xref: /openbmc/linux/net/core/net-sysfs.c (revision e7f127b2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 
27 #include "net-sysfs.h"
28 
29 #ifdef CONFIG_SYSFS
30 static const char fmt_hex[] = "%#x\n";
31 static const char fmt_dec[] = "%d\n";
32 static const char fmt_ulong[] = "%lu\n";
33 static const char fmt_u64[] = "%llu\n";
34 
35 static inline int dev_isalive(const struct net_device *dev)
36 {
37 	return dev->reg_state <= NETREG_REGISTERED;
38 }
39 
40 /* use same locking rules as GIF* ioctl's */
41 static ssize_t netdev_show(const struct device *dev,
42 			   struct device_attribute *attr, char *buf,
43 			   ssize_t (*format)(const struct net_device *, char *))
44 {
45 	struct net_device *ndev = to_net_dev(dev);
46 	ssize_t ret = -EINVAL;
47 
48 	read_lock(&dev_base_lock);
49 	if (dev_isalive(ndev))
50 		ret = (*format)(ndev, buf);
51 	read_unlock(&dev_base_lock);
52 
53 	return ret;
54 }
55 
56 /* generate a show function for simple field */
57 #define NETDEVICE_SHOW(field, format_string)				\
58 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
59 {									\
60 	return sprintf(buf, format_string, dev->field);			\
61 }									\
62 static ssize_t field##_show(struct device *dev,				\
63 			    struct device_attribute *attr, char *buf)	\
64 {									\
65 	return netdev_show(dev, attr, buf, format_##field);		\
66 }									\
67 
68 #define NETDEVICE_SHOW_RO(field, format_string)				\
69 NETDEVICE_SHOW(field, format_string);					\
70 static DEVICE_ATTR_RO(field)
71 
72 #define NETDEVICE_SHOW_RW(field, format_string)				\
73 NETDEVICE_SHOW(field, format_string);					\
74 static DEVICE_ATTR_RW(field)
75 
76 /* use same locking and permission rules as SIF* ioctl's */
77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
78 			    const char *buf, size_t len,
79 			    int (*set)(struct net_device *, unsigned long))
80 {
81 	struct net_device *netdev = to_net_dev(dev);
82 	struct net *net = dev_net(netdev);
83 	unsigned long new;
84 	int ret;
85 
86 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
87 		return -EPERM;
88 
89 	ret = kstrtoul(buf, 0, &new);
90 	if (ret)
91 		goto err;
92 
93 	if (!rtnl_trylock())
94 		return restart_syscall();
95 
96 	if (dev_isalive(netdev)) {
97 		ret = (*set)(netdev, new);
98 		if (ret == 0)
99 			ret = len;
100 	}
101 	rtnl_unlock();
102  err:
103 	return ret;
104 }
105 
106 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
107 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
109 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
110 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
111 NETDEVICE_SHOW_RO(type, fmt_dec);
112 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
113 
114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
115 			   char *buf)
116 {
117 	struct net_device *ndev = to_net_dev(dev);
118 
119 	return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
120 }
121 static DEVICE_ATTR_RO(iflink);
122 
123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
124 {
125 	return sprintf(buf, fmt_dec, dev->name_assign_type);
126 }
127 
128 static ssize_t name_assign_type_show(struct device *dev,
129 				     struct device_attribute *attr,
130 				     char *buf)
131 {
132 	struct net_device *ndev = to_net_dev(dev);
133 	ssize_t ret = -EINVAL;
134 
135 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
136 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
137 
138 	return ret;
139 }
140 static DEVICE_ATTR_RO(name_assign_type);
141 
142 /* use same locking rules as GIFHWADDR ioctl's */
143 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
144 			    char *buf)
145 {
146 	struct net_device *ndev = to_net_dev(dev);
147 	ssize_t ret = -EINVAL;
148 
149 	read_lock(&dev_base_lock);
150 	if (dev_isalive(ndev))
151 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
152 	read_unlock(&dev_base_lock);
153 	return ret;
154 }
155 static DEVICE_ATTR_RO(address);
156 
157 static ssize_t broadcast_show(struct device *dev,
158 			      struct device_attribute *attr, char *buf)
159 {
160 	struct net_device *ndev = to_net_dev(dev);
161 
162 	if (dev_isalive(ndev))
163 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
164 	return -EINVAL;
165 }
166 static DEVICE_ATTR_RO(broadcast);
167 
168 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
169 {
170 	if (!netif_running(dev))
171 		return -EINVAL;
172 	return dev_change_carrier(dev, (bool)new_carrier);
173 }
174 
175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
176 			     const char *buf, size_t len)
177 {
178 	struct net_device *netdev = to_net_dev(dev);
179 
180 	/* The check is also done in change_carrier; this helps returning early
181 	 * without hitting the trylock/restart in netdev_store.
182 	 */
183 	if (!netdev->netdev_ops->ndo_change_carrier)
184 		return -EOPNOTSUPP;
185 
186 	return netdev_store(dev, attr, buf, len, change_carrier);
187 }
188 
189 static ssize_t carrier_show(struct device *dev,
190 			    struct device_attribute *attr, char *buf)
191 {
192 	struct net_device *netdev = to_net_dev(dev);
193 
194 	if (netif_running(netdev))
195 		return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
196 
197 	return -EINVAL;
198 }
199 static DEVICE_ATTR_RW(carrier);
200 
201 static ssize_t speed_show(struct device *dev,
202 			  struct device_attribute *attr, char *buf)
203 {
204 	struct net_device *netdev = to_net_dev(dev);
205 	int ret = -EINVAL;
206 
207 	/* The check is also done in __ethtool_get_link_ksettings; this helps
208 	 * returning early without hitting the trylock/restart below.
209 	 */
210 	if (!netdev->ethtool_ops->get_link_ksettings)
211 		return ret;
212 
213 	if (!rtnl_trylock())
214 		return restart_syscall();
215 
216 	if (netif_running(netdev)) {
217 		struct ethtool_link_ksettings cmd;
218 
219 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
220 			ret = sprintf(buf, fmt_dec, cmd.base.speed);
221 	}
222 	rtnl_unlock();
223 	return ret;
224 }
225 static DEVICE_ATTR_RO(speed);
226 
227 static ssize_t duplex_show(struct device *dev,
228 			   struct device_attribute *attr, char *buf)
229 {
230 	struct net_device *netdev = to_net_dev(dev);
231 	int ret = -EINVAL;
232 
233 	/* The check is also done in __ethtool_get_link_ksettings; this helps
234 	 * returning early without hitting the trylock/restart below.
235 	 */
236 	if (!netdev->ethtool_ops->get_link_ksettings)
237 		return ret;
238 
239 	if (!rtnl_trylock())
240 		return restart_syscall();
241 
242 	if (netif_running(netdev)) {
243 		struct ethtool_link_ksettings cmd;
244 
245 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
246 			const char *duplex;
247 
248 			switch (cmd.base.duplex) {
249 			case DUPLEX_HALF:
250 				duplex = "half";
251 				break;
252 			case DUPLEX_FULL:
253 				duplex = "full";
254 				break;
255 			default:
256 				duplex = "unknown";
257 				break;
258 			}
259 			ret = sprintf(buf, "%s\n", duplex);
260 		}
261 	}
262 	rtnl_unlock();
263 	return ret;
264 }
265 static DEVICE_ATTR_RO(duplex);
266 
267 static ssize_t testing_show(struct device *dev,
268 			    struct device_attribute *attr, char *buf)
269 {
270 	struct net_device *netdev = to_net_dev(dev);
271 
272 	if (netif_running(netdev))
273 		return sprintf(buf, fmt_dec, !!netif_testing(netdev));
274 
275 	return -EINVAL;
276 }
277 static DEVICE_ATTR_RO(testing);
278 
279 static ssize_t dormant_show(struct device *dev,
280 			    struct device_attribute *attr, char *buf)
281 {
282 	struct net_device *netdev = to_net_dev(dev);
283 
284 	if (netif_running(netdev))
285 		return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
286 
287 	return -EINVAL;
288 }
289 static DEVICE_ATTR_RO(dormant);
290 
291 static const char *const operstates[] = {
292 	"unknown",
293 	"notpresent", /* currently unused */
294 	"down",
295 	"lowerlayerdown",
296 	"testing",
297 	"dormant",
298 	"up"
299 };
300 
301 static ssize_t operstate_show(struct device *dev,
302 			      struct device_attribute *attr, char *buf)
303 {
304 	const struct net_device *netdev = to_net_dev(dev);
305 	unsigned char operstate;
306 
307 	read_lock(&dev_base_lock);
308 	operstate = netdev->operstate;
309 	if (!netif_running(netdev))
310 		operstate = IF_OPER_DOWN;
311 	read_unlock(&dev_base_lock);
312 
313 	if (operstate >= ARRAY_SIZE(operstates))
314 		return -EINVAL; /* should not happen */
315 
316 	return sprintf(buf, "%s\n", operstates[operstate]);
317 }
318 static DEVICE_ATTR_RO(operstate);
319 
320 static ssize_t carrier_changes_show(struct device *dev,
321 				    struct device_attribute *attr,
322 				    char *buf)
323 {
324 	struct net_device *netdev = to_net_dev(dev);
325 
326 	return sprintf(buf, fmt_dec,
327 		       atomic_read(&netdev->carrier_up_count) +
328 		       atomic_read(&netdev->carrier_down_count));
329 }
330 static DEVICE_ATTR_RO(carrier_changes);
331 
332 static ssize_t carrier_up_count_show(struct device *dev,
333 				     struct device_attribute *attr,
334 				     char *buf)
335 {
336 	struct net_device *netdev = to_net_dev(dev);
337 
338 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
339 }
340 static DEVICE_ATTR_RO(carrier_up_count);
341 
342 static ssize_t carrier_down_count_show(struct device *dev,
343 				       struct device_attribute *attr,
344 				       char *buf)
345 {
346 	struct net_device *netdev = to_net_dev(dev);
347 
348 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
349 }
350 static DEVICE_ATTR_RO(carrier_down_count);
351 
352 /* read-write attributes */
353 
354 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
355 {
356 	return dev_set_mtu(dev, (int)new_mtu);
357 }
358 
359 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
360 			 const char *buf, size_t len)
361 {
362 	return netdev_store(dev, attr, buf, len, change_mtu);
363 }
364 NETDEVICE_SHOW_RW(mtu, fmt_dec);
365 
366 static int change_flags(struct net_device *dev, unsigned long new_flags)
367 {
368 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
369 }
370 
371 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
372 			   const char *buf, size_t len)
373 {
374 	return netdev_store(dev, attr, buf, len, change_flags);
375 }
376 NETDEVICE_SHOW_RW(flags, fmt_hex);
377 
378 static ssize_t tx_queue_len_store(struct device *dev,
379 				  struct device_attribute *attr,
380 				  const char *buf, size_t len)
381 {
382 	if (!capable(CAP_NET_ADMIN))
383 		return -EPERM;
384 
385 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
386 }
387 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
388 
389 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
390 {
391 	WRITE_ONCE(dev->gro_flush_timeout, val);
392 	return 0;
393 }
394 
395 static ssize_t gro_flush_timeout_store(struct device *dev,
396 				       struct device_attribute *attr,
397 				       const char *buf, size_t len)
398 {
399 	if (!capable(CAP_NET_ADMIN))
400 		return -EPERM;
401 
402 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
403 }
404 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
405 
406 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
407 {
408 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
409 	return 0;
410 }
411 
412 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
413 					  struct device_attribute *attr,
414 					  const char *buf, size_t len)
415 {
416 	if (!capable(CAP_NET_ADMIN))
417 		return -EPERM;
418 
419 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
420 }
421 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
422 
423 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
424 			     const char *buf, size_t len)
425 {
426 	struct net_device *netdev = to_net_dev(dev);
427 	struct net *net = dev_net(netdev);
428 	size_t count = len;
429 	ssize_t ret = 0;
430 
431 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
432 		return -EPERM;
433 
434 	/* ignore trailing newline */
435 	if (len >  0 && buf[len - 1] == '\n')
436 		--count;
437 
438 	if (!rtnl_trylock())
439 		return restart_syscall();
440 
441 	if (dev_isalive(netdev)) {
442 		ret = dev_set_alias(netdev, buf, count);
443 		if (ret < 0)
444 			goto err;
445 		ret = len;
446 		netdev_state_change(netdev);
447 	}
448 err:
449 	rtnl_unlock();
450 
451 	return ret;
452 }
453 
454 static ssize_t ifalias_show(struct device *dev,
455 			    struct device_attribute *attr, char *buf)
456 {
457 	const struct net_device *netdev = to_net_dev(dev);
458 	char tmp[IFALIASZ];
459 	ssize_t ret = 0;
460 
461 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
462 	if (ret > 0)
463 		ret = sprintf(buf, "%s\n", tmp);
464 	return ret;
465 }
466 static DEVICE_ATTR_RW(ifalias);
467 
468 static int change_group(struct net_device *dev, unsigned long new_group)
469 {
470 	dev_set_group(dev, (int)new_group);
471 	return 0;
472 }
473 
474 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
475 			   const char *buf, size_t len)
476 {
477 	return netdev_store(dev, attr, buf, len, change_group);
478 }
479 NETDEVICE_SHOW(group, fmt_dec);
480 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
481 
482 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
483 {
484 	return dev_change_proto_down(dev, (bool)proto_down);
485 }
486 
487 static ssize_t proto_down_store(struct device *dev,
488 				struct device_attribute *attr,
489 				const char *buf, size_t len)
490 {
491 	return netdev_store(dev, attr, buf, len, change_proto_down);
492 }
493 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
494 
495 static ssize_t phys_port_id_show(struct device *dev,
496 				 struct device_attribute *attr, char *buf)
497 {
498 	struct net_device *netdev = to_net_dev(dev);
499 	ssize_t ret = -EINVAL;
500 
501 	/* The check is also done in dev_get_phys_port_id; this helps returning
502 	 * early without hitting the trylock/restart below.
503 	 */
504 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
505 		return -EOPNOTSUPP;
506 
507 	if (!rtnl_trylock())
508 		return restart_syscall();
509 
510 	if (dev_isalive(netdev)) {
511 		struct netdev_phys_item_id ppid;
512 
513 		ret = dev_get_phys_port_id(netdev, &ppid);
514 		if (!ret)
515 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
516 	}
517 	rtnl_unlock();
518 
519 	return ret;
520 }
521 static DEVICE_ATTR_RO(phys_port_id);
522 
523 static ssize_t phys_port_name_show(struct device *dev,
524 				   struct device_attribute *attr, char *buf)
525 {
526 	struct net_device *netdev = to_net_dev(dev);
527 	ssize_t ret = -EINVAL;
528 
529 	/* The checks are also done in dev_get_phys_port_name; this helps
530 	 * returning early without hitting the trylock/restart below.
531 	 */
532 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
533 	    !netdev->netdev_ops->ndo_get_devlink_port)
534 		return -EOPNOTSUPP;
535 
536 	if (!rtnl_trylock())
537 		return restart_syscall();
538 
539 	if (dev_isalive(netdev)) {
540 		char name[IFNAMSIZ];
541 
542 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
543 		if (!ret)
544 			ret = sprintf(buf, "%s\n", name);
545 	}
546 	rtnl_unlock();
547 
548 	return ret;
549 }
550 static DEVICE_ATTR_RO(phys_port_name);
551 
552 static ssize_t phys_switch_id_show(struct device *dev,
553 				   struct device_attribute *attr, char *buf)
554 {
555 	struct net_device *netdev = to_net_dev(dev);
556 	ssize_t ret = -EINVAL;
557 
558 	/* The checks are also done in dev_get_phys_port_name; this helps
559 	 * returning early without hitting the trylock/restart below. This works
560 	 * because recurse is false when calling dev_get_port_parent_id.
561 	 */
562 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
563 	    !netdev->netdev_ops->ndo_get_devlink_port)
564 		return -EOPNOTSUPP;
565 
566 	if (!rtnl_trylock())
567 		return restart_syscall();
568 
569 	if (dev_isalive(netdev)) {
570 		struct netdev_phys_item_id ppid = { };
571 
572 		ret = dev_get_port_parent_id(netdev, &ppid, false);
573 		if (!ret)
574 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
575 	}
576 	rtnl_unlock();
577 
578 	return ret;
579 }
580 static DEVICE_ATTR_RO(phys_switch_id);
581 
582 static ssize_t threaded_show(struct device *dev,
583 			     struct device_attribute *attr, char *buf)
584 {
585 	struct net_device *netdev = to_net_dev(dev);
586 	ssize_t ret = -EINVAL;
587 
588 	if (!rtnl_trylock())
589 		return restart_syscall();
590 
591 	if (dev_isalive(netdev))
592 		ret = sprintf(buf, fmt_dec, netdev->threaded);
593 
594 	rtnl_unlock();
595 	return ret;
596 }
597 
598 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
599 {
600 	int ret;
601 
602 	if (list_empty(&dev->napi_list))
603 		return -EOPNOTSUPP;
604 
605 	if (val != 0 && val != 1)
606 		return -EOPNOTSUPP;
607 
608 	ret = dev_set_threaded(dev, val);
609 
610 	return ret;
611 }
612 
613 static ssize_t threaded_store(struct device *dev,
614 			      struct device_attribute *attr,
615 			      const char *buf, size_t len)
616 {
617 	return netdev_store(dev, attr, buf, len, modify_napi_threaded);
618 }
619 static DEVICE_ATTR_RW(threaded);
620 
621 static struct attribute *net_class_attrs[] __ro_after_init = {
622 	&dev_attr_netdev_group.attr,
623 	&dev_attr_type.attr,
624 	&dev_attr_dev_id.attr,
625 	&dev_attr_dev_port.attr,
626 	&dev_attr_iflink.attr,
627 	&dev_attr_ifindex.attr,
628 	&dev_attr_name_assign_type.attr,
629 	&dev_attr_addr_assign_type.attr,
630 	&dev_attr_addr_len.attr,
631 	&dev_attr_link_mode.attr,
632 	&dev_attr_address.attr,
633 	&dev_attr_broadcast.attr,
634 	&dev_attr_speed.attr,
635 	&dev_attr_duplex.attr,
636 	&dev_attr_dormant.attr,
637 	&dev_attr_testing.attr,
638 	&dev_attr_operstate.attr,
639 	&dev_attr_carrier_changes.attr,
640 	&dev_attr_ifalias.attr,
641 	&dev_attr_carrier.attr,
642 	&dev_attr_mtu.attr,
643 	&dev_attr_flags.attr,
644 	&dev_attr_tx_queue_len.attr,
645 	&dev_attr_gro_flush_timeout.attr,
646 	&dev_attr_napi_defer_hard_irqs.attr,
647 	&dev_attr_phys_port_id.attr,
648 	&dev_attr_phys_port_name.attr,
649 	&dev_attr_phys_switch_id.attr,
650 	&dev_attr_proto_down.attr,
651 	&dev_attr_carrier_up_count.attr,
652 	&dev_attr_carrier_down_count.attr,
653 	&dev_attr_threaded.attr,
654 	NULL,
655 };
656 ATTRIBUTE_GROUPS(net_class);
657 
658 /* Show a given an attribute in the statistics group */
659 static ssize_t netstat_show(const struct device *d,
660 			    struct device_attribute *attr, char *buf,
661 			    unsigned long offset)
662 {
663 	struct net_device *dev = to_net_dev(d);
664 	ssize_t ret = -EINVAL;
665 
666 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
667 		offset % sizeof(u64) != 0);
668 
669 	read_lock(&dev_base_lock);
670 	if (dev_isalive(dev)) {
671 		struct rtnl_link_stats64 temp;
672 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
673 
674 		ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
675 	}
676 	read_unlock(&dev_base_lock);
677 	return ret;
678 }
679 
680 /* generate a read-only statistics attribute */
681 #define NETSTAT_ENTRY(name)						\
682 static ssize_t name##_show(struct device *d,				\
683 			   struct device_attribute *attr, char *buf)	\
684 {									\
685 	return netstat_show(d, attr, buf,				\
686 			    offsetof(struct rtnl_link_stats64, name));	\
687 }									\
688 static DEVICE_ATTR_RO(name)
689 
690 NETSTAT_ENTRY(rx_packets);
691 NETSTAT_ENTRY(tx_packets);
692 NETSTAT_ENTRY(rx_bytes);
693 NETSTAT_ENTRY(tx_bytes);
694 NETSTAT_ENTRY(rx_errors);
695 NETSTAT_ENTRY(tx_errors);
696 NETSTAT_ENTRY(rx_dropped);
697 NETSTAT_ENTRY(tx_dropped);
698 NETSTAT_ENTRY(multicast);
699 NETSTAT_ENTRY(collisions);
700 NETSTAT_ENTRY(rx_length_errors);
701 NETSTAT_ENTRY(rx_over_errors);
702 NETSTAT_ENTRY(rx_crc_errors);
703 NETSTAT_ENTRY(rx_frame_errors);
704 NETSTAT_ENTRY(rx_fifo_errors);
705 NETSTAT_ENTRY(rx_missed_errors);
706 NETSTAT_ENTRY(tx_aborted_errors);
707 NETSTAT_ENTRY(tx_carrier_errors);
708 NETSTAT_ENTRY(tx_fifo_errors);
709 NETSTAT_ENTRY(tx_heartbeat_errors);
710 NETSTAT_ENTRY(tx_window_errors);
711 NETSTAT_ENTRY(rx_compressed);
712 NETSTAT_ENTRY(tx_compressed);
713 NETSTAT_ENTRY(rx_nohandler);
714 
715 static struct attribute *netstat_attrs[] __ro_after_init = {
716 	&dev_attr_rx_packets.attr,
717 	&dev_attr_tx_packets.attr,
718 	&dev_attr_rx_bytes.attr,
719 	&dev_attr_tx_bytes.attr,
720 	&dev_attr_rx_errors.attr,
721 	&dev_attr_tx_errors.attr,
722 	&dev_attr_rx_dropped.attr,
723 	&dev_attr_tx_dropped.attr,
724 	&dev_attr_multicast.attr,
725 	&dev_attr_collisions.attr,
726 	&dev_attr_rx_length_errors.attr,
727 	&dev_attr_rx_over_errors.attr,
728 	&dev_attr_rx_crc_errors.attr,
729 	&dev_attr_rx_frame_errors.attr,
730 	&dev_attr_rx_fifo_errors.attr,
731 	&dev_attr_rx_missed_errors.attr,
732 	&dev_attr_tx_aborted_errors.attr,
733 	&dev_attr_tx_carrier_errors.attr,
734 	&dev_attr_tx_fifo_errors.attr,
735 	&dev_attr_tx_heartbeat_errors.attr,
736 	&dev_attr_tx_window_errors.attr,
737 	&dev_attr_rx_compressed.attr,
738 	&dev_attr_tx_compressed.attr,
739 	&dev_attr_rx_nohandler.attr,
740 	NULL
741 };
742 
743 static const struct attribute_group netstat_group = {
744 	.name  = "statistics",
745 	.attrs  = netstat_attrs,
746 };
747 
748 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
749 static struct attribute *wireless_attrs[] = {
750 	NULL
751 };
752 
753 static const struct attribute_group wireless_group = {
754 	.name = "wireless",
755 	.attrs = wireless_attrs,
756 };
757 #endif
758 
759 #else /* CONFIG_SYSFS */
760 #define net_class_groups	NULL
761 #endif /* CONFIG_SYSFS */
762 
763 #ifdef CONFIG_SYSFS
764 #define to_rx_queue_attr(_attr) \
765 	container_of(_attr, struct rx_queue_attribute, attr)
766 
767 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
768 
769 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
770 				  char *buf)
771 {
772 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
773 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
774 
775 	if (!attribute->show)
776 		return -EIO;
777 
778 	return attribute->show(queue, buf);
779 }
780 
781 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
782 				   const char *buf, size_t count)
783 {
784 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
785 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
786 
787 	if (!attribute->store)
788 		return -EIO;
789 
790 	return attribute->store(queue, buf, count);
791 }
792 
793 static const struct sysfs_ops rx_queue_sysfs_ops = {
794 	.show = rx_queue_attr_show,
795 	.store = rx_queue_attr_store,
796 };
797 
798 #ifdef CONFIG_RPS
799 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
800 {
801 	struct rps_map *map;
802 	cpumask_var_t mask;
803 	int i, len;
804 
805 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
806 		return -ENOMEM;
807 
808 	rcu_read_lock();
809 	map = rcu_dereference(queue->rps_map);
810 	if (map)
811 		for (i = 0; i < map->len; i++)
812 			cpumask_set_cpu(map->cpus[i], mask);
813 
814 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
815 	rcu_read_unlock();
816 	free_cpumask_var(mask);
817 
818 	return len < PAGE_SIZE ? len : -EINVAL;
819 }
820 
821 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
822 			     const char *buf, size_t len)
823 {
824 	struct rps_map *old_map, *map;
825 	cpumask_var_t mask;
826 	int err, cpu, i, hk_flags;
827 	static DEFINE_MUTEX(rps_map_mutex);
828 
829 	if (!capable(CAP_NET_ADMIN))
830 		return -EPERM;
831 
832 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
833 		return -ENOMEM;
834 
835 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
836 	if (err) {
837 		free_cpumask_var(mask);
838 		return err;
839 	}
840 
841 	if (!cpumask_empty(mask)) {
842 		hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
843 		cpumask_and(mask, mask, housekeeping_cpumask(hk_flags));
844 		if (cpumask_empty(mask)) {
845 			free_cpumask_var(mask);
846 			return -EINVAL;
847 		}
848 	}
849 
850 	map = kzalloc(max_t(unsigned int,
851 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
852 		      GFP_KERNEL);
853 	if (!map) {
854 		free_cpumask_var(mask);
855 		return -ENOMEM;
856 	}
857 
858 	i = 0;
859 	for_each_cpu_and(cpu, mask, cpu_online_mask)
860 		map->cpus[i++] = cpu;
861 
862 	if (i) {
863 		map->len = i;
864 	} else {
865 		kfree(map);
866 		map = NULL;
867 	}
868 
869 	mutex_lock(&rps_map_mutex);
870 	old_map = rcu_dereference_protected(queue->rps_map,
871 					    mutex_is_locked(&rps_map_mutex));
872 	rcu_assign_pointer(queue->rps_map, map);
873 
874 	if (map)
875 		static_branch_inc(&rps_needed);
876 	if (old_map)
877 		static_branch_dec(&rps_needed);
878 
879 	mutex_unlock(&rps_map_mutex);
880 
881 	if (old_map)
882 		kfree_rcu(old_map, rcu);
883 
884 	free_cpumask_var(mask);
885 	return len;
886 }
887 
888 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
889 					   char *buf)
890 {
891 	struct rps_dev_flow_table *flow_table;
892 	unsigned long val = 0;
893 
894 	rcu_read_lock();
895 	flow_table = rcu_dereference(queue->rps_flow_table);
896 	if (flow_table)
897 		val = (unsigned long)flow_table->mask + 1;
898 	rcu_read_unlock();
899 
900 	return sprintf(buf, "%lu\n", val);
901 }
902 
903 static void rps_dev_flow_table_release(struct rcu_head *rcu)
904 {
905 	struct rps_dev_flow_table *table = container_of(rcu,
906 	    struct rps_dev_flow_table, rcu);
907 	vfree(table);
908 }
909 
910 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
911 					    const char *buf, size_t len)
912 {
913 	unsigned long mask, count;
914 	struct rps_dev_flow_table *table, *old_table;
915 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
916 	int rc;
917 
918 	if (!capable(CAP_NET_ADMIN))
919 		return -EPERM;
920 
921 	rc = kstrtoul(buf, 0, &count);
922 	if (rc < 0)
923 		return rc;
924 
925 	if (count) {
926 		mask = count - 1;
927 		/* mask = roundup_pow_of_two(count) - 1;
928 		 * without overflows...
929 		 */
930 		while ((mask | (mask >> 1)) != mask)
931 			mask |= (mask >> 1);
932 		/* On 64 bit arches, must check mask fits in table->mask (u32),
933 		 * and on 32bit arches, must check
934 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
935 		 */
936 #if BITS_PER_LONG > 32
937 		if (mask > (unsigned long)(u32)mask)
938 			return -EINVAL;
939 #else
940 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
941 				/ sizeof(struct rps_dev_flow)) {
942 			/* Enforce a limit to prevent overflow */
943 			return -EINVAL;
944 		}
945 #endif
946 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
947 		if (!table)
948 			return -ENOMEM;
949 
950 		table->mask = mask;
951 		for (count = 0; count <= mask; count++)
952 			table->flows[count].cpu = RPS_NO_CPU;
953 	} else {
954 		table = NULL;
955 	}
956 
957 	spin_lock(&rps_dev_flow_lock);
958 	old_table = rcu_dereference_protected(queue->rps_flow_table,
959 					      lockdep_is_held(&rps_dev_flow_lock));
960 	rcu_assign_pointer(queue->rps_flow_table, table);
961 	spin_unlock(&rps_dev_flow_lock);
962 
963 	if (old_table)
964 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
965 
966 	return len;
967 }
968 
969 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
970 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
971 
972 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
973 	= __ATTR(rps_flow_cnt, 0644,
974 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
975 #endif /* CONFIG_RPS */
976 
977 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
978 #ifdef CONFIG_RPS
979 	&rps_cpus_attribute.attr,
980 	&rps_dev_flow_table_cnt_attribute.attr,
981 #endif
982 	NULL
983 };
984 ATTRIBUTE_GROUPS(rx_queue_default);
985 
986 static void rx_queue_release(struct kobject *kobj)
987 {
988 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
989 #ifdef CONFIG_RPS
990 	struct rps_map *map;
991 	struct rps_dev_flow_table *flow_table;
992 
993 	map = rcu_dereference_protected(queue->rps_map, 1);
994 	if (map) {
995 		RCU_INIT_POINTER(queue->rps_map, NULL);
996 		kfree_rcu(map, rcu);
997 	}
998 
999 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1000 	if (flow_table) {
1001 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1002 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1003 	}
1004 #endif
1005 
1006 	memset(kobj, 0, sizeof(*kobj));
1007 	dev_put_track(queue->dev, &queue->dev_tracker);
1008 }
1009 
1010 static const void *rx_queue_namespace(struct kobject *kobj)
1011 {
1012 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1013 	struct device *dev = &queue->dev->dev;
1014 	const void *ns = NULL;
1015 
1016 	if (dev->class && dev->class->ns_type)
1017 		ns = dev->class->namespace(dev);
1018 
1019 	return ns;
1020 }
1021 
1022 static void rx_queue_get_ownership(struct kobject *kobj,
1023 				   kuid_t *uid, kgid_t *gid)
1024 {
1025 	const struct net *net = rx_queue_namespace(kobj);
1026 
1027 	net_ns_get_ownership(net, uid, gid);
1028 }
1029 
1030 static struct kobj_type rx_queue_ktype __ro_after_init = {
1031 	.sysfs_ops = &rx_queue_sysfs_ops,
1032 	.release = rx_queue_release,
1033 	.default_groups = rx_queue_default_groups,
1034 	.namespace = rx_queue_namespace,
1035 	.get_ownership = rx_queue_get_ownership,
1036 };
1037 
1038 static int rx_queue_add_kobject(struct net_device *dev, int index)
1039 {
1040 	struct netdev_rx_queue *queue = dev->_rx + index;
1041 	struct kobject *kobj = &queue->kobj;
1042 	int error = 0;
1043 
1044 	/* Kobject_put later will trigger rx_queue_release call which
1045 	 * decreases dev refcount: Take that reference here
1046 	 */
1047 	dev_hold_track(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1048 
1049 	kobj->kset = dev->queues_kset;
1050 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1051 				     "rx-%u", index);
1052 	if (error)
1053 		goto err;
1054 
1055 	if (dev->sysfs_rx_queue_group) {
1056 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1057 		if (error)
1058 			goto err;
1059 	}
1060 
1061 	kobject_uevent(kobj, KOBJ_ADD);
1062 
1063 	return error;
1064 
1065 err:
1066 	kobject_put(kobj);
1067 	return error;
1068 }
1069 
1070 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1071 				 kgid_t kgid)
1072 {
1073 	struct netdev_rx_queue *queue = dev->_rx + index;
1074 	struct kobject *kobj = &queue->kobj;
1075 	int error;
1076 
1077 	error = sysfs_change_owner(kobj, kuid, kgid);
1078 	if (error)
1079 		return error;
1080 
1081 	if (dev->sysfs_rx_queue_group)
1082 		error = sysfs_group_change_owner(
1083 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1084 
1085 	return error;
1086 }
1087 #endif /* CONFIG_SYSFS */
1088 
1089 int
1090 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1091 {
1092 #ifdef CONFIG_SYSFS
1093 	int i;
1094 	int error = 0;
1095 
1096 #ifndef CONFIG_RPS
1097 	if (!dev->sysfs_rx_queue_group)
1098 		return 0;
1099 #endif
1100 	for (i = old_num; i < new_num; i++) {
1101 		error = rx_queue_add_kobject(dev, i);
1102 		if (error) {
1103 			new_num = old_num;
1104 			break;
1105 		}
1106 	}
1107 
1108 	while (--i >= new_num) {
1109 		struct kobject *kobj = &dev->_rx[i].kobj;
1110 
1111 		if (!refcount_read(&dev_net(dev)->ns.count))
1112 			kobj->uevent_suppress = 1;
1113 		if (dev->sysfs_rx_queue_group)
1114 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1115 		kobject_put(kobj);
1116 	}
1117 
1118 	return error;
1119 #else
1120 	return 0;
1121 #endif
1122 }
1123 
1124 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1125 				     kuid_t kuid, kgid_t kgid)
1126 {
1127 #ifdef CONFIG_SYSFS
1128 	int error = 0;
1129 	int i;
1130 
1131 #ifndef CONFIG_RPS
1132 	if (!dev->sysfs_rx_queue_group)
1133 		return 0;
1134 #endif
1135 	for (i = 0; i < num; i++) {
1136 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1137 		if (error)
1138 			break;
1139 	}
1140 
1141 	return error;
1142 #else
1143 	return 0;
1144 #endif
1145 }
1146 
1147 #ifdef CONFIG_SYSFS
1148 /*
1149  * netdev_queue sysfs structures and functions.
1150  */
1151 struct netdev_queue_attribute {
1152 	struct attribute attr;
1153 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1154 	ssize_t (*store)(struct netdev_queue *queue,
1155 			 const char *buf, size_t len);
1156 };
1157 #define to_netdev_queue_attr(_attr) \
1158 	container_of(_attr, struct netdev_queue_attribute, attr)
1159 
1160 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1161 
1162 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1163 				      struct attribute *attr, char *buf)
1164 {
1165 	const struct netdev_queue_attribute *attribute
1166 		= to_netdev_queue_attr(attr);
1167 	struct netdev_queue *queue = to_netdev_queue(kobj);
1168 
1169 	if (!attribute->show)
1170 		return -EIO;
1171 
1172 	return attribute->show(queue, buf);
1173 }
1174 
1175 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1176 				       struct attribute *attr,
1177 				       const char *buf, size_t count)
1178 {
1179 	const struct netdev_queue_attribute *attribute
1180 		= to_netdev_queue_attr(attr);
1181 	struct netdev_queue *queue = to_netdev_queue(kobj);
1182 
1183 	if (!attribute->store)
1184 		return -EIO;
1185 
1186 	return attribute->store(queue, buf, count);
1187 }
1188 
1189 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1190 	.show = netdev_queue_attr_show,
1191 	.store = netdev_queue_attr_store,
1192 };
1193 
1194 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1195 {
1196 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1197 
1198 	return sprintf(buf, fmt_ulong, trans_timeout);
1199 }
1200 
1201 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1202 {
1203 	struct net_device *dev = queue->dev;
1204 	unsigned int i;
1205 
1206 	i = queue - dev->_tx;
1207 	BUG_ON(i >= dev->num_tx_queues);
1208 
1209 	return i;
1210 }
1211 
1212 static ssize_t traffic_class_show(struct netdev_queue *queue,
1213 				  char *buf)
1214 {
1215 	struct net_device *dev = queue->dev;
1216 	int num_tc, tc;
1217 	int index;
1218 
1219 	if (!netif_is_multiqueue(dev))
1220 		return -ENOENT;
1221 
1222 	if (!rtnl_trylock())
1223 		return restart_syscall();
1224 
1225 	index = get_netdev_queue_index(queue);
1226 
1227 	/* If queue belongs to subordinate dev use its TC mapping */
1228 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1229 
1230 	num_tc = dev->num_tc;
1231 	tc = netdev_txq_to_tc(dev, index);
1232 
1233 	rtnl_unlock();
1234 
1235 	if (tc < 0)
1236 		return -EINVAL;
1237 
1238 	/* We can report the traffic class one of two ways:
1239 	 * Subordinate device traffic classes are reported with the traffic
1240 	 * class first, and then the subordinate class so for example TC0 on
1241 	 * subordinate device 2 will be reported as "0-2". If the queue
1242 	 * belongs to the root device it will be reported with just the
1243 	 * traffic class, so just "0" for TC 0 for example.
1244 	 */
1245 	return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) :
1246 			    sprintf(buf, "%d\n", tc);
1247 }
1248 
1249 #ifdef CONFIG_XPS
1250 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1251 			       char *buf)
1252 {
1253 	return sprintf(buf, "%lu\n", queue->tx_maxrate);
1254 }
1255 
1256 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1257 				const char *buf, size_t len)
1258 {
1259 	struct net_device *dev = queue->dev;
1260 	int err, index = get_netdev_queue_index(queue);
1261 	u32 rate = 0;
1262 
1263 	if (!capable(CAP_NET_ADMIN))
1264 		return -EPERM;
1265 
1266 	/* The check is also done later; this helps returning early without
1267 	 * hitting the trylock/restart below.
1268 	 */
1269 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1270 		return -EOPNOTSUPP;
1271 
1272 	err = kstrtou32(buf, 10, &rate);
1273 	if (err < 0)
1274 		return err;
1275 
1276 	if (!rtnl_trylock())
1277 		return restart_syscall();
1278 
1279 	err = -EOPNOTSUPP;
1280 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1281 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1282 
1283 	rtnl_unlock();
1284 	if (!err) {
1285 		queue->tx_maxrate = rate;
1286 		return len;
1287 	}
1288 	return err;
1289 }
1290 
1291 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1292 	= __ATTR_RW(tx_maxrate);
1293 #endif
1294 
1295 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1296 	= __ATTR_RO(tx_timeout);
1297 
1298 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1299 	= __ATTR_RO(traffic_class);
1300 
1301 #ifdef CONFIG_BQL
1302 /*
1303  * Byte queue limits sysfs structures and functions.
1304  */
1305 static ssize_t bql_show(char *buf, unsigned int value)
1306 {
1307 	return sprintf(buf, "%u\n", value);
1308 }
1309 
1310 static ssize_t bql_set(const char *buf, const size_t count,
1311 		       unsigned int *pvalue)
1312 {
1313 	unsigned int value;
1314 	int err;
1315 
1316 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1317 		value = DQL_MAX_LIMIT;
1318 	} else {
1319 		err = kstrtouint(buf, 10, &value);
1320 		if (err < 0)
1321 			return err;
1322 		if (value > DQL_MAX_LIMIT)
1323 			return -EINVAL;
1324 	}
1325 
1326 	*pvalue = value;
1327 
1328 	return count;
1329 }
1330 
1331 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1332 				  char *buf)
1333 {
1334 	struct dql *dql = &queue->dql;
1335 
1336 	return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1337 }
1338 
1339 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1340 				 const char *buf, size_t len)
1341 {
1342 	struct dql *dql = &queue->dql;
1343 	unsigned int value;
1344 	int err;
1345 
1346 	err = kstrtouint(buf, 10, &value);
1347 	if (err < 0)
1348 		return err;
1349 
1350 	dql->slack_hold_time = msecs_to_jiffies(value);
1351 
1352 	return len;
1353 }
1354 
1355 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1356 	= __ATTR(hold_time, 0644,
1357 		 bql_show_hold_time, bql_set_hold_time);
1358 
1359 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1360 				 char *buf)
1361 {
1362 	struct dql *dql = &queue->dql;
1363 
1364 	return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1365 }
1366 
1367 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1368 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1369 
1370 #define BQL_ATTR(NAME, FIELD)						\
1371 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1372 				 char *buf)				\
1373 {									\
1374 	return bql_show(buf, queue->dql.FIELD);				\
1375 }									\
1376 									\
1377 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1378 				const char *buf, size_t len)		\
1379 {									\
1380 	return bql_set(buf, len, &queue->dql.FIELD);			\
1381 }									\
1382 									\
1383 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1384 	= __ATTR(NAME, 0644,				\
1385 		 bql_show_ ## NAME, bql_set_ ## NAME)
1386 
1387 BQL_ATTR(limit, limit);
1388 BQL_ATTR(limit_max, max_limit);
1389 BQL_ATTR(limit_min, min_limit);
1390 
1391 static struct attribute *dql_attrs[] __ro_after_init = {
1392 	&bql_limit_attribute.attr,
1393 	&bql_limit_max_attribute.attr,
1394 	&bql_limit_min_attribute.attr,
1395 	&bql_hold_time_attribute.attr,
1396 	&bql_inflight_attribute.attr,
1397 	NULL
1398 };
1399 
1400 static const struct attribute_group dql_group = {
1401 	.name  = "byte_queue_limits",
1402 	.attrs  = dql_attrs,
1403 };
1404 #endif /* CONFIG_BQL */
1405 
1406 #ifdef CONFIG_XPS
1407 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1408 			      int tc, char *buf, enum xps_map_type type)
1409 {
1410 	struct xps_dev_maps *dev_maps;
1411 	unsigned long *mask;
1412 	unsigned int nr_ids;
1413 	int j, len;
1414 
1415 	rcu_read_lock();
1416 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1417 
1418 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1419 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1420 	 */
1421 	nr_ids = dev_maps ? dev_maps->nr_ids :
1422 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1423 
1424 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1425 	if (!mask) {
1426 		rcu_read_unlock();
1427 		return -ENOMEM;
1428 	}
1429 
1430 	if (!dev_maps || tc >= dev_maps->num_tc)
1431 		goto out_no_maps;
1432 
1433 	for (j = 0; j < nr_ids; j++) {
1434 		int i, tci = j * dev_maps->num_tc + tc;
1435 		struct xps_map *map;
1436 
1437 		map = rcu_dereference(dev_maps->attr_map[tci]);
1438 		if (!map)
1439 			continue;
1440 
1441 		for (i = map->len; i--;) {
1442 			if (map->queues[i] == index) {
1443 				__set_bit(j, mask);
1444 				break;
1445 			}
1446 		}
1447 	}
1448 out_no_maps:
1449 	rcu_read_unlock();
1450 
1451 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1452 	bitmap_free(mask);
1453 
1454 	return len < PAGE_SIZE ? len : -EINVAL;
1455 }
1456 
1457 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1458 {
1459 	struct net_device *dev = queue->dev;
1460 	unsigned int index;
1461 	int len, tc;
1462 
1463 	if (!netif_is_multiqueue(dev))
1464 		return -ENOENT;
1465 
1466 	index = get_netdev_queue_index(queue);
1467 
1468 	if (!rtnl_trylock())
1469 		return restart_syscall();
1470 
1471 	/* If queue belongs to subordinate dev use its map */
1472 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1473 
1474 	tc = netdev_txq_to_tc(dev, index);
1475 	if (tc < 0) {
1476 		rtnl_unlock();
1477 		return -EINVAL;
1478 	}
1479 
1480 	/* Make sure the subordinate device can't be freed */
1481 	get_device(&dev->dev);
1482 	rtnl_unlock();
1483 
1484 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1485 
1486 	put_device(&dev->dev);
1487 	return len;
1488 }
1489 
1490 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1491 			      const char *buf, size_t len)
1492 {
1493 	struct net_device *dev = queue->dev;
1494 	unsigned int index;
1495 	cpumask_var_t mask;
1496 	int err;
1497 
1498 	if (!netif_is_multiqueue(dev))
1499 		return -ENOENT;
1500 
1501 	if (!capable(CAP_NET_ADMIN))
1502 		return -EPERM;
1503 
1504 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1505 		return -ENOMEM;
1506 
1507 	index = get_netdev_queue_index(queue);
1508 
1509 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1510 	if (err) {
1511 		free_cpumask_var(mask);
1512 		return err;
1513 	}
1514 
1515 	if (!rtnl_trylock()) {
1516 		free_cpumask_var(mask);
1517 		return restart_syscall();
1518 	}
1519 
1520 	err = netif_set_xps_queue(dev, mask, index);
1521 	rtnl_unlock();
1522 
1523 	free_cpumask_var(mask);
1524 
1525 	return err ? : len;
1526 }
1527 
1528 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1529 	= __ATTR_RW(xps_cpus);
1530 
1531 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1532 {
1533 	struct net_device *dev = queue->dev;
1534 	unsigned int index;
1535 	int tc;
1536 
1537 	index = get_netdev_queue_index(queue);
1538 
1539 	if (!rtnl_trylock())
1540 		return restart_syscall();
1541 
1542 	tc = netdev_txq_to_tc(dev, index);
1543 	rtnl_unlock();
1544 	if (tc < 0)
1545 		return -EINVAL;
1546 
1547 	return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1548 }
1549 
1550 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1551 			      size_t len)
1552 {
1553 	struct net_device *dev = queue->dev;
1554 	struct net *net = dev_net(dev);
1555 	unsigned long *mask;
1556 	unsigned int index;
1557 	int err;
1558 
1559 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1560 		return -EPERM;
1561 
1562 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1563 	if (!mask)
1564 		return -ENOMEM;
1565 
1566 	index = get_netdev_queue_index(queue);
1567 
1568 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1569 	if (err) {
1570 		bitmap_free(mask);
1571 		return err;
1572 	}
1573 
1574 	if (!rtnl_trylock()) {
1575 		bitmap_free(mask);
1576 		return restart_syscall();
1577 	}
1578 
1579 	cpus_read_lock();
1580 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1581 	cpus_read_unlock();
1582 
1583 	rtnl_unlock();
1584 
1585 	bitmap_free(mask);
1586 	return err ? : len;
1587 }
1588 
1589 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1590 	= __ATTR_RW(xps_rxqs);
1591 #endif /* CONFIG_XPS */
1592 
1593 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1594 	&queue_trans_timeout.attr,
1595 	&queue_traffic_class.attr,
1596 #ifdef CONFIG_XPS
1597 	&xps_cpus_attribute.attr,
1598 	&xps_rxqs_attribute.attr,
1599 	&queue_tx_maxrate.attr,
1600 #endif
1601 	NULL
1602 };
1603 ATTRIBUTE_GROUPS(netdev_queue_default);
1604 
1605 static void netdev_queue_release(struct kobject *kobj)
1606 {
1607 	struct netdev_queue *queue = to_netdev_queue(kobj);
1608 
1609 	memset(kobj, 0, sizeof(*kobj));
1610 	dev_put_track(queue->dev, &queue->dev_tracker);
1611 }
1612 
1613 static const void *netdev_queue_namespace(struct kobject *kobj)
1614 {
1615 	struct netdev_queue *queue = to_netdev_queue(kobj);
1616 	struct device *dev = &queue->dev->dev;
1617 	const void *ns = NULL;
1618 
1619 	if (dev->class && dev->class->ns_type)
1620 		ns = dev->class->namespace(dev);
1621 
1622 	return ns;
1623 }
1624 
1625 static void netdev_queue_get_ownership(struct kobject *kobj,
1626 				       kuid_t *uid, kgid_t *gid)
1627 {
1628 	const struct net *net = netdev_queue_namespace(kobj);
1629 
1630 	net_ns_get_ownership(net, uid, gid);
1631 }
1632 
1633 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1634 	.sysfs_ops = &netdev_queue_sysfs_ops,
1635 	.release = netdev_queue_release,
1636 	.default_groups = netdev_queue_default_groups,
1637 	.namespace = netdev_queue_namespace,
1638 	.get_ownership = netdev_queue_get_ownership,
1639 };
1640 
1641 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1642 {
1643 	struct netdev_queue *queue = dev->_tx + index;
1644 	struct kobject *kobj = &queue->kobj;
1645 	int error = 0;
1646 
1647 	/* Kobject_put later will trigger netdev_queue_release call
1648 	 * which decreases dev refcount: Take that reference here
1649 	 */
1650 	dev_hold_track(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1651 
1652 	kobj->kset = dev->queues_kset;
1653 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1654 				     "tx-%u", index);
1655 	if (error)
1656 		goto err;
1657 
1658 #ifdef CONFIG_BQL
1659 	error = sysfs_create_group(kobj, &dql_group);
1660 	if (error)
1661 		goto err;
1662 #endif
1663 
1664 	kobject_uevent(kobj, KOBJ_ADD);
1665 	return 0;
1666 
1667 err:
1668 	kobject_put(kobj);
1669 	return error;
1670 }
1671 
1672 static int tx_queue_change_owner(struct net_device *ndev, int index,
1673 				 kuid_t kuid, kgid_t kgid)
1674 {
1675 	struct netdev_queue *queue = ndev->_tx + index;
1676 	struct kobject *kobj = &queue->kobj;
1677 	int error;
1678 
1679 	error = sysfs_change_owner(kobj, kuid, kgid);
1680 	if (error)
1681 		return error;
1682 
1683 #ifdef CONFIG_BQL
1684 	error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1685 #endif
1686 	return error;
1687 }
1688 #endif /* CONFIG_SYSFS */
1689 
1690 int
1691 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1692 {
1693 #ifdef CONFIG_SYSFS
1694 	int i;
1695 	int error = 0;
1696 
1697 	/* Tx queue kobjects are allowed to be updated when a device is being
1698 	 * unregistered, but solely to remove queues from qdiscs. Any path
1699 	 * adding queues should be fixed.
1700 	 */
1701 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
1702 	     "New queues can't be registered after device unregistration.");
1703 
1704 	for (i = old_num; i < new_num; i++) {
1705 		error = netdev_queue_add_kobject(dev, i);
1706 		if (error) {
1707 			new_num = old_num;
1708 			break;
1709 		}
1710 	}
1711 
1712 	while (--i >= new_num) {
1713 		struct netdev_queue *queue = dev->_tx + i;
1714 
1715 		if (!refcount_read(&dev_net(dev)->ns.count))
1716 			queue->kobj.uevent_suppress = 1;
1717 #ifdef CONFIG_BQL
1718 		sysfs_remove_group(&queue->kobj, &dql_group);
1719 #endif
1720 		kobject_put(&queue->kobj);
1721 	}
1722 
1723 	return error;
1724 #else
1725 	return 0;
1726 #endif /* CONFIG_SYSFS */
1727 }
1728 
1729 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1730 				     kuid_t kuid, kgid_t kgid)
1731 {
1732 #ifdef CONFIG_SYSFS
1733 	int error = 0;
1734 	int i;
1735 
1736 	for (i = 0; i < num; i++) {
1737 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1738 		if (error)
1739 			break;
1740 	}
1741 
1742 	return error;
1743 #else
1744 	return 0;
1745 #endif /* CONFIG_SYSFS */
1746 }
1747 
1748 static int register_queue_kobjects(struct net_device *dev)
1749 {
1750 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1751 
1752 #ifdef CONFIG_SYSFS
1753 	dev->queues_kset = kset_create_and_add("queues",
1754 					       NULL, &dev->dev.kobj);
1755 	if (!dev->queues_kset)
1756 		return -ENOMEM;
1757 	real_rx = dev->real_num_rx_queues;
1758 #endif
1759 	real_tx = dev->real_num_tx_queues;
1760 
1761 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1762 	if (error)
1763 		goto error;
1764 	rxq = real_rx;
1765 
1766 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1767 	if (error)
1768 		goto error;
1769 	txq = real_tx;
1770 
1771 	return 0;
1772 
1773 error:
1774 	netdev_queue_update_kobjects(dev, txq, 0);
1775 	net_rx_queue_update_kobjects(dev, rxq, 0);
1776 #ifdef CONFIG_SYSFS
1777 	kset_unregister(dev->queues_kset);
1778 #endif
1779 	return error;
1780 }
1781 
1782 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1783 {
1784 	int error = 0, real_rx = 0, real_tx = 0;
1785 
1786 #ifdef CONFIG_SYSFS
1787 	if (ndev->queues_kset) {
1788 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1789 		if (error)
1790 			return error;
1791 	}
1792 	real_rx = ndev->real_num_rx_queues;
1793 #endif
1794 	real_tx = ndev->real_num_tx_queues;
1795 
1796 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1797 	if (error)
1798 		return error;
1799 
1800 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1801 	if (error)
1802 		return error;
1803 
1804 	return 0;
1805 }
1806 
1807 static void remove_queue_kobjects(struct net_device *dev)
1808 {
1809 	int real_rx = 0, real_tx = 0;
1810 
1811 #ifdef CONFIG_SYSFS
1812 	real_rx = dev->real_num_rx_queues;
1813 #endif
1814 	real_tx = dev->real_num_tx_queues;
1815 
1816 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1817 	netdev_queue_update_kobjects(dev, real_tx, 0);
1818 
1819 	dev->real_num_rx_queues = 0;
1820 	dev->real_num_tx_queues = 0;
1821 #ifdef CONFIG_SYSFS
1822 	kset_unregister(dev->queues_kset);
1823 #endif
1824 }
1825 
1826 static bool net_current_may_mount(void)
1827 {
1828 	struct net *net = current->nsproxy->net_ns;
1829 
1830 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1831 }
1832 
1833 static void *net_grab_current_ns(void)
1834 {
1835 	struct net *ns = current->nsproxy->net_ns;
1836 #ifdef CONFIG_NET_NS
1837 	if (ns)
1838 		refcount_inc(&ns->passive);
1839 #endif
1840 	return ns;
1841 }
1842 
1843 static const void *net_initial_ns(void)
1844 {
1845 	return &init_net;
1846 }
1847 
1848 static const void *net_netlink_ns(struct sock *sk)
1849 {
1850 	return sock_net(sk);
1851 }
1852 
1853 const struct kobj_ns_type_operations net_ns_type_operations = {
1854 	.type = KOBJ_NS_TYPE_NET,
1855 	.current_may_mount = net_current_may_mount,
1856 	.grab_current_ns = net_grab_current_ns,
1857 	.netlink_ns = net_netlink_ns,
1858 	.initial_ns = net_initial_ns,
1859 	.drop_ns = net_drop_ns,
1860 };
1861 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1862 
1863 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1864 {
1865 	struct net_device *dev = to_net_dev(d);
1866 	int retval;
1867 
1868 	/* pass interface to uevent. */
1869 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1870 	if (retval)
1871 		goto exit;
1872 
1873 	/* pass ifindex to uevent.
1874 	 * ifindex is useful as it won't change (interface name may change)
1875 	 * and is what RtNetlink uses natively.
1876 	 */
1877 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1878 
1879 exit:
1880 	return retval;
1881 }
1882 
1883 /*
1884  *	netdev_release -- destroy and free a dead device.
1885  *	Called when last reference to device kobject is gone.
1886  */
1887 static void netdev_release(struct device *d)
1888 {
1889 	struct net_device *dev = to_net_dev(d);
1890 
1891 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1892 
1893 	/* no need to wait for rcu grace period:
1894 	 * device is dead and about to be freed.
1895 	 */
1896 	kfree(rcu_access_pointer(dev->ifalias));
1897 	netdev_freemem(dev);
1898 }
1899 
1900 static const void *net_namespace(struct device *d)
1901 {
1902 	struct net_device *dev = to_net_dev(d);
1903 
1904 	return dev_net(dev);
1905 }
1906 
1907 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1908 {
1909 	struct net_device *dev = to_net_dev(d);
1910 	const struct net *net = dev_net(dev);
1911 
1912 	net_ns_get_ownership(net, uid, gid);
1913 }
1914 
1915 static struct class net_class __ro_after_init = {
1916 	.name = "net",
1917 	.dev_release = netdev_release,
1918 	.dev_groups = net_class_groups,
1919 	.dev_uevent = netdev_uevent,
1920 	.ns_type = &net_ns_type_operations,
1921 	.namespace = net_namespace,
1922 	.get_ownership = net_get_ownership,
1923 };
1924 
1925 #ifdef CONFIG_OF
1926 static int of_dev_node_match(struct device *dev, const void *data)
1927 {
1928 	for (; dev; dev = dev->parent) {
1929 		if (dev->of_node == data)
1930 			return 1;
1931 	}
1932 
1933 	return 0;
1934 }
1935 
1936 /*
1937  * of_find_net_device_by_node - lookup the net device for the device node
1938  * @np: OF device node
1939  *
1940  * Looks up the net_device structure corresponding with the device node.
1941  * If successful, returns a pointer to the net_device with the embedded
1942  * struct device refcount incremented by one, or NULL on failure. The
1943  * refcount must be dropped when done with the net_device.
1944  */
1945 struct net_device *of_find_net_device_by_node(struct device_node *np)
1946 {
1947 	struct device *dev;
1948 
1949 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1950 	if (!dev)
1951 		return NULL;
1952 
1953 	return to_net_dev(dev);
1954 }
1955 EXPORT_SYMBOL(of_find_net_device_by_node);
1956 #endif
1957 
1958 /* Delete sysfs entries but hold kobject reference until after all
1959  * netdev references are gone.
1960  */
1961 void netdev_unregister_kobject(struct net_device *ndev)
1962 {
1963 	struct device *dev = &ndev->dev;
1964 
1965 	if (!refcount_read(&dev_net(ndev)->ns.count))
1966 		dev_set_uevent_suppress(dev, 1);
1967 
1968 	kobject_get(&dev->kobj);
1969 
1970 	remove_queue_kobjects(ndev);
1971 
1972 	pm_runtime_set_memalloc_noio(dev, false);
1973 
1974 	device_del(dev);
1975 }
1976 
1977 /* Create sysfs entries for network device. */
1978 int netdev_register_kobject(struct net_device *ndev)
1979 {
1980 	struct device *dev = &ndev->dev;
1981 	const struct attribute_group **groups = ndev->sysfs_groups;
1982 	int error = 0;
1983 
1984 	device_initialize(dev);
1985 	dev->class = &net_class;
1986 	dev->platform_data = ndev;
1987 	dev->groups = groups;
1988 
1989 	dev_set_name(dev, "%s", ndev->name);
1990 
1991 #ifdef CONFIG_SYSFS
1992 	/* Allow for a device specific group */
1993 	if (*groups)
1994 		groups++;
1995 
1996 	*groups++ = &netstat_group;
1997 
1998 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1999 	if (ndev->ieee80211_ptr)
2000 		*groups++ = &wireless_group;
2001 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
2002 	else if (ndev->wireless_handlers)
2003 		*groups++ = &wireless_group;
2004 #endif
2005 #endif
2006 #endif /* CONFIG_SYSFS */
2007 
2008 	error = device_add(dev);
2009 	if (error)
2010 		return error;
2011 
2012 	error = register_queue_kobjects(ndev);
2013 	if (error) {
2014 		device_del(dev);
2015 		return error;
2016 	}
2017 
2018 	pm_runtime_set_memalloc_noio(dev, true);
2019 
2020 	return error;
2021 }
2022 
2023 /* Change owner for sysfs entries when moving network devices across network
2024  * namespaces owned by different user namespaces.
2025  */
2026 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2027 			const struct net *net_new)
2028 {
2029 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2030 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2031 	struct device *dev = &ndev->dev;
2032 	int error;
2033 
2034 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2035 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2036 
2037 	/* The network namespace was changed but the owning user namespace is
2038 	 * identical so there's no need to change the owner of sysfs entries.
2039 	 */
2040 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2041 		return 0;
2042 
2043 	error = device_change_owner(dev, new_uid, new_gid);
2044 	if (error)
2045 		return error;
2046 
2047 	error = queue_change_owner(ndev, new_uid, new_gid);
2048 	if (error)
2049 		return error;
2050 
2051 	return 0;
2052 }
2053 
2054 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2055 				const void *ns)
2056 {
2057 	return class_create_file_ns(&net_class, class_attr, ns);
2058 }
2059 EXPORT_SYMBOL(netdev_class_create_file_ns);
2060 
2061 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2062 				 const void *ns)
2063 {
2064 	class_remove_file_ns(&net_class, class_attr, ns);
2065 }
2066 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2067 
2068 int __init netdev_kobject_init(void)
2069 {
2070 	kobj_ns_type_register(&net_ns_type_operations);
2071 	return class_register(&net_class);
2072 }
2073