1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 27 #include "net-sysfs.h" 28 29 #ifdef CONFIG_SYSFS 30 static const char fmt_hex[] = "%#x\n"; 31 static const char fmt_dec[] = "%d\n"; 32 static const char fmt_ulong[] = "%lu\n"; 33 static const char fmt_u64[] = "%llu\n"; 34 35 static inline int dev_isalive(const struct net_device *dev) 36 { 37 return dev->reg_state <= NETREG_REGISTERED; 38 } 39 40 /* use same locking rules as GIF* ioctl's */ 41 static ssize_t netdev_show(const struct device *dev, 42 struct device_attribute *attr, char *buf, 43 ssize_t (*format)(const struct net_device *, char *)) 44 { 45 struct net_device *ndev = to_net_dev(dev); 46 ssize_t ret = -EINVAL; 47 48 read_lock(&dev_base_lock); 49 if (dev_isalive(ndev)) 50 ret = (*format)(ndev, buf); 51 read_unlock(&dev_base_lock); 52 53 return ret; 54 } 55 56 /* generate a show function for simple field */ 57 #define NETDEVICE_SHOW(field, format_string) \ 58 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 59 { \ 60 return sprintf(buf, format_string, dev->field); \ 61 } \ 62 static ssize_t field##_show(struct device *dev, \ 63 struct device_attribute *attr, char *buf) \ 64 { \ 65 return netdev_show(dev, attr, buf, format_##field); \ 66 } \ 67 68 #define NETDEVICE_SHOW_RO(field, format_string) \ 69 NETDEVICE_SHOW(field, format_string); \ 70 static DEVICE_ATTR_RO(field) 71 72 #define NETDEVICE_SHOW_RW(field, format_string) \ 73 NETDEVICE_SHOW(field, format_string); \ 74 static DEVICE_ATTR_RW(field) 75 76 /* use same locking and permission rules as SIF* ioctl's */ 77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 78 const char *buf, size_t len, 79 int (*set)(struct net_device *, unsigned long)) 80 { 81 struct net_device *netdev = to_net_dev(dev); 82 struct net *net = dev_net(netdev); 83 unsigned long new; 84 int ret; 85 86 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 87 return -EPERM; 88 89 ret = kstrtoul(buf, 0, &new); 90 if (ret) 91 goto err; 92 93 if (!rtnl_trylock()) 94 return restart_syscall(); 95 96 if (dev_isalive(netdev)) { 97 ret = (*set)(netdev, new); 98 if (ret == 0) 99 ret = len; 100 } 101 rtnl_unlock(); 102 err: 103 return ret; 104 } 105 106 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 107 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 109 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 110 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 111 NETDEVICE_SHOW_RO(type, fmt_dec); 112 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 113 114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 115 char *buf) 116 { 117 struct net_device *ndev = to_net_dev(dev); 118 119 return sprintf(buf, fmt_dec, dev_get_iflink(ndev)); 120 } 121 static DEVICE_ATTR_RO(iflink); 122 123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 124 { 125 return sprintf(buf, fmt_dec, dev->name_assign_type); 126 } 127 128 static ssize_t name_assign_type_show(struct device *dev, 129 struct device_attribute *attr, 130 char *buf) 131 { 132 struct net_device *ndev = to_net_dev(dev); 133 ssize_t ret = -EINVAL; 134 135 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 136 ret = netdev_show(dev, attr, buf, format_name_assign_type); 137 138 return ret; 139 } 140 static DEVICE_ATTR_RO(name_assign_type); 141 142 /* use same locking rules as GIFHWADDR ioctl's */ 143 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 144 char *buf) 145 { 146 struct net_device *ndev = to_net_dev(dev); 147 ssize_t ret = -EINVAL; 148 149 read_lock(&dev_base_lock); 150 if (dev_isalive(ndev)) 151 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 152 read_unlock(&dev_base_lock); 153 return ret; 154 } 155 static DEVICE_ATTR_RO(address); 156 157 static ssize_t broadcast_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct net_device *ndev = to_net_dev(dev); 161 162 if (dev_isalive(ndev)) 163 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 164 return -EINVAL; 165 } 166 static DEVICE_ATTR_RO(broadcast); 167 168 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 169 { 170 if (!netif_running(dev)) 171 return -EINVAL; 172 return dev_change_carrier(dev, (bool)new_carrier); 173 } 174 175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 176 const char *buf, size_t len) 177 { 178 return netdev_store(dev, attr, buf, len, change_carrier); 179 } 180 181 static ssize_t carrier_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct net_device *netdev = to_net_dev(dev); 185 186 if (netif_running(netdev)) 187 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); 188 189 return -EINVAL; 190 } 191 static DEVICE_ATTR_RW(carrier); 192 193 static ssize_t speed_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct net_device *netdev = to_net_dev(dev); 197 int ret = -EINVAL; 198 199 if (!rtnl_trylock()) 200 return restart_syscall(); 201 202 if (netif_running(netdev)) { 203 struct ethtool_link_ksettings cmd; 204 205 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 206 ret = sprintf(buf, fmt_dec, cmd.base.speed); 207 } 208 rtnl_unlock(); 209 return ret; 210 } 211 static DEVICE_ATTR_RO(speed); 212 213 static ssize_t duplex_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct net_device *netdev = to_net_dev(dev); 217 int ret = -EINVAL; 218 219 if (!rtnl_trylock()) 220 return restart_syscall(); 221 222 if (netif_running(netdev)) { 223 struct ethtool_link_ksettings cmd; 224 225 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 226 const char *duplex; 227 228 switch (cmd.base.duplex) { 229 case DUPLEX_HALF: 230 duplex = "half"; 231 break; 232 case DUPLEX_FULL: 233 duplex = "full"; 234 break; 235 default: 236 duplex = "unknown"; 237 break; 238 } 239 ret = sprintf(buf, "%s\n", duplex); 240 } 241 } 242 rtnl_unlock(); 243 return ret; 244 } 245 static DEVICE_ATTR_RO(duplex); 246 247 static ssize_t testing_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct net_device *netdev = to_net_dev(dev); 251 252 if (netif_running(netdev)) 253 return sprintf(buf, fmt_dec, !!netif_testing(netdev)); 254 255 return -EINVAL; 256 } 257 static DEVICE_ATTR_RO(testing); 258 259 static ssize_t dormant_show(struct device *dev, 260 struct device_attribute *attr, char *buf) 261 { 262 struct net_device *netdev = to_net_dev(dev); 263 264 if (netif_running(netdev)) 265 return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); 266 267 return -EINVAL; 268 } 269 static DEVICE_ATTR_RO(dormant); 270 271 static const char *const operstates[] = { 272 "unknown", 273 "notpresent", /* currently unused */ 274 "down", 275 "lowerlayerdown", 276 "testing", 277 "dormant", 278 "up" 279 }; 280 281 static ssize_t operstate_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 const struct net_device *netdev = to_net_dev(dev); 285 unsigned char operstate; 286 287 read_lock(&dev_base_lock); 288 operstate = netdev->operstate; 289 if (!netif_running(netdev)) 290 operstate = IF_OPER_DOWN; 291 read_unlock(&dev_base_lock); 292 293 if (operstate >= ARRAY_SIZE(operstates)) 294 return -EINVAL; /* should not happen */ 295 296 return sprintf(buf, "%s\n", operstates[operstate]); 297 } 298 static DEVICE_ATTR_RO(operstate); 299 300 static ssize_t carrier_changes_show(struct device *dev, 301 struct device_attribute *attr, 302 char *buf) 303 { 304 struct net_device *netdev = to_net_dev(dev); 305 306 return sprintf(buf, fmt_dec, 307 atomic_read(&netdev->carrier_up_count) + 308 atomic_read(&netdev->carrier_down_count)); 309 } 310 static DEVICE_ATTR_RO(carrier_changes); 311 312 static ssize_t carrier_up_count_show(struct device *dev, 313 struct device_attribute *attr, 314 char *buf) 315 { 316 struct net_device *netdev = to_net_dev(dev); 317 318 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 319 } 320 static DEVICE_ATTR_RO(carrier_up_count); 321 322 static ssize_t carrier_down_count_show(struct device *dev, 323 struct device_attribute *attr, 324 char *buf) 325 { 326 struct net_device *netdev = to_net_dev(dev); 327 328 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 329 } 330 static DEVICE_ATTR_RO(carrier_down_count); 331 332 /* read-write attributes */ 333 334 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 335 { 336 return dev_set_mtu(dev, (int)new_mtu); 337 } 338 339 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 340 const char *buf, size_t len) 341 { 342 return netdev_store(dev, attr, buf, len, change_mtu); 343 } 344 NETDEVICE_SHOW_RW(mtu, fmt_dec); 345 346 static int change_flags(struct net_device *dev, unsigned long new_flags) 347 { 348 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 349 } 350 351 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 352 const char *buf, size_t len) 353 { 354 return netdev_store(dev, attr, buf, len, change_flags); 355 } 356 NETDEVICE_SHOW_RW(flags, fmt_hex); 357 358 static ssize_t tx_queue_len_store(struct device *dev, 359 struct device_attribute *attr, 360 const char *buf, size_t len) 361 { 362 if (!capable(CAP_NET_ADMIN)) 363 return -EPERM; 364 365 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 366 } 367 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 368 369 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 370 { 371 WRITE_ONCE(dev->gro_flush_timeout, val); 372 return 0; 373 } 374 375 static ssize_t gro_flush_timeout_store(struct device *dev, 376 struct device_attribute *attr, 377 const char *buf, size_t len) 378 { 379 if (!capable(CAP_NET_ADMIN)) 380 return -EPERM; 381 382 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 383 } 384 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 385 386 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 387 { 388 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 389 return 0; 390 } 391 392 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 393 struct device_attribute *attr, 394 const char *buf, size_t len) 395 { 396 if (!capable(CAP_NET_ADMIN)) 397 return -EPERM; 398 399 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 400 } 401 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 402 403 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 404 const char *buf, size_t len) 405 { 406 struct net_device *netdev = to_net_dev(dev); 407 struct net *net = dev_net(netdev); 408 size_t count = len; 409 ssize_t ret = 0; 410 411 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 412 return -EPERM; 413 414 /* ignore trailing newline */ 415 if (len > 0 && buf[len - 1] == '\n') 416 --count; 417 418 if (!rtnl_trylock()) 419 return restart_syscall(); 420 421 if (dev_isalive(netdev)) { 422 ret = dev_set_alias(netdev, buf, count); 423 if (ret < 0) 424 goto err; 425 ret = len; 426 netdev_state_change(netdev); 427 } 428 err: 429 rtnl_unlock(); 430 431 return ret; 432 } 433 434 static ssize_t ifalias_show(struct device *dev, 435 struct device_attribute *attr, char *buf) 436 { 437 const struct net_device *netdev = to_net_dev(dev); 438 char tmp[IFALIASZ]; 439 ssize_t ret = 0; 440 441 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 442 if (ret > 0) 443 ret = sprintf(buf, "%s\n", tmp); 444 return ret; 445 } 446 static DEVICE_ATTR_RW(ifalias); 447 448 static int change_group(struct net_device *dev, unsigned long new_group) 449 { 450 dev_set_group(dev, (int)new_group); 451 return 0; 452 } 453 454 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 455 const char *buf, size_t len) 456 { 457 return netdev_store(dev, attr, buf, len, change_group); 458 } 459 NETDEVICE_SHOW(group, fmt_dec); 460 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 461 462 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 463 { 464 return dev_change_proto_down(dev, (bool)proto_down); 465 } 466 467 static ssize_t proto_down_store(struct device *dev, 468 struct device_attribute *attr, 469 const char *buf, size_t len) 470 { 471 return netdev_store(dev, attr, buf, len, change_proto_down); 472 } 473 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 474 475 static ssize_t phys_port_id_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct net_device *netdev = to_net_dev(dev); 479 ssize_t ret = -EINVAL; 480 481 if (!rtnl_trylock()) 482 return restart_syscall(); 483 484 if (dev_isalive(netdev)) { 485 struct netdev_phys_item_id ppid; 486 487 ret = dev_get_phys_port_id(netdev, &ppid); 488 if (!ret) 489 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 490 } 491 rtnl_unlock(); 492 493 return ret; 494 } 495 static DEVICE_ATTR_RO(phys_port_id); 496 497 static ssize_t phys_port_name_show(struct device *dev, 498 struct device_attribute *attr, char *buf) 499 { 500 struct net_device *netdev = to_net_dev(dev); 501 ssize_t ret = -EINVAL; 502 503 if (!rtnl_trylock()) 504 return restart_syscall(); 505 506 if (dev_isalive(netdev)) { 507 char name[IFNAMSIZ]; 508 509 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 510 if (!ret) 511 ret = sprintf(buf, "%s\n", name); 512 } 513 rtnl_unlock(); 514 515 return ret; 516 } 517 static DEVICE_ATTR_RO(phys_port_name); 518 519 static ssize_t phys_switch_id_show(struct device *dev, 520 struct device_attribute *attr, char *buf) 521 { 522 struct net_device *netdev = to_net_dev(dev); 523 ssize_t ret = -EINVAL; 524 525 if (!rtnl_trylock()) 526 return restart_syscall(); 527 528 if (dev_isalive(netdev)) { 529 struct netdev_phys_item_id ppid = { }; 530 531 ret = dev_get_port_parent_id(netdev, &ppid, false); 532 if (!ret) 533 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 534 } 535 rtnl_unlock(); 536 537 return ret; 538 } 539 static DEVICE_ATTR_RO(phys_switch_id); 540 541 static ssize_t threaded_show(struct device *dev, 542 struct device_attribute *attr, char *buf) 543 { 544 struct net_device *netdev = to_net_dev(dev); 545 ssize_t ret = -EINVAL; 546 547 if (!rtnl_trylock()) 548 return restart_syscall(); 549 550 if (dev_isalive(netdev)) 551 ret = sprintf(buf, fmt_dec, netdev->threaded); 552 553 rtnl_unlock(); 554 return ret; 555 } 556 557 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 558 { 559 int ret; 560 561 if (list_empty(&dev->napi_list)) 562 return -EOPNOTSUPP; 563 564 if (val != 0 && val != 1) 565 return -EOPNOTSUPP; 566 567 ret = dev_set_threaded(dev, val); 568 569 return ret; 570 } 571 572 static ssize_t threaded_store(struct device *dev, 573 struct device_attribute *attr, 574 const char *buf, size_t len) 575 { 576 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 577 } 578 static DEVICE_ATTR_RW(threaded); 579 580 static struct attribute *net_class_attrs[] __ro_after_init = { 581 &dev_attr_netdev_group.attr, 582 &dev_attr_type.attr, 583 &dev_attr_dev_id.attr, 584 &dev_attr_dev_port.attr, 585 &dev_attr_iflink.attr, 586 &dev_attr_ifindex.attr, 587 &dev_attr_name_assign_type.attr, 588 &dev_attr_addr_assign_type.attr, 589 &dev_attr_addr_len.attr, 590 &dev_attr_link_mode.attr, 591 &dev_attr_address.attr, 592 &dev_attr_broadcast.attr, 593 &dev_attr_speed.attr, 594 &dev_attr_duplex.attr, 595 &dev_attr_dormant.attr, 596 &dev_attr_testing.attr, 597 &dev_attr_operstate.attr, 598 &dev_attr_carrier_changes.attr, 599 &dev_attr_ifalias.attr, 600 &dev_attr_carrier.attr, 601 &dev_attr_mtu.attr, 602 &dev_attr_flags.attr, 603 &dev_attr_tx_queue_len.attr, 604 &dev_attr_gro_flush_timeout.attr, 605 &dev_attr_napi_defer_hard_irqs.attr, 606 &dev_attr_phys_port_id.attr, 607 &dev_attr_phys_port_name.attr, 608 &dev_attr_phys_switch_id.attr, 609 &dev_attr_proto_down.attr, 610 &dev_attr_carrier_up_count.attr, 611 &dev_attr_carrier_down_count.attr, 612 &dev_attr_threaded.attr, 613 NULL, 614 }; 615 ATTRIBUTE_GROUPS(net_class); 616 617 /* Show a given an attribute in the statistics group */ 618 static ssize_t netstat_show(const struct device *d, 619 struct device_attribute *attr, char *buf, 620 unsigned long offset) 621 { 622 struct net_device *dev = to_net_dev(d); 623 ssize_t ret = -EINVAL; 624 625 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 626 offset % sizeof(u64) != 0); 627 628 read_lock(&dev_base_lock); 629 if (dev_isalive(dev)) { 630 struct rtnl_link_stats64 temp; 631 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 632 633 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 634 } 635 read_unlock(&dev_base_lock); 636 return ret; 637 } 638 639 /* generate a read-only statistics attribute */ 640 #define NETSTAT_ENTRY(name) \ 641 static ssize_t name##_show(struct device *d, \ 642 struct device_attribute *attr, char *buf) \ 643 { \ 644 return netstat_show(d, attr, buf, \ 645 offsetof(struct rtnl_link_stats64, name)); \ 646 } \ 647 static DEVICE_ATTR_RO(name) 648 649 NETSTAT_ENTRY(rx_packets); 650 NETSTAT_ENTRY(tx_packets); 651 NETSTAT_ENTRY(rx_bytes); 652 NETSTAT_ENTRY(tx_bytes); 653 NETSTAT_ENTRY(rx_errors); 654 NETSTAT_ENTRY(tx_errors); 655 NETSTAT_ENTRY(rx_dropped); 656 NETSTAT_ENTRY(tx_dropped); 657 NETSTAT_ENTRY(multicast); 658 NETSTAT_ENTRY(collisions); 659 NETSTAT_ENTRY(rx_length_errors); 660 NETSTAT_ENTRY(rx_over_errors); 661 NETSTAT_ENTRY(rx_crc_errors); 662 NETSTAT_ENTRY(rx_frame_errors); 663 NETSTAT_ENTRY(rx_fifo_errors); 664 NETSTAT_ENTRY(rx_missed_errors); 665 NETSTAT_ENTRY(tx_aborted_errors); 666 NETSTAT_ENTRY(tx_carrier_errors); 667 NETSTAT_ENTRY(tx_fifo_errors); 668 NETSTAT_ENTRY(tx_heartbeat_errors); 669 NETSTAT_ENTRY(tx_window_errors); 670 NETSTAT_ENTRY(rx_compressed); 671 NETSTAT_ENTRY(tx_compressed); 672 NETSTAT_ENTRY(rx_nohandler); 673 674 static struct attribute *netstat_attrs[] __ro_after_init = { 675 &dev_attr_rx_packets.attr, 676 &dev_attr_tx_packets.attr, 677 &dev_attr_rx_bytes.attr, 678 &dev_attr_tx_bytes.attr, 679 &dev_attr_rx_errors.attr, 680 &dev_attr_tx_errors.attr, 681 &dev_attr_rx_dropped.attr, 682 &dev_attr_tx_dropped.attr, 683 &dev_attr_multicast.attr, 684 &dev_attr_collisions.attr, 685 &dev_attr_rx_length_errors.attr, 686 &dev_attr_rx_over_errors.attr, 687 &dev_attr_rx_crc_errors.attr, 688 &dev_attr_rx_frame_errors.attr, 689 &dev_attr_rx_fifo_errors.attr, 690 &dev_attr_rx_missed_errors.attr, 691 &dev_attr_tx_aborted_errors.attr, 692 &dev_attr_tx_carrier_errors.attr, 693 &dev_attr_tx_fifo_errors.attr, 694 &dev_attr_tx_heartbeat_errors.attr, 695 &dev_attr_tx_window_errors.attr, 696 &dev_attr_rx_compressed.attr, 697 &dev_attr_tx_compressed.attr, 698 &dev_attr_rx_nohandler.attr, 699 NULL 700 }; 701 702 static const struct attribute_group netstat_group = { 703 .name = "statistics", 704 .attrs = netstat_attrs, 705 }; 706 707 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 708 static struct attribute *wireless_attrs[] = { 709 NULL 710 }; 711 712 static const struct attribute_group wireless_group = { 713 .name = "wireless", 714 .attrs = wireless_attrs, 715 }; 716 #endif 717 718 #else /* CONFIG_SYSFS */ 719 #define net_class_groups NULL 720 #endif /* CONFIG_SYSFS */ 721 722 #ifdef CONFIG_SYSFS 723 #define to_rx_queue_attr(_attr) \ 724 container_of(_attr, struct rx_queue_attribute, attr) 725 726 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 727 728 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 729 char *buf) 730 { 731 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 732 struct netdev_rx_queue *queue = to_rx_queue(kobj); 733 734 if (!attribute->show) 735 return -EIO; 736 737 return attribute->show(queue, buf); 738 } 739 740 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 741 const char *buf, size_t count) 742 { 743 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 744 struct netdev_rx_queue *queue = to_rx_queue(kobj); 745 746 if (!attribute->store) 747 return -EIO; 748 749 return attribute->store(queue, buf, count); 750 } 751 752 static const struct sysfs_ops rx_queue_sysfs_ops = { 753 .show = rx_queue_attr_show, 754 .store = rx_queue_attr_store, 755 }; 756 757 #ifdef CONFIG_RPS 758 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 759 { 760 struct rps_map *map; 761 cpumask_var_t mask; 762 int i, len; 763 764 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 765 return -ENOMEM; 766 767 rcu_read_lock(); 768 map = rcu_dereference(queue->rps_map); 769 if (map) 770 for (i = 0; i < map->len; i++) 771 cpumask_set_cpu(map->cpus[i], mask); 772 773 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 774 rcu_read_unlock(); 775 free_cpumask_var(mask); 776 777 return len < PAGE_SIZE ? len : -EINVAL; 778 } 779 780 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 781 const char *buf, size_t len) 782 { 783 struct rps_map *old_map, *map; 784 cpumask_var_t mask; 785 int err, cpu, i, hk_flags; 786 static DEFINE_MUTEX(rps_map_mutex); 787 788 if (!capable(CAP_NET_ADMIN)) 789 return -EPERM; 790 791 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 792 return -ENOMEM; 793 794 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 795 if (err) { 796 free_cpumask_var(mask); 797 return err; 798 } 799 800 if (!cpumask_empty(mask)) { 801 hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 802 cpumask_and(mask, mask, housekeeping_cpumask(hk_flags)); 803 if (cpumask_empty(mask)) { 804 free_cpumask_var(mask); 805 return -EINVAL; 806 } 807 } 808 809 map = kzalloc(max_t(unsigned int, 810 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 811 GFP_KERNEL); 812 if (!map) { 813 free_cpumask_var(mask); 814 return -ENOMEM; 815 } 816 817 i = 0; 818 for_each_cpu_and(cpu, mask, cpu_online_mask) 819 map->cpus[i++] = cpu; 820 821 if (i) { 822 map->len = i; 823 } else { 824 kfree(map); 825 map = NULL; 826 } 827 828 mutex_lock(&rps_map_mutex); 829 old_map = rcu_dereference_protected(queue->rps_map, 830 mutex_is_locked(&rps_map_mutex)); 831 rcu_assign_pointer(queue->rps_map, map); 832 833 if (map) 834 static_branch_inc(&rps_needed); 835 if (old_map) 836 static_branch_dec(&rps_needed); 837 838 mutex_unlock(&rps_map_mutex); 839 840 if (old_map) 841 kfree_rcu(old_map, rcu); 842 843 free_cpumask_var(mask); 844 return len; 845 } 846 847 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 848 char *buf) 849 { 850 struct rps_dev_flow_table *flow_table; 851 unsigned long val = 0; 852 853 rcu_read_lock(); 854 flow_table = rcu_dereference(queue->rps_flow_table); 855 if (flow_table) 856 val = (unsigned long)flow_table->mask + 1; 857 rcu_read_unlock(); 858 859 return sprintf(buf, "%lu\n", val); 860 } 861 862 static void rps_dev_flow_table_release(struct rcu_head *rcu) 863 { 864 struct rps_dev_flow_table *table = container_of(rcu, 865 struct rps_dev_flow_table, rcu); 866 vfree(table); 867 } 868 869 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 870 const char *buf, size_t len) 871 { 872 unsigned long mask, count; 873 struct rps_dev_flow_table *table, *old_table; 874 static DEFINE_SPINLOCK(rps_dev_flow_lock); 875 int rc; 876 877 if (!capable(CAP_NET_ADMIN)) 878 return -EPERM; 879 880 rc = kstrtoul(buf, 0, &count); 881 if (rc < 0) 882 return rc; 883 884 if (count) { 885 mask = count - 1; 886 /* mask = roundup_pow_of_two(count) - 1; 887 * without overflows... 888 */ 889 while ((mask | (mask >> 1)) != mask) 890 mask |= (mask >> 1); 891 /* On 64 bit arches, must check mask fits in table->mask (u32), 892 * and on 32bit arches, must check 893 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 894 */ 895 #if BITS_PER_LONG > 32 896 if (mask > (unsigned long)(u32)mask) 897 return -EINVAL; 898 #else 899 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 900 / sizeof(struct rps_dev_flow)) { 901 /* Enforce a limit to prevent overflow */ 902 return -EINVAL; 903 } 904 #endif 905 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 906 if (!table) 907 return -ENOMEM; 908 909 table->mask = mask; 910 for (count = 0; count <= mask; count++) 911 table->flows[count].cpu = RPS_NO_CPU; 912 } else { 913 table = NULL; 914 } 915 916 spin_lock(&rps_dev_flow_lock); 917 old_table = rcu_dereference_protected(queue->rps_flow_table, 918 lockdep_is_held(&rps_dev_flow_lock)); 919 rcu_assign_pointer(queue->rps_flow_table, table); 920 spin_unlock(&rps_dev_flow_lock); 921 922 if (old_table) 923 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 924 925 return len; 926 } 927 928 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 929 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 930 931 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 932 = __ATTR(rps_flow_cnt, 0644, 933 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 934 #endif /* CONFIG_RPS */ 935 936 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 937 #ifdef CONFIG_RPS 938 &rps_cpus_attribute.attr, 939 &rps_dev_flow_table_cnt_attribute.attr, 940 #endif 941 NULL 942 }; 943 ATTRIBUTE_GROUPS(rx_queue_default); 944 945 static void rx_queue_release(struct kobject *kobj) 946 { 947 struct netdev_rx_queue *queue = to_rx_queue(kobj); 948 #ifdef CONFIG_RPS 949 struct rps_map *map; 950 struct rps_dev_flow_table *flow_table; 951 952 map = rcu_dereference_protected(queue->rps_map, 1); 953 if (map) { 954 RCU_INIT_POINTER(queue->rps_map, NULL); 955 kfree_rcu(map, rcu); 956 } 957 958 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 959 if (flow_table) { 960 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 961 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 962 } 963 #endif 964 965 memset(kobj, 0, sizeof(*kobj)); 966 dev_put(queue->dev); 967 } 968 969 static const void *rx_queue_namespace(struct kobject *kobj) 970 { 971 struct netdev_rx_queue *queue = to_rx_queue(kobj); 972 struct device *dev = &queue->dev->dev; 973 const void *ns = NULL; 974 975 if (dev->class && dev->class->ns_type) 976 ns = dev->class->namespace(dev); 977 978 return ns; 979 } 980 981 static void rx_queue_get_ownership(struct kobject *kobj, 982 kuid_t *uid, kgid_t *gid) 983 { 984 const struct net *net = rx_queue_namespace(kobj); 985 986 net_ns_get_ownership(net, uid, gid); 987 } 988 989 static struct kobj_type rx_queue_ktype __ro_after_init = { 990 .sysfs_ops = &rx_queue_sysfs_ops, 991 .release = rx_queue_release, 992 .default_groups = rx_queue_default_groups, 993 .namespace = rx_queue_namespace, 994 .get_ownership = rx_queue_get_ownership, 995 }; 996 997 static int rx_queue_add_kobject(struct net_device *dev, int index) 998 { 999 struct netdev_rx_queue *queue = dev->_rx + index; 1000 struct kobject *kobj = &queue->kobj; 1001 int error = 0; 1002 1003 /* Kobject_put later will trigger rx_queue_release call which 1004 * decreases dev refcount: Take that reference here 1005 */ 1006 dev_hold(queue->dev); 1007 1008 kobj->kset = dev->queues_kset; 1009 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1010 "rx-%u", index); 1011 if (error) 1012 goto err; 1013 1014 if (dev->sysfs_rx_queue_group) { 1015 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1016 if (error) 1017 goto err; 1018 } 1019 1020 kobject_uevent(kobj, KOBJ_ADD); 1021 1022 return error; 1023 1024 err: 1025 kobject_put(kobj); 1026 return error; 1027 } 1028 1029 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1030 kgid_t kgid) 1031 { 1032 struct netdev_rx_queue *queue = dev->_rx + index; 1033 struct kobject *kobj = &queue->kobj; 1034 int error; 1035 1036 error = sysfs_change_owner(kobj, kuid, kgid); 1037 if (error) 1038 return error; 1039 1040 if (dev->sysfs_rx_queue_group) 1041 error = sysfs_group_change_owner( 1042 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1043 1044 return error; 1045 } 1046 #endif /* CONFIG_SYSFS */ 1047 1048 int 1049 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1050 { 1051 #ifdef CONFIG_SYSFS 1052 int i; 1053 int error = 0; 1054 1055 #ifndef CONFIG_RPS 1056 if (!dev->sysfs_rx_queue_group) 1057 return 0; 1058 #endif 1059 for (i = old_num; i < new_num; i++) { 1060 error = rx_queue_add_kobject(dev, i); 1061 if (error) { 1062 new_num = old_num; 1063 break; 1064 } 1065 } 1066 1067 while (--i >= new_num) { 1068 struct kobject *kobj = &dev->_rx[i].kobj; 1069 1070 if (!refcount_read(&dev_net(dev)->ns.count)) 1071 kobj->uevent_suppress = 1; 1072 if (dev->sysfs_rx_queue_group) 1073 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1074 kobject_put(kobj); 1075 } 1076 1077 return error; 1078 #else 1079 return 0; 1080 #endif 1081 } 1082 1083 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1084 kuid_t kuid, kgid_t kgid) 1085 { 1086 #ifdef CONFIG_SYSFS 1087 int error = 0; 1088 int i; 1089 1090 #ifndef CONFIG_RPS 1091 if (!dev->sysfs_rx_queue_group) 1092 return 0; 1093 #endif 1094 for (i = 0; i < num; i++) { 1095 error = rx_queue_change_owner(dev, i, kuid, kgid); 1096 if (error) 1097 break; 1098 } 1099 1100 return error; 1101 #else 1102 return 0; 1103 #endif 1104 } 1105 1106 #ifdef CONFIG_SYSFS 1107 /* 1108 * netdev_queue sysfs structures and functions. 1109 */ 1110 struct netdev_queue_attribute { 1111 struct attribute attr; 1112 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1113 ssize_t (*store)(struct netdev_queue *queue, 1114 const char *buf, size_t len); 1115 }; 1116 #define to_netdev_queue_attr(_attr) \ 1117 container_of(_attr, struct netdev_queue_attribute, attr) 1118 1119 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1120 1121 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1122 struct attribute *attr, char *buf) 1123 { 1124 const struct netdev_queue_attribute *attribute 1125 = to_netdev_queue_attr(attr); 1126 struct netdev_queue *queue = to_netdev_queue(kobj); 1127 1128 if (!attribute->show) 1129 return -EIO; 1130 1131 return attribute->show(queue, buf); 1132 } 1133 1134 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1135 struct attribute *attr, 1136 const char *buf, size_t count) 1137 { 1138 const struct netdev_queue_attribute *attribute 1139 = to_netdev_queue_attr(attr); 1140 struct netdev_queue *queue = to_netdev_queue(kobj); 1141 1142 if (!attribute->store) 1143 return -EIO; 1144 1145 return attribute->store(queue, buf, count); 1146 } 1147 1148 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1149 .show = netdev_queue_attr_show, 1150 .store = netdev_queue_attr_store, 1151 }; 1152 1153 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1154 { 1155 unsigned long trans_timeout; 1156 1157 spin_lock_irq(&queue->_xmit_lock); 1158 trans_timeout = queue->trans_timeout; 1159 spin_unlock_irq(&queue->_xmit_lock); 1160 1161 return sprintf(buf, fmt_ulong, trans_timeout); 1162 } 1163 1164 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1165 { 1166 struct net_device *dev = queue->dev; 1167 unsigned int i; 1168 1169 i = queue - dev->_tx; 1170 BUG_ON(i >= dev->num_tx_queues); 1171 1172 return i; 1173 } 1174 1175 static ssize_t traffic_class_show(struct netdev_queue *queue, 1176 char *buf) 1177 { 1178 struct net_device *dev = queue->dev; 1179 int num_tc, tc; 1180 int index; 1181 1182 if (!netif_is_multiqueue(dev)) 1183 return -ENOENT; 1184 1185 if (!rtnl_trylock()) 1186 return restart_syscall(); 1187 1188 index = get_netdev_queue_index(queue); 1189 1190 /* If queue belongs to subordinate dev use its TC mapping */ 1191 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1192 1193 num_tc = dev->num_tc; 1194 tc = netdev_txq_to_tc(dev, index); 1195 1196 rtnl_unlock(); 1197 1198 if (tc < 0) 1199 return -EINVAL; 1200 1201 /* We can report the traffic class one of two ways: 1202 * Subordinate device traffic classes are reported with the traffic 1203 * class first, and then the subordinate class so for example TC0 on 1204 * subordinate device 2 will be reported as "0-2". If the queue 1205 * belongs to the root device it will be reported with just the 1206 * traffic class, so just "0" for TC 0 for example. 1207 */ 1208 return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) : 1209 sprintf(buf, "%d\n", tc); 1210 } 1211 1212 #ifdef CONFIG_XPS 1213 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1214 char *buf) 1215 { 1216 return sprintf(buf, "%lu\n", queue->tx_maxrate); 1217 } 1218 1219 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1220 const char *buf, size_t len) 1221 { 1222 struct net_device *dev = queue->dev; 1223 int err, index = get_netdev_queue_index(queue); 1224 u32 rate = 0; 1225 1226 if (!capable(CAP_NET_ADMIN)) 1227 return -EPERM; 1228 1229 err = kstrtou32(buf, 10, &rate); 1230 if (err < 0) 1231 return err; 1232 1233 if (!rtnl_trylock()) 1234 return restart_syscall(); 1235 1236 err = -EOPNOTSUPP; 1237 if (dev->netdev_ops->ndo_set_tx_maxrate) 1238 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1239 1240 rtnl_unlock(); 1241 if (!err) { 1242 queue->tx_maxrate = rate; 1243 return len; 1244 } 1245 return err; 1246 } 1247 1248 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1249 = __ATTR_RW(tx_maxrate); 1250 #endif 1251 1252 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1253 = __ATTR_RO(tx_timeout); 1254 1255 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1256 = __ATTR_RO(traffic_class); 1257 1258 #ifdef CONFIG_BQL 1259 /* 1260 * Byte queue limits sysfs structures and functions. 1261 */ 1262 static ssize_t bql_show(char *buf, unsigned int value) 1263 { 1264 return sprintf(buf, "%u\n", value); 1265 } 1266 1267 static ssize_t bql_set(const char *buf, const size_t count, 1268 unsigned int *pvalue) 1269 { 1270 unsigned int value; 1271 int err; 1272 1273 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1274 value = DQL_MAX_LIMIT; 1275 } else { 1276 err = kstrtouint(buf, 10, &value); 1277 if (err < 0) 1278 return err; 1279 if (value > DQL_MAX_LIMIT) 1280 return -EINVAL; 1281 } 1282 1283 *pvalue = value; 1284 1285 return count; 1286 } 1287 1288 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1289 char *buf) 1290 { 1291 struct dql *dql = &queue->dql; 1292 1293 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1294 } 1295 1296 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1297 const char *buf, size_t len) 1298 { 1299 struct dql *dql = &queue->dql; 1300 unsigned int value; 1301 int err; 1302 1303 err = kstrtouint(buf, 10, &value); 1304 if (err < 0) 1305 return err; 1306 1307 dql->slack_hold_time = msecs_to_jiffies(value); 1308 1309 return len; 1310 } 1311 1312 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1313 = __ATTR(hold_time, 0644, 1314 bql_show_hold_time, bql_set_hold_time); 1315 1316 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1317 char *buf) 1318 { 1319 struct dql *dql = &queue->dql; 1320 1321 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); 1322 } 1323 1324 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1325 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1326 1327 #define BQL_ATTR(NAME, FIELD) \ 1328 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1329 char *buf) \ 1330 { \ 1331 return bql_show(buf, queue->dql.FIELD); \ 1332 } \ 1333 \ 1334 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1335 const char *buf, size_t len) \ 1336 { \ 1337 return bql_set(buf, len, &queue->dql.FIELD); \ 1338 } \ 1339 \ 1340 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1341 = __ATTR(NAME, 0644, \ 1342 bql_show_ ## NAME, bql_set_ ## NAME) 1343 1344 BQL_ATTR(limit, limit); 1345 BQL_ATTR(limit_max, max_limit); 1346 BQL_ATTR(limit_min, min_limit); 1347 1348 static struct attribute *dql_attrs[] __ro_after_init = { 1349 &bql_limit_attribute.attr, 1350 &bql_limit_max_attribute.attr, 1351 &bql_limit_min_attribute.attr, 1352 &bql_hold_time_attribute.attr, 1353 &bql_inflight_attribute.attr, 1354 NULL 1355 }; 1356 1357 static const struct attribute_group dql_group = { 1358 .name = "byte_queue_limits", 1359 .attrs = dql_attrs, 1360 }; 1361 #endif /* CONFIG_BQL */ 1362 1363 #ifdef CONFIG_XPS 1364 static ssize_t xps_cpus_show(struct netdev_queue *queue, 1365 char *buf) 1366 { 1367 int cpu, len, ret, num_tc = 1, tc = 0; 1368 struct net_device *dev = queue->dev; 1369 struct xps_dev_maps *dev_maps; 1370 cpumask_var_t mask; 1371 unsigned long index; 1372 1373 if (!netif_is_multiqueue(dev)) 1374 return -ENOENT; 1375 1376 index = get_netdev_queue_index(queue); 1377 1378 if (!rtnl_trylock()) 1379 return restart_syscall(); 1380 1381 if (dev->num_tc) { 1382 /* Do not allow XPS on subordinate device directly */ 1383 num_tc = dev->num_tc; 1384 if (num_tc < 0) { 1385 ret = -EINVAL; 1386 goto err_rtnl_unlock; 1387 } 1388 1389 /* If queue belongs to subordinate dev use its map */ 1390 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1391 1392 tc = netdev_txq_to_tc(dev, index); 1393 if (tc < 0) { 1394 ret = -EINVAL; 1395 goto err_rtnl_unlock; 1396 } 1397 } 1398 1399 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 1400 ret = -ENOMEM; 1401 goto err_rtnl_unlock; 1402 } 1403 1404 rcu_read_lock(); 1405 dev_maps = rcu_dereference(dev->xps_cpus_map); 1406 if (dev_maps) { 1407 for_each_possible_cpu(cpu) { 1408 int i, tci = cpu * num_tc + tc; 1409 struct xps_map *map; 1410 1411 map = rcu_dereference(dev_maps->attr_map[tci]); 1412 if (!map) 1413 continue; 1414 1415 for (i = map->len; i--;) { 1416 if (map->queues[i] == index) { 1417 cpumask_set_cpu(cpu, mask); 1418 break; 1419 } 1420 } 1421 } 1422 } 1423 rcu_read_unlock(); 1424 1425 rtnl_unlock(); 1426 1427 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 1428 free_cpumask_var(mask); 1429 return len < PAGE_SIZE ? len : -EINVAL; 1430 1431 err_rtnl_unlock: 1432 rtnl_unlock(); 1433 return ret; 1434 } 1435 1436 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1437 const char *buf, size_t len) 1438 { 1439 struct net_device *dev = queue->dev; 1440 unsigned long index; 1441 cpumask_var_t mask; 1442 int err; 1443 1444 if (!netif_is_multiqueue(dev)) 1445 return -ENOENT; 1446 1447 if (!capable(CAP_NET_ADMIN)) 1448 return -EPERM; 1449 1450 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1451 return -ENOMEM; 1452 1453 index = get_netdev_queue_index(queue); 1454 1455 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1456 if (err) { 1457 free_cpumask_var(mask); 1458 return err; 1459 } 1460 1461 if (!rtnl_trylock()) { 1462 free_cpumask_var(mask); 1463 return restart_syscall(); 1464 } 1465 1466 err = netif_set_xps_queue(dev, mask, index); 1467 rtnl_unlock(); 1468 1469 free_cpumask_var(mask); 1470 1471 return err ? : len; 1472 } 1473 1474 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1475 = __ATTR_RW(xps_cpus); 1476 1477 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1478 { 1479 int j, len, ret, num_tc = 1, tc = 0; 1480 struct net_device *dev = queue->dev; 1481 struct xps_dev_maps *dev_maps; 1482 unsigned long *mask, index; 1483 1484 index = get_netdev_queue_index(queue); 1485 1486 if (!rtnl_trylock()) 1487 return restart_syscall(); 1488 1489 if (dev->num_tc) { 1490 num_tc = dev->num_tc; 1491 tc = netdev_txq_to_tc(dev, index); 1492 if (tc < 0) { 1493 ret = -EINVAL; 1494 goto err_rtnl_unlock; 1495 } 1496 } 1497 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1498 if (!mask) { 1499 ret = -ENOMEM; 1500 goto err_rtnl_unlock; 1501 } 1502 1503 rcu_read_lock(); 1504 dev_maps = rcu_dereference(dev->xps_rxqs_map); 1505 if (!dev_maps) 1506 goto out_no_maps; 1507 1508 for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues), 1509 j < dev->num_rx_queues;) { 1510 int i, tci = j * num_tc + tc; 1511 struct xps_map *map; 1512 1513 map = rcu_dereference(dev_maps->attr_map[tci]); 1514 if (!map) 1515 continue; 1516 1517 for (i = map->len; i--;) { 1518 if (map->queues[i] == index) { 1519 set_bit(j, mask); 1520 break; 1521 } 1522 } 1523 } 1524 out_no_maps: 1525 rcu_read_unlock(); 1526 1527 rtnl_unlock(); 1528 1529 len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues); 1530 bitmap_free(mask); 1531 1532 return len < PAGE_SIZE ? len : -EINVAL; 1533 1534 err_rtnl_unlock: 1535 rtnl_unlock(); 1536 return ret; 1537 } 1538 1539 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1540 size_t len) 1541 { 1542 struct net_device *dev = queue->dev; 1543 struct net *net = dev_net(dev); 1544 unsigned long *mask, index; 1545 int err; 1546 1547 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1548 return -EPERM; 1549 1550 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1551 if (!mask) 1552 return -ENOMEM; 1553 1554 index = get_netdev_queue_index(queue); 1555 1556 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1557 if (err) { 1558 bitmap_free(mask); 1559 return err; 1560 } 1561 1562 if (!rtnl_trylock()) { 1563 bitmap_free(mask); 1564 return restart_syscall(); 1565 } 1566 1567 cpus_read_lock(); 1568 err = __netif_set_xps_queue(dev, mask, index, true); 1569 cpus_read_unlock(); 1570 1571 rtnl_unlock(); 1572 1573 bitmap_free(mask); 1574 return err ? : len; 1575 } 1576 1577 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1578 = __ATTR_RW(xps_rxqs); 1579 #endif /* CONFIG_XPS */ 1580 1581 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1582 &queue_trans_timeout.attr, 1583 &queue_traffic_class.attr, 1584 #ifdef CONFIG_XPS 1585 &xps_cpus_attribute.attr, 1586 &xps_rxqs_attribute.attr, 1587 &queue_tx_maxrate.attr, 1588 #endif 1589 NULL 1590 }; 1591 ATTRIBUTE_GROUPS(netdev_queue_default); 1592 1593 static void netdev_queue_release(struct kobject *kobj) 1594 { 1595 struct netdev_queue *queue = to_netdev_queue(kobj); 1596 1597 memset(kobj, 0, sizeof(*kobj)); 1598 dev_put(queue->dev); 1599 } 1600 1601 static const void *netdev_queue_namespace(struct kobject *kobj) 1602 { 1603 struct netdev_queue *queue = to_netdev_queue(kobj); 1604 struct device *dev = &queue->dev->dev; 1605 const void *ns = NULL; 1606 1607 if (dev->class && dev->class->ns_type) 1608 ns = dev->class->namespace(dev); 1609 1610 return ns; 1611 } 1612 1613 static void netdev_queue_get_ownership(struct kobject *kobj, 1614 kuid_t *uid, kgid_t *gid) 1615 { 1616 const struct net *net = netdev_queue_namespace(kobj); 1617 1618 net_ns_get_ownership(net, uid, gid); 1619 } 1620 1621 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1622 .sysfs_ops = &netdev_queue_sysfs_ops, 1623 .release = netdev_queue_release, 1624 .default_groups = netdev_queue_default_groups, 1625 .namespace = netdev_queue_namespace, 1626 .get_ownership = netdev_queue_get_ownership, 1627 }; 1628 1629 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1630 { 1631 struct netdev_queue *queue = dev->_tx + index; 1632 struct kobject *kobj = &queue->kobj; 1633 int error = 0; 1634 1635 /* Kobject_put later will trigger netdev_queue_release call 1636 * which decreases dev refcount: Take that reference here 1637 */ 1638 dev_hold(queue->dev); 1639 1640 kobj->kset = dev->queues_kset; 1641 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1642 "tx-%u", index); 1643 if (error) 1644 goto err; 1645 1646 #ifdef CONFIG_BQL 1647 error = sysfs_create_group(kobj, &dql_group); 1648 if (error) 1649 goto err; 1650 #endif 1651 1652 kobject_uevent(kobj, KOBJ_ADD); 1653 return 0; 1654 1655 err: 1656 kobject_put(kobj); 1657 return error; 1658 } 1659 1660 static int tx_queue_change_owner(struct net_device *ndev, int index, 1661 kuid_t kuid, kgid_t kgid) 1662 { 1663 struct netdev_queue *queue = ndev->_tx + index; 1664 struct kobject *kobj = &queue->kobj; 1665 int error; 1666 1667 error = sysfs_change_owner(kobj, kuid, kgid); 1668 if (error) 1669 return error; 1670 1671 #ifdef CONFIG_BQL 1672 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1673 #endif 1674 return error; 1675 } 1676 #endif /* CONFIG_SYSFS */ 1677 1678 int 1679 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1680 { 1681 #ifdef CONFIG_SYSFS 1682 int i; 1683 int error = 0; 1684 1685 for (i = old_num; i < new_num; i++) { 1686 error = netdev_queue_add_kobject(dev, i); 1687 if (error) { 1688 new_num = old_num; 1689 break; 1690 } 1691 } 1692 1693 while (--i >= new_num) { 1694 struct netdev_queue *queue = dev->_tx + i; 1695 1696 if (!refcount_read(&dev_net(dev)->ns.count)) 1697 queue->kobj.uevent_suppress = 1; 1698 #ifdef CONFIG_BQL 1699 sysfs_remove_group(&queue->kobj, &dql_group); 1700 #endif 1701 kobject_put(&queue->kobj); 1702 } 1703 1704 return error; 1705 #else 1706 return 0; 1707 #endif /* CONFIG_SYSFS */ 1708 } 1709 1710 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1711 kuid_t kuid, kgid_t kgid) 1712 { 1713 #ifdef CONFIG_SYSFS 1714 int error = 0; 1715 int i; 1716 1717 for (i = 0; i < num; i++) { 1718 error = tx_queue_change_owner(dev, i, kuid, kgid); 1719 if (error) 1720 break; 1721 } 1722 1723 return error; 1724 #else 1725 return 0; 1726 #endif /* CONFIG_SYSFS */ 1727 } 1728 1729 static int register_queue_kobjects(struct net_device *dev) 1730 { 1731 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1732 1733 #ifdef CONFIG_SYSFS 1734 dev->queues_kset = kset_create_and_add("queues", 1735 NULL, &dev->dev.kobj); 1736 if (!dev->queues_kset) 1737 return -ENOMEM; 1738 real_rx = dev->real_num_rx_queues; 1739 #endif 1740 real_tx = dev->real_num_tx_queues; 1741 1742 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1743 if (error) 1744 goto error; 1745 rxq = real_rx; 1746 1747 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1748 if (error) 1749 goto error; 1750 txq = real_tx; 1751 1752 return 0; 1753 1754 error: 1755 netdev_queue_update_kobjects(dev, txq, 0); 1756 net_rx_queue_update_kobjects(dev, rxq, 0); 1757 #ifdef CONFIG_SYSFS 1758 kset_unregister(dev->queues_kset); 1759 #endif 1760 return error; 1761 } 1762 1763 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1764 { 1765 int error = 0, real_rx = 0, real_tx = 0; 1766 1767 #ifdef CONFIG_SYSFS 1768 if (ndev->queues_kset) { 1769 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1770 if (error) 1771 return error; 1772 } 1773 real_rx = ndev->real_num_rx_queues; 1774 #endif 1775 real_tx = ndev->real_num_tx_queues; 1776 1777 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1778 if (error) 1779 return error; 1780 1781 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1782 if (error) 1783 return error; 1784 1785 return 0; 1786 } 1787 1788 static void remove_queue_kobjects(struct net_device *dev) 1789 { 1790 int real_rx = 0, real_tx = 0; 1791 1792 #ifdef CONFIG_SYSFS 1793 real_rx = dev->real_num_rx_queues; 1794 #endif 1795 real_tx = dev->real_num_tx_queues; 1796 1797 net_rx_queue_update_kobjects(dev, real_rx, 0); 1798 netdev_queue_update_kobjects(dev, real_tx, 0); 1799 #ifdef CONFIG_SYSFS 1800 kset_unregister(dev->queues_kset); 1801 #endif 1802 } 1803 1804 static bool net_current_may_mount(void) 1805 { 1806 struct net *net = current->nsproxy->net_ns; 1807 1808 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1809 } 1810 1811 static void *net_grab_current_ns(void) 1812 { 1813 struct net *ns = current->nsproxy->net_ns; 1814 #ifdef CONFIG_NET_NS 1815 if (ns) 1816 refcount_inc(&ns->passive); 1817 #endif 1818 return ns; 1819 } 1820 1821 static const void *net_initial_ns(void) 1822 { 1823 return &init_net; 1824 } 1825 1826 static const void *net_netlink_ns(struct sock *sk) 1827 { 1828 return sock_net(sk); 1829 } 1830 1831 const struct kobj_ns_type_operations net_ns_type_operations = { 1832 .type = KOBJ_NS_TYPE_NET, 1833 .current_may_mount = net_current_may_mount, 1834 .grab_current_ns = net_grab_current_ns, 1835 .netlink_ns = net_netlink_ns, 1836 .initial_ns = net_initial_ns, 1837 .drop_ns = net_drop_ns, 1838 }; 1839 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1840 1841 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 1842 { 1843 struct net_device *dev = to_net_dev(d); 1844 int retval; 1845 1846 /* pass interface to uevent. */ 1847 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1848 if (retval) 1849 goto exit; 1850 1851 /* pass ifindex to uevent. 1852 * ifindex is useful as it won't change (interface name may change) 1853 * and is what RtNetlink uses natively. 1854 */ 1855 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1856 1857 exit: 1858 return retval; 1859 } 1860 1861 /* 1862 * netdev_release -- destroy and free a dead device. 1863 * Called when last reference to device kobject is gone. 1864 */ 1865 static void netdev_release(struct device *d) 1866 { 1867 struct net_device *dev = to_net_dev(d); 1868 1869 BUG_ON(dev->reg_state != NETREG_RELEASED); 1870 1871 /* no need to wait for rcu grace period: 1872 * device is dead and about to be freed. 1873 */ 1874 kfree(rcu_access_pointer(dev->ifalias)); 1875 netdev_freemem(dev); 1876 } 1877 1878 static const void *net_namespace(struct device *d) 1879 { 1880 struct net_device *dev = to_net_dev(d); 1881 1882 return dev_net(dev); 1883 } 1884 1885 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) 1886 { 1887 struct net_device *dev = to_net_dev(d); 1888 const struct net *net = dev_net(dev); 1889 1890 net_ns_get_ownership(net, uid, gid); 1891 } 1892 1893 static struct class net_class __ro_after_init = { 1894 .name = "net", 1895 .dev_release = netdev_release, 1896 .dev_groups = net_class_groups, 1897 .dev_uevent = netdev_uevent, 1898 .ns_type = &net_ns_type_operations, 1899 .namespace = net_namespace, 1900 .get_ownership = net_get_ownership, 1901 }; 1902 1903 #ifdef CONFIG_OF_NET 1904 static int of_dev_node_match(struct device *dev, const void *data) 1905 { 1906 for (; dev; dev = dev->parent) { 1907 if (dev->of_node == data) 1908 return 1; 1909 } 1910 1911 return 0; 1912 } 1913 1914 /* 1915 * of_find_net_device_by_node - lookup the net device for the device node 1916 * @np: OF device node 1917 * 1918 * Looks up the net_device structure corresponding with the device node. 1919 * If successful, returns a pointer to the net_device with the embedded 1920 * struct device refcount incremented by one, or NULL on failure. The 1921 * refcount must be dropped when done with the net_device. 1922 */ 1923 struct net_device *of_find_net_device_by_node(struct device_node *np) 1924 { 1925 struct device *dev; 1926 1927 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1928 if (!dev) 1929 return NULL; 1930 1931 return to_net_dev(dev); 1932 } 1933 EXPORT_SYMBOL(of_find_net_device_by_node); 1934 #endif 1935 1936 /* Delete sysfs entries but hold kobject reference until after all 1937 * netdev references are gone. 1938 */ 1939 void netdev_unregister_kobject(struct net_device *ndev) 1940 { 1941 struct device *dev = &ndev->dev; 1942 1943 if (!refcount_read(&dev_net(ndev)->ns.count)) 1944 dev_set_uevent_suppress(dev, 1); 1945 1946 kobject_get(&dev->kobj); 1947 1948 remove_queue_kobjects(ndev); 1949 1950 pm_runtime_set_memalloc_noio(dev, false); 1951 1952 device_del(dev); 1953 } 1954 1955 /* Create sysfs entries for network device. */ 1956 int netdev_register_kobject(struct net_device *ndev) 1957 { 1958 struct device *dev = &ndev->dev; 1959 const struct attribute_group **groups = ndev->sysfs_groups; 1960 int error = 0; 1961 1962 device_initialize(dev); 1963 dev->class = &net_class; 1964 dev->platform_data = ndev; 1965 dev->groups = groups; 1966 1967 dev_set_name(dev, "%s", ndev->name); 1968 1969 #ifdef CONFIG_SYSFS 1970 /* Allow for a device specific group */ 1971 if (*groups) 1972 groups++; 1973 1974 *groups++ = &netstat_group; 1975 1976 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 1977 if (ndev->ieee80211_ptr) 1978 *groups++ = &wireless_group; 1979 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 1980 else if (ndev->wireless_handlers) 1981 *groups++ = &wireless_group; 1982 #endif 1983 #endif 1984 #endif /* CONFIG_SYSFS */ 1985 1986 error = device_add(dev); 1987 if (error) 1988 return error; 1989 1990 error = register_queue_kobjects(ndev); 1991 if (error) { 1992 device_del(dev); 1993 return error; 1994 } 1995 1996 pm_runtime_set_memalloc_noio(dev, true); 1997 1998 return error; 1999 } 2000 2001 /* Change owner for sysfs entries when moving network devices across network 2002 * namespaces owned by different user namespaces. 2003 */ 2004 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2005 const struct net *net_new) 2006 { 2007 struct device *dev = &ndev->dev; 2008 kuid_t old_uid, new_uid; 2009 kgid_t old_gid, new_gid; 2010 int error; 2011 2012 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2013 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2014 2015 /* The network namespace was changed but the owning user namespace is 2016 * identical so there's no need to change the owner of sysfs entries. 2017 */ 2018 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2019 return 0; 2020 2021 error = device_change_owner(dev, new_uid, new_gid); 2022 if (error) 2023 return error; 2024 2025 error = queue_change_owner(ndev, new_uid, new_gid); 2026 if (error) 2027 return error; 2028 2029 return 0; 2030 } 2031 2032 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2033 const void *ns) 2034 { 2035 return class_create_file_ns(&net_class, class_attr, ns); 2036 } 2037 EXPORT_SYMBOL(netdev_class_create_file_ns); 2038 2039 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2040 const void *ns) 2041 { 2042 class_remove_file_ns(&net_class, class_attr, ns); 2043 } 2044 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2045 2046 int __init netdev_kobject_init(void) 2047 { 2048 kobj_ns_type_register(&net_ns_type_operations); 2049 return class_register(&net_class); 2050 } 2051