1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 27 #include "net-sysfs.h" 28 29 #ifdef CONFIG_SYSFS 30 static const char fmt_hex[] = "%#x\n"; 31 static const char fmt_dec[] = "%d\n"; 32 static const char fmt_ulong[] = "%lu\n"; 33 static const char fmt_u64[] = "%llu\n"; 34 35 static inline int dev_isalive(const struct net_device *dev) 36 { 37 return dev->reg_state <= NETREG_REGISTERED; 38 } 39 40 /* use same locking rules as GIF* ioctl's */ 41 static ssize_t netdev_show(const struct device *dev, 42 struct device_attribute *attr, char *buf, 43 ssize_t (*format)(const struct net_device *, char *)) 44 { 45 struct net_device *ndev = to_net_dev(dev); 46 ssize_t ret = -EINVAL; 47 48 read_lock(&dev_base_lock); 49 if (dev_isalive(ndev)) 50 ret = (*format)(ndev, buf); 51 read_unlock(&dev_base_lock); 52 53 return ret; 54 } 55 56 /* generate a show function for simple field */ 57 #define NETDEVICE_SHOW(field, format_string) \ 58 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 59 { \ 60 return sprintf(buf, format_string, dev->field); \ 61 } \ 62 static ssize_t field##_show(struct device *dev, \ 63 struct device_attribute *attr, char *buf) \ 64 { \ 65 return netdev_show(dev, attr, buf, format_##field); \ 66 } \ 67 68 #define NETDEVICE_SHOW_RO(field, format_string) \ 69 NETDEVICE_SHOW(field, format_string); \ 70 static DEVICE_ATTR_RO(field) 71 72 #define NETDEVICE_SHOW_RW(field, format_string) \ 73 NETDEVICE_SHOW(field, format_string); \ 74 static DEVICE_ATTR_RW(field) 75 76 /* use same locking and permission rules as SIF* ioctl's */ 77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 78 const char *buf, size_t len, 79 int (*set)(struct net_device *, unsigned long)) 80 { 81 struct net_device *netdev = to_net_dev(dev); 82 struct net *net = dev_net(netdev); 83 unsigned long new; 84 int ret; 85 86 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 87 return -EPERM; 88 89 ret = kstrtoul(buf, 0, &new); 90 if (ret) 91 goto err; 92 93 if (!rtnl_trylock()) 94 return restart_syscall(); 95 96 if (dev_isalive(netdev)) { 97 ret = (*set)(netdev, new); 98 if (ret == 0) 99 ret = len; 100 } 101 rtnl_unlock(); 102 err: 103 return ret; 104 } 105 106 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 107 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 109 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 110 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 111 NETDEVICE_SHOW_RO(type, fmt_dec); 112 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 113 114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 115 char *buf) 116 { 117 struct net_device *ndev = to_net_dev(dev); 118 119 return sprintf(buf, fmt_dec, dev_get_iflink(ndev)); 120 } 121 static DEVICE_ATTR_RO(iflink); 122 123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 124 { 125 return sprintf(buf, fmt_dec, dev->name_assign_type); 126 } 127 128 static ssize_t name_assign_type_show(struct device *dev, 129 struct device_attribute *attr, 130 char *buf) 131 { 132 struct net_device *ndev = to_net_dev(dev); 133 ssize_t ret = -EINVAL; 134 135 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 136 ret = netdev_show(dev, attr, buf, format_name_assign_type); 137 138 return ret; 139 } 140 static DEVICE_ATTR_RO(name_assign_type); 141 142 /* use same locking rules as GIFHWADDR ioctl's */ 143 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 144 char *buf) 145 { 146 struct net_device *ndev = to_net_dev(dev); 147 ssize_t ret = -EINVAL; 148 149 read_lock(&dev_base_lock); 150 if (dev_isalive(ndev)) 151 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 152 read_unlock(&dev_base_lock); 153 return ret; 154 } 155 static DEVICE_ATTR_RO(address); 156 157 static ssize_t broadcast_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct net_device *ndev = to_net_dev(dev); 161 162 if (dev_isalive(ndev)) 163 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 164 return -EINVAL; 165 } 166 static DEVICE_ATTR_RO(broadcast); 167 168 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 169 { 170 if (!netif_running(dev)) 171 return -EINVAL; 172 return dev_change_carrier(dev, (bool)new_carrier); 173 } 174 175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 176 const char *buf, size_t len) 177 { 178 struct net_device *netdev = to_net_dev(dev); 179 180 /* The check is also done in change_carrier; this helps returning early 181 * without hitting the trylock/restart in netdev_store. 182 */ 183 if (!netdev->netdev_ops->ndo_change_carrier) 184 return -EOPNOTSUPP; 185 186 return netdev_store(dev, attr, buf, len, change_carrier); 187 } 188 189 static ssize_t carrier_show(struct device *dev, 190 struct device_attribute *attr, char *buf) 191 { 192 struct net_device *netdev = to_net_dev(dev); 193 194 if (netif_running(netdev)) 195 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); 196 197 return -EINVAL; 198 } 199 static DEVICE_ATTR_RW(carrier); 200 201 static ssize_t speed_show(struct device *dev, 202 struct device_attribute *attr, char *buf) 203 { 204 struct net_device *netdev = to_net_dev(dev); 205 int ret = -EINVAL; 206 207 /* The check is also done in __ethtool_get_link_ksettings; this helps 208 * returning early without hitting the trylock/restart below. 209 */ 210 if (!netdev->ethtool_ops->get_link_ksettings) 211 return ret; 212 213 if (!rtnl_trylock()) 214 return restart_syscall(); 215 216 if (netif_running(netdev) && netif_device_present(netdev)) { 217 struct ethtool_link_ksettings cmd; 218 219 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 220 ret = sprintf(buf, fmt_dec, cmd.base.speed); 221 } 222 rtnl_unlock(); 223 return ret; 224 } 225 static DEVICE_ATTR_RO(speed); 226 227 static ssize_t duplex_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 struct net_device *netdev = to_net_dev(dev); 231 int ret = -EINVAL; 232 233 /* The check is also done in __ethtool_get_link_ksettings; this helps 234 * returning early without hitting the trylock/restart below. 235 */ 236 if (!netdev->ethtool_ops->get_link_ksettings) 237 return ret; 238 239 if (!rtnl_trylock()) 240 return restart_syscall(); 241 242 if (netif_running(netdev)) { 243 struct ethtool_link_ksettings cmd; 244 245 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 246 const char *duplex; 247 248 switch (cmd.base.duplex) { 249 case DUPLEX_HALF: 250 duplex = "half"; 251 break; 252 case DUPLEX_FULL: 253 duplex = "full"; 254 break; 255 default: 256 duplex = "unknown"; 257 break; 258 } 259 ret = sprintf(buf, "%s\n", duplex); 260 } 261 } 262 rtnl_unlock(); 263 return ret; 264 } 265 static DEVICE_ATTR_RO(duplex); 266 267 static ssize_t testing_show(struct device *dev, 268 struct device_attribute *attr, char *buf) 269 { 270 struct net_device *netdev = to_net_dev(dev); 271 272 if (netif_running(netdev)) 273 return sprintf(buf, fmt_dec, !!netif_testing(netdev)); 274 275 return -EINVAL; 276 } 277 static DEVICE_ATTR_RO(testing); 278 279 static ssize_t dormant_show(struct device *dev, 280 struct device_attribute *attr, char *buf) 281 { 282 struct net_device *netdev = to_net_dev(dev); 283 284 if (netif_running(netdev)) 285 return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); 286 287 return -EINVAL; 288 } 289 static DEVICE_ATTR_RO(dormant); 290 291 static const char *const operstates[] = { 292 "unknown", 293 "notpresent", /* currently unused */ 294 "down", 295 "lowerlayerdown", 296 "testing", 297 "dormant", 298 "up" 299 }; 300 301 static ssize_t operstate_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 const struct net_device *netdev = to_net_dev(dev); 305 unsigned char operstate; 306 307 read_lock(&dev_base_lock); 308 operstate = netdev->operstate; 309 if (!netif_running(netdev)) 310 operstate = IF_OPER_DOWN; 311 read_unlock(&dev_base_lock); 312 313 if (operstate >= ARRAY_SIZE(operstates)) 314 return -EINVAL; /* should not happen */ 315 316 return sprintf(buf, "%s\n", operstates[operstate]); 317 } 318 static DEVICE_ATTR_RO(operstate); 319 320 static ssize_t carrier_changes_show(struct device *dev, 321 struct device_attribute *attr, 322 char *buf) 323 { 324 struct net_device *netdev = to_net_dev(dev); 325 326 return sprintf(buf, fmt_dec, 327 atomic_read(&netdev->carrier_up_count) + 328 atomic_read(&netdev->carrier_down_count)); 329 } 330 static DEVICE_ATTR_RO(carrier_changes); 331 332 static ssize_t carrier_up_count_show(struct device *dev, 333 struct device_attribute *attr, 334 char *buf) 335 { 336 struct net_device *netdev = to_net_dev(dev); 337 338 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 339 } 340 static DEVICE_ATTR_RO(carrier_up_count); 341 342 static ssize_t carrier_down_count_show(struct device *dev, 343 struct device_attribute *attr, 344 char *buf) 345 { 346 struct net_device *netdev = to_net_dev(dev); 347 348 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 349 } 350 static DEVICE_ATTR_RO(carrier_down_count); 351 352 /* read-write attributes */ 353 354 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 355 { 356 return dev_set_mtu(dev, (int)new_mtu); 357 } 358 359 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 360 const char *buf, size_t len) 361 { 362 return netdev_store(dev, attr, buf, len, change_mtu); 363 } 364 NETDEVICE_SHOW_RW(mtu, fmt_dec); 365 366 static int change_flags(struct net_device *dev, unsigned long new_flags) 367 { 368 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 369 } 370 371 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 372 const char *buf, size_t len) 373 { 374 return netdev_store(dev, attr, buf, len, change_flags); 375 } 376 NETDEVICE_SHOW_RW(flags, fmt_hex); 377 378 static ssize_t tx_queue_len_store(struct device *dev, 379 struct device_attribute *attr, 380 const char *buf, size_t len) 381 { 382 if (!capable(CAP_NET_ADMIN)) 383 return -EPERM; 384 385 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 386 } 387 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 388 389 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 390 { 391 WRITE_ONCE(dev->gro_flush_timeout, val); 392 return 0; 393 } 394 395 static ssize_t gro_flush_timeout_store(struct device *dev, 396 struct device_attribute *attr, 397 const char *buf, size_t len) 398 { 399 if (!capable(CAP_NET_ADMIN)) 400 return -EPERM; 401 402 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 403 } 404 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 405 406 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 407 { 408 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 409 return 0; 410 } 411 412 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 413 struct device_attribute *attr, 414 const char *buf, size_t len) 415 { 416 if (!capable(CAP_NET_ADMIN)) 417 return -EPERM; 418 419 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 420 } 421 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 422 423 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 424 const char *buf, size_t len) 425 { 426 struct net_device *netdev = to_net_dev(dev); 427 struct net *net = dev_net(netdev); 428 size_t count = len; 429 ssize_t ret = 0; 430 431 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 432 return -EPERM; 433 434 /* ignore trailing newline */ 435 if (len > 0 && buf[len - 1] == '\n') 436 --count; 437 438 if (!rtnl_trylock()) 439 return restart_syscall(); 440 441 if (dev_isalive(netdev)) { 442 ret = dev_set_alias(netdev, buf, count); 443 if (ret < 0) 444 goto err; 445 ret = len; 446 netdev_state_change(netdev); 447 } 448 err: 449 rtnl_unlock(); 450 451 return ret; 452 } 453 454 static ssize_t ifalias_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 const struct net_device *netdev = to_net_dev(dev); 458 char tmp[IFALIASZ]; 459 ssize_t ret = 0; 460 461 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 462 if (ret > 0) 463 ret = sprintf(buf, "%s\n", tmp); 464 return ret; 465 } 466 static DEVICE_ATTR_RW(ifalias); 467 468 static int change_group(struct net_device *dev, unsigned long new_group) 469 { 470 dev_set_group(dev, (int)new_group); 471 return 0; 472 } 473 474 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 475 const char *buf, size_t len) 476 { 477 return netdev_store(dev, attr, buf, len, change_group); 478 } 479 NETDEVICE_SHOW(group, fmt_dec); 480 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 481 482 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 483 { 484 return dev_change_proto_down(dev, (bool)proto_down); 485 } 486 487 static ssize_t proto_down_store(struct device *dev, 488 struct device_attribute *attr, 489 const char *buf, size_t len) 490 { 491 return netdev_store(dev, attr, buf, len, change_proto_down); 492 } 493 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 494 495 static ssize_t phys_port_id_show(struct device *dev, 496 struct device_attribute *attr, char *buf) 497 { 498 struct net_device *netdev = to_net_dev(dev); 499 ssize_t ret = -EINVAL; 500 501 /* The check is also done in dev_get_phys_port_id; this helps returning 502 * early without hitting the trylock/restart below. 503 */ 504 if (!netdev->netdev_ops->ndo_get_phys_port_id) 505 return -EOPNOTSUPP; 506 507 if (!rtnl_trylock()) 508 return restart_syscall(); 509 510 if (dev_isalive(netdev)) { 511 struct netdev_phys_item_id ppid; 512 513 ret = dev_get_phys_port_id(netdev, &ppid); 514 if (!ret) 515 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 516 } 517 rtnl_unlock(); 518 519 return ret; 520 } 521 static DEVICE_ATTR_RO(phys_port_id); 522 523 static ssize_t phys_port_name_show(struct device *dev, 524 struct device_attribute *attr, char *buf) 525 { 526 struct net_device *netdev = to_net_dev(dev); 527 ssize_t ret = -EINVAL; 528 529 /* The checks are also done in dev_get_phys_port_name; this helps 530 * returning early without hitting the trylock/restart below. 531 */ 532 if (!netdev->netdev_ops->ndo_get_phys_port_name && 533 !netdev->netdev_ops->ndo_get_devlink_port) 534 return -EOPNOTSUPP; 535 536 if (!rtnl_trylock()) 537 return restart_syscall(); 538 539 if (dev_isalive(netdev)) { 540 char name[IFNAMSIZ]; 541 542 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 543 if (!ret) 544 ret = sprintf(buf, "%s\n", name); 545 } 546 rtnl_unlock(); 547 548 return ret; 549 } 550 static DEVICE_ATTR_RO(phys_port_name); 551 552 static ssize_t phys_switch_id_show(struct device *dev, 553 struct device_attribute *attr, char *buf) 554 { 555 struct net_device *netdev = to_net_dev(dev); 556 ssize_t ret = -EINVAL; 557 558 /* The checks are also done in dev_get_phys_port_name; this helps 559 * returning early without hitting the trylock/restart below. This works 560 * because recurse is false when calling dev_get_port_parent_id. 561 */ 562 if (!netdev->netdev_ops->ndo_get_port_parent_id && 563 !netdev->netdev_ops->ndo_get_devlink_port) 564 return -EOPNOTSUPP; 565 566 if (!rtnl_trylock()) 567 return restart_syscall(); 568 569 if (dev_isalive(netdev)) { 570 struct netdev_phys_item_id ppid = { }; 571 572 ret = dev_get_port_parent_id(netdev, &ppid, false); 573 if (!ret) 574 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 575 } 576 rtnl_unlock(); 577 578 return ret; 579 } 580 static DEVICE_ATTR_RO(phys_switch_id); 581 582 static ssize_t threaded_show(struct device *dev, 583 struct device_attribute *attr, char *buf) 584 { 585 struct net_device *netdev = to_net_dev(dev); 586 ssize_t ret = -EINVAL; 587 588 if (!rtnl_trylock()) 589 return restart_syscall(); 590 591 if (dev_isalive(netdev)) 592 ret = sprintf(buf, fmt_dec, netdev->threaded); 593 594 rtnl_unlock(); 595 return ret; 596 } 597 598 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 599 { 600 int ret; 601 602 if (list_empty(&dev->napi_list)) 603 return -EOPNOTSUPP; 604 605 if (val != 0 && val != 1) 606 return -EOPNOTSUPP; 607 608 ret = dev_set_threaded(dev, val); 609 610 return ret; 611 } 612 613 static ssize_t threaded_store(struct device *dev, 614 struct device_attribute *attr, 615 const char *buf, size_t len) 616 { 617 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 618 } 619 static DEVICE_ATTR_RW(threaded); 620 621 static struct attribute *net_class_attrs[] __ro_after_init = { 622 &dev_attr_netdev_group.attr, 623 &dev_attr_type.attr, 624 &dev_attr_dev_id.attr, 625 &dev_attr_dev_port.attr, 626 &dev_attr_iflink.attr, 627 &dev_attr_ifindex.attr, 628 &dev_attr_name_assign_type.attr, 629 &dev_attr_addr_assign_type.attr, 630 &dev_attr_addr_len.attr, 631 &dev_attr_link_mode.attr, 632 &dev_attr_address.attr, 633 &dev_attr_broadcast.attr, 634 &dev_attr_speed.attr, 635 &dev_attr_duplex.attr, 636 &dev_attr_dormant.attr, 637 &dev_attr_testing.attr, 638 &dev_attr_operstate.attr, 639 &dev_attr_carrier_changes.attr, 640 &dev_attr_ifalias.attr, 641 &dev_attr_carrier.attr, 642 &dev_attr_mtu.attr, 643 &dev_attr_flags.attr, 644 &dev_attr_tx_queue_len.attr, 645 &dev_attr_gro_flush_timeout.attr, 646 &dev_attr_napi_defer_hard_irqs.attr, 647 &dev_attr_phys_port_id.attr, 648 &dev_attr_phys_port_name.attr, 649 &dev_attr_phys_switch_id.attr, 650 &dev_attr_proto_down.attr, 651 &dev_attr_carrier_up_count.attr, 652 &dev_attr_carrier_down_count.attr, 653 &dev_attr_threaded.attr, 654 NULL, 655 }; 656 ATTRIBUTE_GROUPS(net_class); 657 658 /* Show a given an attribute in the statistics group */ 659 static ssize_t netstat_show(const struct device *d, 660 struct device_attribute *attr, char *buf, 661 unsigned long offset) 662 { 663 struct net_device *dev = to_net_dev(d); 664 ssize_t ret = -EINVAL; 665 666 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 667 offset % sizeof(u64) != 0); 668 669 read_lock(&dev_base_lock); 670 if (dev_isalive(dev)) { 671 struct rtnl_link_stats64 temp; 672 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 673 674 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 675 } 676 read_unlock(&dev_base_lock); 677 return ret; 678 } 679 680 /* generate a read-only statistics attribute */ 681 #define NETSTAT_ENTRY(name) \ 682 static ssize_t name##_show(struct device *d, \ 683 struct device_attribute *attr, char *buf) \ 684 { \ 685 return netstat_show(d, attr, buf, \ 686 offsetof(struct rtnl_link_stats64, name)); \ 687 } \ 688 static DEVICE_ATTR_RO(name) 689 690 NETSTAT_ENTRY(rx_packets); 691 NETSTAT_ENTRY(tx_packets); 692 NETSTAT_ENTRY(rx_bytes); 693 NETSTAT_ENTRY(tx_bytes); 694 NETSTAT_ENTRY(rx_errors); 695 NETSTAT_ENTRY(tx_errors); 696 NETSTAT_ENTRY(rx_dropped); 697 NETSTAT_ENTRY(tx_dropped); 698 NETSTAT_ENTRY(multicast); 699 NETSTAT_ENTRY(collisions); 700 NETSTAT_ENTRY(rx_length_errors); 701 NETSTAT_ENTRY(rx_over_errors); 702 NETSTAT_ENTRY(rx_crc_errors); 703 NETSTAT_ENTRY(rx_frame_errors); 704 NETSTAT_ENTRY(rx_fifo_errors); 705 NETSTAT_ENTRY(rx_missed_errors); 706 NETSTAT_ENTRY(tx_aborted_errors); 707 NETSTAT_ENTRY(tx_carrier_errors); 708 NETSTAT_ENTRY(tx_fifo_errors); 709 NETSTAT_ENTRY(tx_heartbeat_errors); 710 NETSTAT_ENTRY(tx_window_errors); 711 NETSTAT_ENTRY(rx_compressed); 712 NETSTAT_ENTRY(tx_compressed); 713 NETSTAT_ENTRY(rx_nohandler); 714 715 static struct attribute *netstat_attrs[] __ro_after_init = { 716 &dev_attr_rx_packets.attr, 717 &dev_attr_tx_packets.attr, 718 &dev_attr_rx_bytes.attr, 719 &dev_attr_tx_bytes.attr, 720 &dev_attr_rx_errors.attr, 721 &dev_attr_tx_errors.attr, 722 &dev_attr_rx_dropped.attr, 723 &dev_attr_tx_dropped.attr, 724 &dev_attr_multicast.attr, 725 &dev_attr_collisions.attr, 726 &dev_attr_rx_length_errors.attr, 727 &dev_attr_rx_over_errors.attr, 728 &dev_attr_rx_crc_errors.attr, 729 &dev_attr_rx_frame_errors.attr, 730 &dev_attr_rx_fifo_errors.attr, 731 &dev_attr_rx_missed_errors.attr, 732 &dev_attr_tx_aborted_errors.attr, 733 &dev_attr_tx_carrier_errors.attr, 734 &dev_attr_tx_fifo_errors.attr, 735 &dev_attr_tx_heartbeat_errors.attr, 736 &dev_attr_tx_window_errors.attr, 737 &dev_attr_rx_compressed.attr, 738 &dev_attr_tx_compressed.attr, 739 &dev_attr_rx_nohandler.attr, 740 NULL 741 }; 742 743 static const struct attribute_group netstat_group = { 744 .name = "statistics", 745 .attrs = netstat_attrs, 746 }; 747 748 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 749 static struct attribute *wireless_attrs[] = { 750 NULL 751 }; 752 753 static const struct attribute_group wireless_group = { 754 .name = "wireless", 755 .attrs = wireless_attrs, 756 }; 757 #endif 758 759 #else /* CONFIG_SYSFS */ 760 #define net_class_groups NULL 761 #endif /* CONFIG_SYSFS */ 762 763 #ifdef CONFIG_SYSFS 764 #define to_rx_queue_attr(_attr) \ 765 container_of(_attr, struct rx_queue_attribute, attr) 766 767 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 768 769 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 770 char *buf) 771 { 772 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 773 struct netdev_rx_queue *queue = to_rx_queue(kobj); 774 775 if (!attribute->show) 776 return -EIO; 777 778 return attribute->show(queue, buf); 779 } 780 781 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 782 const char *buf, size_t count) 783 { 784 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 785 struct netdev_rx_queue *queue = to_rx_queue(kobj); 786 787 if (!attribute->store) 788 return -EIO; 789 790 return attribute->store(queue, buf, count); 791 } 792 793 static const struct sysfs_ops rx_queue_sysfs_ops = { 794 .show = rx_queue_attr_show, 795 .store = rx_queue_attr_store, 796 }; 797 798 #ifdef CONFIG_RPS 799 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 800 { 801 struct rps_map *map; 802 cpumask_var_t mask; 803 int i, len; 804 805 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 806 return -ENOMEM; 807 808 rcu_read_lock(); 809 map = rcu_dereference(queue->rps_map); 810 if (map) 811 for (i = 0; i < map->len; i++) 812 cpumask_set_cpu(map->cpus[i], mask); 813 814 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 815 rcu_read_unlock(); 816 free_cpumask_var(mask); 817 818 return len < PAGE_SIZE ? len : -EINVAL; 819 } 820 821 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 822 const char *buf, size_t len) 823 { 824 struct rps_map *old_map, *map; 825 cpumask_var_t mask; 826 int err, cpu, i, hk_flags; 827 static DEFINE_MUTEX(rps_map_mutex); 828 829 if (!capable(CAP_NET_ADMIN)) 830 return -EPERM; 831 832 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 833 return -ENOMEM; 834 835 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 836 if (err) { 837 free_cpumask_var(mask); 838 return err; 839 } 840 841 if (!cpumask_empty(mask)) { 842 hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 843 cpumask_and(mask, mask, housekeeping_cpumask(hk_flags)); 844 if (cpumask_empty(mask)) { 845 free_cpumask_var(mask); 846 return -EINVAL; 847 } 848 } 849 850 map = kzalloc(max_t(unsigned int, 851 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 852 GFP_KERNEL); 853 if (!map) { 854 free_cpumask_var(mask); 855 return -ENOMEM; 856 } 857 858 i = 0; 859 for_each_cpu_and(cpu, mask, cpu_online_mask) 860 map->cpus[i++] = cpu; 861 862 if (i) { 863 map->len = i; 864 } else { 865 kfree(map); 866 map = NULL; 867 } 868 869 mutex_lock(&rps_map_mutex); 870 old_map = rcu_dereference_protected(queue->rps_map, 871 mutex_is_locked(&rps_map_mutex)); 872 rcu_assign_pointer(queue->rps_map, map); 873 874 if (map) 875 static_branch_inc(&rps_needed); 876 if (old_map) 877 static_branch_dec(&rps_needed); 878 879 mutex_unlock(&rps_map_mutex); 880 881 if (old_map) 882 kfree_rcu(old_map, rcu); 883 884 free_cpumask_var(mask); 885 return len; 886 } 887 888 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 889 char *buf) 890 { 891 struct rps_dev_flow_table *flow_table; 892 unsigned long val = 0; 893 894 rcu_read_lock(); 895 flow_table = rcu_dereference(queue->rps_flow_table); 896 if (flow_table) 897 val = (unsigned long)flow_table->mask + 1; 898 rcu_read_unlock(); 899 900 return sprintf(buf, "%lu\n", val); 901 } 902 903 static void rps_dev_flow_table_release(struct rcu_head *rcu) 904 { 905 struct rps_dev_flow_table *table = container_of(rcu, 906 struct rps_dev_flow_table, rcu); 907 vfree(table); 908 } 909 910 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 911 const char *buf, size_t len) 912 { 913 unsigned long mask, count; 914 struct rps_dev_flow_table *table, *old_table; 915 static DEFINE_SPINLOCK(rps_dev_flow_lock); 916 int rc; 917 918 if (!capable(CAP_NET_ADMIN)) 919 return -EPERM; 920 921 rc = kstrtoul(buf, 0, &count); 922 if (rc < 0) 923 return rc; 924 925 if (count) { 926 mask = count - 1; 927 /* mask = roundup_pow_of_two(count) - 1; 928 * without overflows... 929 */ 930 while ((mask | (mask >> 1)) != mask) 931 mask |= (mask >> 1); 932 /* On 64 bit arches, must check mask fits in table->mask (u32), 933 * and on 32bit arches, must check 934 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 935 */ 936 #if BITS_PER_LONG > 32 937 if (mask > (unsigned long)(u32)mask) 938 return -EINVAL; 939 #else 940 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 941 / sizeof(struct rps_dev_flow)) { 942 /* Enforce a limit to prevent overflow */ 943 return -EINVAL; 944 } 945 #endif 946 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 947 if (!table) 948 return -ENOMEM; 949 950 table->mask = mask; 951 for (count = 0; count <= mask; count++) 952 table->flows[count].cpu = RPS_NO_CPU; 953 } else { 954 table = NULL; 955 } 956 957 spin_lock(&rps_dev_flow_lock); 958 old_table = rcu_dereference_protected(queue->rps_flow_table, 959 lockdep_is_held(&rps_dev_flow_lock)); 960 rcu_assign_pointer(queue->rps_flow_table, table); 961 spin_unlock(&rps_dev_flow_lock); 962 963 if (old_table) 964 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 965 966 return len; 967 } 968 969 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 970 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 971 972 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 973 = __ATTR(rps_flow_cnt, 0644, 974 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 975 #endif /* CONFIG_RPS */ 976 977 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 978 #ifdef CONFIG_RPS 979 &rps_cpus_attribute.attr, 980 &rps_dev_flow_table_cnt_attribute.attr, 981 #endif 982 NULL 983 }; 984 ATTRIBUTE_GROUPS(rx_queue_default); 985 986 static void rx_queue_release(struct kobject *kobj) 987 { 988 struct netdev_rx_queue *queue = to_rx_queue(kobj); 989 #ifdef CONFIG_RPS 990 struct rps_map *map; 991 struct rps_dev_flow_table *flow_table; 992 993 map = rcu_dereference_protected(queue->rps_map, 1); 994 if (map) { 995 RCU_INIT_POINTER(queue->rps_map, NULL); 996 kfree_rcu(map, rcu); 997 } 998 999 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1000 if (flow_table) { 1001 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1002 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1003 } 1004 #endif 1005 1006 memset(kobj, 0, sizeof(*kobj)); 1007 dev_put_track(queue->dev, &queue->dev_tracker); 1008 } 1009 1010 static const void *rx_queue_namespace(struct kobject *kobj) 1011 { 1012 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1013 struct device *dev = &queue->dev->dev; 1014 const void *ns = NULL; 1015 1016 if (dev->class && dev->class->ns_type) 1017 ns = dev->class->namespace(dev); 1018 1019 return ns; 1020 } 1021 1022 static void rx_queue_get_ownership(struct kobject *kobj, 1023 kuid_t *uid, kgid_t *gid) 1024 { 1025 const struct net *net = rx_queue_namespace(kobj); 1026 1027 net_ns_get_ownership(net, uid, gid); 1028 } 1029 1030 static struct kobj_type rx_queue_ktype __ro_after_init = { 1031 .sysfs_ops = &rx_queue_sysfs_ops, 1032 .release = rx_queue_release, 1033 .default_groups = rx_queue_default_groups, 1034 .namespace = rx_queue_namespace, 1035 .get_ownership = rx_queue_get_ownership, 1036 }; 1037 1038 static int rx_queue_add_kobject(struct net_device *dev, int index) 1039 { 1040 struct netdev_rx_queue *queue = dev->_rx + index; 1041 struct kobject *kobj = &queue->kobj; 1042 int error = 0; 1043 1044 /* Kobject_put later will trigger rx_queue_release call which 1045 * decreases dev refcount: Take that reference here 1046 */ 1047 dev_hold_track(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1048 1049 kobj->kset = dev->queues_kset; 1050 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1051 "rx-%u", index); 1052 if (error) 1053 goto err; 1054 1055 if (dev->sysfs_rx_queue_group) { 1056 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1057 if (error) 1058 goto err; 1059 } 1060 1061 kobject_uevent(kobj, KOBJ_ADD); 1062 1063 return error; 1064 1065 err: 1066 kobject_put(kobj); 1067 return error; 1068 } 1069 1070 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1071 kgid_t kgid) 1072 { 1073 struct netdev_rx_queue *queue = dev->_rx + index; 1074 struct kobject *kobj = &queue->kobj; 1075 int error; 1076 1077 error = sysfs_change_owner(kobj, kuid, kgid); 1078 if (error) 1079 return error; 1080 1081 if (dev->sysfs_rx_queue_group) 1082 error = sysfs_group_change_owner( 1083 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1084 1085 return error; 1086 } 1087 #endif /* CONFIG_SYSFS */ 1088 1089 int 1090 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1091 { 1092 #ifdef CONFIG_SYSFS 1093 int i; 1094 int error = 0; 1095 1096 #ifndef CONFIG_RPS 1097 if (!dev->sysfs_rx_queue_group) 1098 return 0; 1099 #endif 1100 for (i = old_num; i < new_num; i++) { 1101 error = rx_queue_add_kobject(dev, i); 1102 if (error) { 1103 new_num = old_num; 1104 break; 1105 } 1106 } 1107 1108 while (--i >= new_num) { 1109 struct kobject *kobj = &dev->_rx[i].kobj; 1110 1111 if (!refcount_read(&dev_net(dev)->ns.count)) 1112 kobj->uevent_suppress = 1; 1113 if (dev->sysfs_rx_queue_group) 1114 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1115 kobject_put(kobj); 1116 } 1117 1118 return error; 1119 #else 1120 return 0; 1121 #endif 1122 } 1123 1124 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1125 kuid_t kuid, kgid_t kgid) 1126 { 1127 #ifdef CONFIG_SYSFS 1128 int error = 0; 1129 int i; 1130 1131 #ifndef CONFIG_RPS 1132 if (!dev->sysfs_rx_queue_group) 1133 return 0; 1134 #endif 1135 for (i = 0; i < num; i++) { 1136 error = rx_queue_change_owner(dev, i, kuid, kgid); 1137 if (error) 1138 break; 1139 } 1140 1141 return error; 1142 #else 1143 return 0; 1144 #endif 1145 } 1146 1147 #ifdef CONFIG_SYSFS 1148 /* 1149 * netdev_queue sysfs structures and functions. 1150 */ 1151 struct netdev_queue_attribute { 1152 struct attribute attr; 1153 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1154 ssize_t (*store)(struct netdev_queue *queue, 1155 const char *buf, size_t len); 1156 }; 1157 #define to_netdev_queue_attr(_attr) \ 1158 container_of(_attr, struct netdev_queue_attribute, attr) 1159 1160 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1161 1162 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1163 struct attribute *attr, char *buf) 1164 { 1165 const struct netdev_queue_attribute *attribute 1166 = to_netdev_queue_attr(attr); 1167 struct netdev_queue *queue = to_netdev_queue(kobj); 1168 1169 if (!attribute->show) 1170 return -EIO; 1171 1172 return attribute->show(queue, buf); 1173 } 1174 1175 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1176 struct attribute *attr, 1177 const char *buf, size_t count) 1178 { 1179 const struct netdev_queue_attribute *attribute 1180 = to_netdev_queue_attr(attr); 1181 struct netdev_queue *queue = to_netdev_queue(kobj); 1182 1183 if (!attribute->store) 1184 return -EIO; 1185 1186 return attribute->store(queue, buf, count); 1187 } 1188 1189 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1190 .show = netdev_queue_attr_show, 1191 .store = netdev_queue_attr_store, 1192 }; 1193 1194 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1195 { 1196 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1197 1198 return sprintf(buf, fmt_ulong, trans_timeout); 1199 } 1200 1201 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1202 { 1203 struct net_device *dev = queue->dev; 1204 unsigned int i; 1205 1206 i = queue - dev->_tx; 1207 BUG_ON(i >= dev->num_tx_queues); 1208 1209 return i; 1210 } 1211 1212 static ssize_t traffic_class_show(struct netdev_queue *queue, 1213 char *buf) 1214 { 1215 struct net_device *dev = queue->dev; 1216 int num_tc, tc; 1217 int index; 1218 1219 if (!netif_is_multiqueue(dev)) 1220 return -ENOENT; 1221 1222 if (!rtnl_trylock()) 1223 return restart_syscall(); 1224 1225 index = get_netdev_queue_index(queue); 1226 1227 /* If queue belongs to subordinate dev use its TC mapping */ 1228 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1229 1230 num_tc = dev->num_tc; 1231 tc = netdev_txq_to_tc(dev, index); 1232 1233 rtnl_unlock(); 1234 1235 if (tc < 0) 1236 return -EINVAL; 1237 1238 /* We can report the traffic class one of two ways: 1239 * Subordinate device traffic classes are reported with the traffic 1240 * class first, and then the subordinate class so for example TC0 on 1241 * subordinate device 2 will be reported as "0-2". If the queue 1242 * belongs to the root device it will be reported with just the 1243 * traffic class, so just "0" for TC 0 for example. 1244 */ 1245 return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) : 1246 sprintf(buf, "%d\n", tc); 1247 } 1248 1249 #ifdef CONFIG_XPS 1250 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1251 char *buf) 1252 { 1253 return sprintf(buf, "%lu\n", queue->tx_maxrate); 1254 } 1255 1256 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1257 const char *buf, size_t len) 1258 { 1259 struct net_device *dev = queue->dev; 1260 int err, index = get_netdev_queue_index(queue); 1261 u32 rate = 0; 1262 1263 if (!capable(CAP_NET_ADMIN)) 1264 return -EPERM; 1265 1266 /* The check is also done later; this helps returning early without 1267 * hitting the trylock/restart below. 1268 */ 1269 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1270 return -EOPNOTSUPP; 1271 1272 err = kstrtou32(buf, 10, &rate); 1273 if (err < 0) 1274 return err; 1275 1276 if (!rtnl_trylock()) 1277 return restart_syscall(); 1278 1279 err = -EOPNOTSUPP; 1280 if (dev->netdev_ops->ndo_set_tx_maxrate) 1281 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1282 1283 rtnl_unlock(); 1284 if (!err) { 1285 queue->tx_maxrate = rate; 1286 return len; 1287 } 1288 return err; 1289 } 1290 1291 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1292 = __ATTR_RW(tx_maxrate); 1293 #endif 1294 1295 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1296 = __ATTR_RO(tx_timeout); 1297 1298 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1299 = __ATTR_RO(traffic_class); 1300 1301 #ifdef CONFIG_BQL 1302 /* 1303 * Byte queue limits sysfs structures and functions. 1304 */ 1305 static ssize_t bql_show(char *buf, unsigned int value) 1306 { 1307 return sprintf(buf, "%u\n", value); 1308 } 1309 1310 static ssize_t bql_set(const char *buf, const size_t count, 1311 unsigned int *pvalue) 1312 { 1313 unsigned int value; 1314 int err; 1315 1316 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1317 value = DQL_MAX_LIMIT; 1318 } else { 1319 err = kstrtouint(buf, 10, &value); 1320 if (err < 0) 1321 return err; 1322 if (value > DQL_MAX_LIMIT) 1323 return -EINVAL; 1324 } 1325 1326 *pvalue = value; 1327 1328 return count; 1329 } 1330 1331 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1332 char *buf) 1333 { 1334 struct dql *dql = &queue->dql; 1335 1336 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1337 } 1338 1339 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1340 const char *buf, size_t len) 1341 { 1342 struct dql *dql = &queue->dql; 1343 unsigned int value; 1344 int err; 1345 1346 err = kstrtouint(buf, 10, &value); 1347 if (err < 0) 1348 return err; 1349 1350 dql->slack_hold_time = msecs_to_jiffies(value); 1351 1352 return len; 1353 } 1354 1355 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1356 = __ATTR(hold_time, 0644, 1357 bql_show_hold_time, bql_set_hold_time); 1358 1359 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1360 char *buf) 1361 { 1362 struct dql *dql = &queue->dql; 1363 1364 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); 1365 } 1366 1367 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1368 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1369 1370 #define BQL_ATTR(NAME, FIELD) \ 1371 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1372 char *buf) \ 1373 { \ 1374 return bql_show(buf, queue->dql.FIELD); \ 1375 } \ 1376 \ 1377 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1378 const char *buf, size_t len) \ 1379 { \ 1380 return bql_set(buf, len, &queue->dql.FIELD); \ 1381 } \ 1382 \ 1383 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1384 = __ATTR(NAME, 0644, \ 1385 bql_show_ ## NAME, bql_set_ ## NAME) 1386 1387 BQL_ATTR(limit, limit); 1388 BQL_ATTR(limit_max, max_limit); 1389 BQL_ATTR(limit_min, min_limit); 1390 1391 static struct attribute *dql_attrs[] __ro_after_init = { 1392 &bql_limit_attribute.attr, 1393 &bql_limit_max_attribute.attr, 1394 &bql_limit_min_attribute.attr, 1395 &bql_hold_time_attribute.attr, 1396 &bql_inflight_attribute.attr, 1397 NULL 1398 }; 1399 1400 static const struct attribute_group dql_group = { 1401 .name = "byte_queue_limits", 1402 .attrs = dql_attrs, 1403 }; 1404 #endif /* CONFIG_BQL */ 1405 1406 #ifdef CONFIG_XPS 1407 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1408 int tc, char *buf, enum xps_map_type type) 1409 { 1410 struct xps_dev_maps *dev_maps; 1411 unsigned long *mask; 1412 unsigned int nr_ids; 1413 int j, len; 1414 1415 rcu_read_lock(); 1416 dev_maps = rcu_dereference(dev->xps_maps[type]); 1417 1418 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1419 * when dev_maps hasn't been allocated yet, to be backward compatible. 1420 */ 1421 nr_ids = dev_maps ? dev_maps->nr_ids : 1422 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1423 1424 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1425 if (!mask) { 1426 rcu_read_unlock(); 1427 return -ENOMEM; 1428 } 1429 1430 if (!dev_maps || tc >= dev_maps->num_tc) 1431 goto out_no_maps; 1432 1433 for (j = 0; j < nr_ids; j++) { 1434 int i, tci = j * dev_maps->num_tc + tc; 1435 struct xps_map *map; 1436 1437 map = rcu_dereference(dev_maps->attr_map[tci]); 1438 if (!map) 1439 continue; 1440 1441 for (i = map->len; i--;) { 1442 if (map->queues[i] == index) { 1443 __set_bit(j, mask); 1444 break; 1445 } 1446 } 1447 } 1448 out_no_maps: 1449 rcu_read_unlock(); 1450 1451 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1452 bitmap_free(mask); 1453 1454 return len < PAGE_SIZE ? len : -EINVAL; 1455 } 1456 1457 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1458 { 1459 struct net_device *dev = queue->dev; 1460 unsigned int index; 1461 int len, tc; 1462 1463 if (!netif_is_multiqueue(dev)) 1464 return -ENOENT; 1465 1466 index = get_netdev_queue_index(queue); 1467 1468 if (!rtnl_trylock()) 1469 return restart_syscall(); 1470 1471 /* If queue belongs to subordinate dev use its map */ 1472 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1473 1474 tc = netdev_txq_to_tc(dev, index); 1475 if (tc < 0) { 1476 rtnl_unlock(); 1477 return -EINVAL; 1478 } 1479 1480 /* Make sure the subordinate device can't be freed */ 1481 get_device(&dev->dev); 1482 rtnl_unlock(); 1483 1484 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1485 1486 put_device(&dev->dev); 1487 return len; 1488 } 1489 1490 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1491 const char *buf, size_t len) 1492 { 1493 struct net_device *dev = queue->dev; 1494 unsigned int index; 1495 cpumask_var_t mask; 1496 int err; 1497 1498 if (!netif_is_multiqueue(dev)) 1499 return -ENOENT; 1500 1501 if (!capable(CAP_NET_ADMIN)) 1502 return -EPERM; 1503 1504 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1505 return -ENOMEM; 1506 1507 index = get_netdev_queue_index(queue); 1508 1509 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1510 if (err) { 1511 free_cpumask_var(mask); 1512 return err; 1513 } 1514 1515 if (!rtnl_trylock()) { 1516 free_cpumask_var(mask); 1517 return restart_syscall(); 1518 } 1519 1520 err = netif_set_xps_queue(dev, mask, index); 1521 rtnl_unlock(); 1522 1523 free_cpumask_var(mask); 1524 1525 return err ? : len; 1526 } 1527 1528 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1529 = __ATTR_RW(xps_cpus); 1530 1531 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1532 { 1533 struct net_device *dev = queue->dev; 1534 unsigned int index; 1535 int tc; 1536 1537 index = get_netdev_queue_index(queue); 1538 1539 if (!rtnl_trylock()) 1540 return restart_syscall(); 1541 1542 tc = netdev_txq_to_tc(dev, index); 1543 rtnl_unlock(); 1544 if (tc < 0) 1545 return -EINVAL; 1546 1547 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1548 } 1549 1550 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1551 size_t len) 1552 { 1553 struct net_device *dev = queue->dev; 1554 struct net *net = dev_net(dev); 1555 unsigned long *mask; 1556 unsigned int index; 1557 int err; 1558 1559 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1560 return -EPERM; 1561 1562 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1563 if (!mask) 1564 return -ENOMEM; 1565 1566 index = get_netdev_queue_index(queue); 1567 1568 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1569 if (err) { 1570 bitmap_free(mask); 1571 return err; 1572 } 1573 1574 if (!rtnl_trylock()) { 1575 bitmap_free(mask); 1576 return restart_syscall(); 1577 } 1578 1579 cpus_read_lock(); 1580 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1581 cpus_read_unlock(); 1582 1583 rtnl_unlock(); 1584 1585 bitmap_free(mask); 1586 return err ? : len; 1587 } 1588 1589 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1590 = __ATTR_RW(xps_rxqs); 1591 #endif /* CONFIG_XPS */ 1592 1593 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1594 &queue_trans_timeout.attr, 1595 &queue_traffic_class.attr, 1596 #ifdef CONFIG_XPS 1597 &xps_cpus_attribute.attr, 1598 &xps_rxqs_attribute.attr, 1599 &queue_tx_maxrate.attr, 1600 #endif 1601 NULL 1602 }; 1603 ATTRIBUTE_GROUPS(netdev_queue_default); 1604 1605 static void netdev_queue_release(struct kobject *kobj) 1606 { 1607 struct netdev_queue *queue = to_netdev_queue(kobj); 1608 1609 memset(kobj, 0, sizeof(*kobj)); 1610 dev_put_track(queue->dev, &queue->dev_tracker); 1611 } 1612 1613 static const void *netdev_queue_namespace(struct kobject *kobj) 1614 { 1615 struct netdev_queue *queue = to_netdev_queue(kobj); 1616 struct device *dev = &queue->dev->dev; 1617 const void *ns = NULL; 1618 1619 if (dev->class && dev->class->ns_type) 1620 ns = dev->class->namespace(dev); 1621 1622 return ns; 1623 } 1624 1625 static void netdev_queue_get_ownership(struct kobject *kobj, 1626 kuid_t *uid, kgid_t *gid) 1627 { 1628 const struct net *net = netdev_queue_namespace(kobj); 1629 1630 net_ns_get_ownership(net, uid, gid); 1631 } 1632 1633 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1634 .sysfs_ops = &netdev_queue_sysfs_ops, 1635 .release = netdev_queue_release, 1636 .default_groups = netdev_queue_default_groups, 1637 .namespace = netdev_queue_namespace, 1638 .get_ownership = netdev_queue_get_ownership, 1639 }; 1640 1641 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1642 { 1643 struct netdev_queue *queue = dev->_tx + index; 1644 struct kobject *kobj = &queue->kobj; 1645 int error = 0; 1646 1647 /* Kobject_put later will trigger netdev_queue_release call 1648 * which decreases dev refcount: Take that reference here 1649 */ 1650 dev_hold_track(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1651 1652 kobj->kset = dev->queues_kset; 1653 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1654 "tx-%u", index); 1655 if (error) 1656 goto err; 1657 1658 #ifdef CONFIG_BQL 1659 error = sysfs_create_group(kobj, &dql_group); 1660 if (error) 1661 goto err; 1662 #endif 1663 1664 kobject_uevent(kobj, KOBJ_ADD); 1665 return 0; 1666 1667 err: 1668 kobject_put(kobj); 1669 return error; 1670 } 1671 1672 static int tx_queue_change_owner(struct net_device *ndev, int index, 1673 kuid_t kuid, kgid_t kgid) 1674 { 1675 struct netdev_queue *queue = ndev->_tx + index; 1676 struct kobject *kobj = &queue->kobj; 1677 int error; 1678 1679 error = sysfs_change_owner(kobj, kuid, kgid); 1680 if (error) 1681 return error; 1682 1683 #ifdef CONFIG_BQL 1684 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1685 #endif 1686 return error; 1687 } 1688 #endif /* CONFIG_SYSFS */ 1689 1690 int 1691 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1692 { 1693 #ifdef CONFIG_SYSFS 1694 int i; 1695 int error = 0; 1696 1697 /* Tx queue kobjects are allowed to be updated when a device is being 1698 * unregistered, but solely to remove queues from qdiscs. Any path 1699 * adding queues should be fixed. 1700 */ 1701 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 1702 "New queues can't be registered after device unregistration."); 1703 1704 for (i = old_num; i < new_num; i++) { 1705 error = netdev_queue_add_kobject(dev, i); 1706 if (error) { 1707 new_num = old_num; 1708 break; 1709 } 1710 } 1711 1712 while (--i >= new_num) { 1713 struct netdev_queue *queue = dev->_tx + i; 1714 1715 if (!refcount_read(&dev_net(dev)->ns.count)) 1716 queue->kobj.uevent_suppress = 1; 1717 #ifdef CONFIG_BQL 1718 sysfs_remove_group(&queue->kobj, &dql_group); 1719 #endif 1720 kobject_put(&queue->kobj); 1721 } 1722 1723 return error; 1724 #else 1725 return 0; 1726 #endif /* CONFIG_SYSFS */ 1727 } 1728 1729 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1730 kuid_t kuid, kgid_t kgid) 1731 { 1732 #ifdef CONFIG_SYSFS 1733 int error = 0; 1734 int i; 1735 1736 for (i = 0; i < num; i++) { 1737 error = tx_queue_change_owner(dev, i, kuid, kgid); 1738 if (error) 1739 break; 1740 } 1741 1742 return error; 1743 #else 1744 return 0; 1745 #endif /* CONFIG_SYSFS */ 1746 } 1747 1748 static int register_queue_kobjects(struct net_device *dev) 1749 { 1750 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1751 1752 #ifdef CONFIG_SYSFS 1753 dev->queues_kset = kset_create_and_add("queues", 1754 NULL, &dev->dev.kobj); 1755 if (!dev->queues_kset) 1756 return -ENOMEM; 1757 real_rx = dev->real_num_rx_queues; 1758 #endif 1759 real_tx = dev->real_num_tx_queues; 1760 1761 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1762 if (error) 1763 goto error; 1764 rxq = real_rx; 1765 1766 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1767 if (error) 1768 goto error; 1769 txq = real_tx; 1770 1771 return 0; 1772 1773 error: 1774 netdev_queue_update_kobjects(dev, txq, 0); 1775 net_rx_queue_update_kobjects(dev, rxq, 0); 1776 #ifdef CONFIG_SYSFS 1777 kset_unregister(dev->queues_kset); 1778 #endif 1779 return error; 1780 } 1781 1782 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1783 { 1784 int error = 0, real_rx = 0, real_tx = 0; 1785 1786 #ifdef CONFIG_SYSFS 1787 if (ndev->queues_kset) { 1788 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1789 if (error) 1790 return error; 1791 } 1792 real_rx = ndev->real_num_rx_queues; 1793 #endif 1794 real_tx = ndev->real_num_tx_queues; 1795 1796 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1797 if (error) 1798 return error; 1799 1800 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1801 if (error) 1802 return error; 1803 1804 return 0; 1805 } 1806 1807 static void remove_queue_kobjects(struct net_device *dev) 1808 { 1809 int real_rx = 0, real_tx = 0; 1810 1811 #ifdef CONFIG_SYSFS 1812 real_rx = dev->real_num_rx_queues; 1813 #endif 1814 real_tx = dev->real_num_tx_queues; 1815 1816 net_rx_queue_update_kobjects(dev, real_rx, 0); 1817 netdev_queue_update_kobjects(dev, real_tx, 0); 1818 1819 dev->real_num_rx_queues = 0; 1820 dev->real_num_tx_queues = 0; 1821 #ifdef CONFIG_SYSFS 1822 kset_unregister(dev->queues_kset); 1823 #endif 1824 } 1825 1826 static bool net_current_may_mount(void) 1827 { 1828 struct net *net = current->nsproxy->net_ns; 1829 1830 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1831 } 1832 1833 static void *net_grab_current_ns(void) 1834 { 1835 struct net *ns = current->nsproxy->net_ns; 1836 #ifdef CONFIG_NET_NS 1837 if (ns) 1838 refcount_inc(&ns->passive); 1839 #endif 1840 return ns; 1841 } 1842 1843 static const void *net_initial_ns(void) 1844 { 1845 return &init_net; 1846 } 1847 1848 static const void *net_netlink_ns(struct sock *sk) 1849 { 1850 return sock_net(sk); 1851 } 1852 1853 const struct kobj_ns_type_operations net_ns_type_operations = { 1854 .type = KOBJ_NS_TYPE_NET, 1855 .current_may_mount = net_current_may_mount, 1856 .grab_current_ns = net_grab_current_ns, 1857 .netlink_ns = net_netlink_ns, 1858 .initial_ns = net_initial_ns, 1859 .drop_ns = net_drop_ns, 1860 }; 1861 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1862 1863 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 1864 { 1865 struct net_device *dev = to_net_dev(d); 1866 int retval; 1867 1868 /* pass interface to uevent. */ 1869 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1870 if (retval) 1871 goto exit; 1872 1873 /* pass ifindex to uevent. 1874 * ifindex is useful as it won't change (interface name may change) 1875 * and is what RtNetlink uses natively. 1876 */ 1877 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1878 1879 exit: 1880 return retval; 1881 } 1882 1883 /* 1884 * netdev_release -- destroy and free a dead device. 1885 * Called when last reference to device kobject is gone. 1886 */ 1887 static void netdev_release(struct device *d) 1888 { 1889 struct net_device *dev = to_net_dev(d); 1890 1891 BUG_ON(dev->reg_state != NETREG_RELEASED); 1892 1893 /* no need to wait for rcu grace period: 1894 * device is dead and about to be freed. 1895 */ 1896 kfree(rcu_access_pointer(dev->ifalias)); 1897 netdev_freemem(dev); 1898 } 1899 1900 static const void *net_namespace(struct device *d) 1901 { 1902 struct net_device *dev = to_net_dev(d); 1903 1904 return dev_net(dev); 1905 } 1906 1907 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) 1908 { 1909 struct net_device *dev = to_net_dev(d); 1910 const struct net *net = dev_net(dev); 1911 1912 net_ns_get_ownership(net, uid, gid); 1913 } 1914 1915 static struct class net_class __ro_after_init = { 1916 .name = "net", 1917 .dev_release = netdev_release, 1918 .dev_groups = net_class_groups, 1919 .dev_uevent = netdev_uevent, 1920 .ns_type = &net_ns_type_operations, 1921 .namespace = net_namespace, 1922 .get_ownership = net_get_ownership, 1923 }; 1924 1925 #ifdef CONFIG_OF 1926 static int of_dev_node_match(struct device *dev, const void *data) 1927 { 1928 for (; dev; dev = dev->parent) { 1929 if (dev->of_node == data) 1930 return 1; 1931 } 1932 1933 return 0; 1934 } 1935 1936 /* 1937 * of_find_net_device_by_node - lookup the net device for the device node 1938 * @np: OF device node 1939 * 1940 * Looks up the net_device structure corresponding with the device node. 1941 * If successful, returns a pointer to the net_device with the embedded 1942 * struct device refcount incremented by one, or NULL on failure. The 1943 * refcount must be dropped when done with the net_device. 1944 */ 1945 struct net_device *of_find_net_device_by_node(struct device_node *np) 1946 { 1947 struct device *dev; 1948 1949 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1950 if (!dev) 1951 return NULL; 1952 1953 return to_net_dev(dev); 1954 } 1955 EXPORT_SYMBOL(of_find_net_device_by_node); 1956 #endif 1957 1958 /* Delete sysfs entries but hold kobject reference until after all 1959 * netdev references are gone. 1960 */ 1961 void netdev_unregister_kobject(struct net_device *ndev) 1962 { 1963 struct device *dev = &ndev->dev; 1964 1965 if (!refcount_read(&dev_net(ndev)->ns.count)) 1966 dev_set_uevent_suppress(dev, 1); 1967 1968 kobject_get(&dev->kobj); 1969 1970 remove_queue_kobjects(ndev); 1971 1972 pm_runtime_set_memalloc_noio(dev, false); 1973 1974 device_del(dev); 1975 } 1976 1977 /* Create sysfs entries for network device. */ 1978 int netdev_register_kobject(struct net_device *ndev) 1979 { 1980 struct device *dev = &ndev->dev; 1981 const struct attribute_group **groups = ndev->sysfs_groups; 1982 int error = 0; 1983 1984 device_initialize(dev); 1985 dev->class = &net_class; 1986 dev->platform_data = ndev; 1987 dev->groups = groups; 1988 1989 dev_set_name(dev, "%s", ndev->name); 1990 1991 #ifdef CONFIG_SYSFS 1992 /* Allow for a device specific group */ 1993 if (*groups) 1994 groups++; 1995 1996 *groups++ = &netstat_group; 1997 1998 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 1999 if (ndev->ieee80211_ptr) 2000 *groups++ = &wireless_group; 2001 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 2002 else if (ndev->wireless_handlers) 2003 *groups++ = &wireless_group; 2004 #endif 2005 #endif 2006 #endif /* CONFIG_SYSFS */ 2007 2008 error = device_add(dev); 2009 if (error) 2010 return error; 2011 2012 error = register_queue_kobjects(ndev); 2013 if (error) { 2014 device_del(dev); 2015 return error; 2016 } 2017 2018 pm_runtime_set_memalloc_noio(dev, true); 2019 2020 return error; 2021 } 2022 2023 /* Change owner for sysfs entries when moving network devices across network 2024 * namespaces owned by different user namespaces. 2025 */ 2026 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2027 const struct net *net_new) 2028 { 2029 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2030 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2031 struct device *dev = &ndev->dev; 2032 int error; 2033 2034 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2035 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2036 2037 /* The network namespace was changed but the owning user namespace is 2038 * identical so there's no need to change the owner of sysfs entries. 2039 */ 2040 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2041 return 0; 2042 2043 error = device_change_owner(dev, new_uid, new_gid); 2044 if (error) 2045 return error; 2046 2047 error = queue_change_owner(ndev, new_uid, new_gid); 2048 if (error) 2049 return error; 2050 2051 return 0; 2052 } 2053 2054 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2055 const void *ns) 2056 { 2057 return class_create_file_ns(&net_class, class_attr, ns); 2058 } 2059 EXPORT_SYMBOL(netdev_class_create_file_ns); 2060 2061 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2062 const void *ns) 2063 { 2064 class_remove_file_ns(&net_class, class_attr, ns); 2065 } 2066 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2067 2068 int __init netdev_kobject_init(void) 2069 { 2070 kobj_ns_type_register(&net_ns_type_operations); 2071 return class_register(&net_class); 2072 } 2073