list, 1205 struct pernet_operations *ops) 1206 { 1207 int error; 1208 1209 if (ops->id) { 1210 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1211 GFP_KERNEL); 1212 if (error < 0) 1213 return error; 1214 *ops->id = error; 1215 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1216 } 1217 error = __register_pernet_operations(list, ops); 1218 if (error) { 1219 rcu_barrier(); 1220 if (ops->id) 1221 ida_free(&net_generic_ids, *ops->id); 1222 } 1223 1224 return error; 1225 } 1226 1227 static void unregister_pernet_operations(struct pernet_operations *ops) 1228 { 1229 __unregister_pernet_operations(ops); 1230 rcu_barrier(); 1231 if (ops->id) 1232 ida_free(&net_generic_ids, *ops->id); 1233 } 1234 1235 /** 1236 * register_pernet_subsys - register a network namespace subsystem 1237 * @ops: pernet operations structure for the subsystem 1238 * 1239 * Register a subsystem which has init and exit functions 1240 * that are called when network namespaces are created and 1241 * destroyed respectively. 1242 * 1243 * When registered all network namespace init functions are 1244 * called for every existing network namespace. Allowing kernel 1245 * modules to have a race free view of the set of network namespaces. 1246 * 1247 * When a new network namespace is created all of the init 1248 * methods are called in the order in which they were registered. 1249 * 1250 * When a network namespace is destroyed all of the exit methods 1251 * are called in the reverse of the order with which they were 1252 * registered. 1253 */ 1254 int register_pernet_subsys(struct pernet_operations *ops) 1255 { 1256 int error; 1257 down_write(&pernet_ops_rwsem); 1258 error = register_pernet_operations(first_device, ops); 1259 up_write(&pernet_ops_rwsem); 1260 return error; 1261 } 1262 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1263 1264 /** 1265 * unregister_pernet_subsys - unregister a network namespace subsystem 1266 * @ops: pernet operations structure to manipulate 1267 * 1268 * Remove the pernet operations structure from the list to be 1269 * used when network namespaces are created or destroyed. In 1270 * addition run the exit method for all existing network 1271 * namespaces. 1272 */ 1273 void unregister_pernet_subsys(struct pernet_operations *ops) 1274 { 1275 down_write(&pernet_ops_rwsem); 1276 unregister_pernet_operations(ops); 1277 up_write(&pernet_ops_rwsem); 1278 } 1279 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1280 1281 /** 1282 * register_pernet_device - register a network namespace device 1283 * @ops: pernet operations structure for the subsystem 1284 * 1285 * Register a device which has init and exit functions 1286 * that are called when network namespaces are created and 1287 * destroyed respectively. 1288 * 1289 * When registered all network namespace init functions are 1290 * called for every existing network namespace. Allowing kernel 1291 * modules to have a race free view of the set of network namespaces. 1292 * 1293 * When a new network namespace is created all of the init 1294 * methods are called in the order in which they were registered. 1295 * 1296 * When a network namespace is destroyed all of the exit methods 1297 * are called in the reverse of the order with which they were 1298 * registered. 1299 */ 1300 int register_pernet_device(struct pernet_operations *ops) 1301 { 1302 int error; 1303 down_write(&pernet_ops_rwsem); 1304 error = register_pernet_operations(&pernet_list, ops); 1305 if (!error && (first_device == &pernet_list)) 1306 first_device = &ops->list; 1307 up_write(&pernet_ops_rwsem); 1308 return error; 1309 } 1310 EXPORT_SYMBOL_GPL(register_pernet_device); 1311 1312 /** 1313 * unregister_pernet_device - unregister a network namespace netdevice 1314 * @ops: pernet operations structure to manipulate 1315 * 1316 * Remove the pernet operations structure from the list to be 1317 * used when network namespaces are created or destroyed. In 1318 * addition run the exit method for all existing network 1319 * namespaces. 1320 */ 1321 void unregister_pernet_device(struct pernet_operations *ops) 1322 { 1323 down_write(&pernet_ops_rwsem); 1324 if (&ops->list == first_device) 1325 first_device = first_device->next; 1326 unregister_pernet_operations(ops); 1327 up_write(&pernet_ops_rwsem); 1328 } 1329 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1330 1331 #ifdef CONFIG_NET_NS 1332 static struct ns_common *netns_get(struct task_struct *task) 1333 { 1334 struct net *net = NULL; 1335 struct nsproxy *nsproxy; 1336 1337 task_lock(task); 1338 nsproxy = task->nsproxy; 1339 if (nsproxy) 1340 net = get_net(nsproxy->net_ns); 1341 task_unlock(task); 1342 1343 return net ? &net->ns : NULL; 1344 } 1345 1346 static inline struct net *to_net_ns(struct ns_common *ns) 1347 { 1348 return container_of(ns, struct net, ns); 1349 } 1350 1351 static void netns_put(struct ns_common *ns) 1352 { 1353 put_net(to_net_ns(ns)); 1354 } 1355 1356 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1357 { 1358 struct nsproxy *nsproxy = nsset->nsproxy; 1359 struct net *net = to_net_ns(ns); 1360 1361 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1362 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1363 return -EPERM; 1364 1365 put_net(nsproxy->net_ns); 1366 nsproxy->net_ns = get_net(net); 1367 return 0; 1368 } 1369 1370 static struct user_namespace *netns_owner(struct ns_common *ns) 1371 { 1372 return to_net_ns(ns)->user_ns; 1373 } 1374 1375 const struct proc_ns_operations netns_operations = { 1376 .name = "net", 1377 .type = CLONE_NEWNET, 1378 .get = netns_get, 1379 .put = netns_put, 1380 .install = netns_install, 1381 .owner = netns_owner, 1382 }; 1383 #endif 1384