xref: /openbmc/linux/net/core/net-sysfs.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 
27 #include "net-sysfs.h"
28 
29 #ifdef CONFIG_SYSFS
30 static const char fmt_hex[] = "%#x\n";
31 static const char fmt_dec[] = "%d\n";
32 static const char fmt_ulong[] = "%lu\n";
33 static const char fmt_u64[] = "%llu\n";
34 
35 static inline int dev_isalive(const struct net_device *dev)
36 {
37 	return dev->reg_state <= NETREG_REGISTERED;
38 }
39 
40 /* use same locking rules as GIF* ioctl's */
41 static ssize_t netdev_show(const struct device *dev,
42 			   struct device_attribute *attr, char *buf,
43 			   ssize_t (*format)(const struct net_device *, char *))
44 {
45 	struct net_device *ndev = to_net_dev(dev);
46 	ssize_t ret = -EINVAL;
47 
48 	read_lock(&dev_base_lock);
49 	if (dev_isalive(ndev))
50 		ret = (*format)(ndev, buf);
51 	read_unlock(&dev_base_lock);
52 
53 	return ret;
54 }
55 
56 /* generate a show function for simple field */
57 #define NETDEVICE_SHOW(field, format_string)				\
58 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
59 {									\
60 	return sprintf(buf, format_string, dev->field);			\
61 }									\
62 static ssize_t field##_show(struct device *dev,				\
63 			    struct device_attribute *attr, char *buf)	\
64 {									\
65 	return netdev_show(dev, attr, buf, format_##field);		\
66 }									\
67 
68 #define NETDEVICE_SHOW_RO(field, format_string)				\
69 NETDEVICE_SHOW(field, format_string);					\
70 static DEVICE_ATTR_RO(field)
71 
72 #define NETDEVICE_SHOW_RW(field, format_string)				\
73 NETDEVICE_SHOW(field, format_string);					\
74 static DEVICE_ATTR_RW(field)
75 
76 /* use same locking and permission rules as SIF* ioctl's */
77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
78 			    const char *buf, size_t len,
79 			    int (*set)(struct net_device *, unsigned long))
80 {
81 	struct net_device *netdev = to_net_dev(dev);
82 	struct net *net = dev_net(netdev);
83 	unsigned long new;
84 	int ret;
85 
86 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
87 		return -EPERM;
88 
89 	ret = kstrtoul(buf, 0, &new);
90 	if (ret)
91 		goto err;
92 
93 	if (!rtnl_trylock())
94 		return restart_syscall();
95 
96 	if (dev_isalive(netdev)) {
97 		ret = (*set)(netdev, new);
98 		if (ret == 0)
99 			ret = len;
100 	}
101 	rtnl_unlock();
102  err:
103 	return ret;
104 }
105 
106 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
107 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
109 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
110 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
111 NETDEVICE_SHOW_RO(type, fmt_dec);
112 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
113 
114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
115 			   char *buf)
116 {
117 	struct net_device *ndev = to_net_dev(dev);
118 
119 	return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
120 }
121 static DEVICE_ATTR_RO(iflink);
122 
123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
124 {
125 	return sprintf(buf, fmt_dec, dev->name_assign_type);
126 }
127 
128 static ssize_t name_assign_type_show(struct device *dev,
129 				     struct device_attribute *attr,
130 				     char *buf)
131 {
132 	struct net_device *ndev = to_net_dev(dev);
133 	ssize_t ret = -EINVAL;
134 
135 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
136 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
137 
138 	return ret;
139 }
140 static DEVICE_ATTR_RO(name_assign_type);
141 
142 /* use same locking rules as GIFHWADDR ioctl's */
143 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
144 			    char *buf)
145 {
146 	struct net_device *ndev = to_net_dev(dev);
147 	ssize_t ret = -EINVAL;
148 
149 	read_lock(&dev_base_lock);
150 	if (dev_isalive(ndev))
151 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
152 	read_unlock(&dev_base_lock);
153 	return ret;
154 }
155 static DEVICE_ATTR_RO(address);
156 
157 static ssize_t broadcast_show(struct device *dev,
158 			      struct device_attribute *attr, char *buf)
159 {
160 	struct net_device *ndev = to_net_dev(dev);
161 
162 	if (dev_isalive(ndev))
163 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
164 	return -EINVAL;
165 }
166 static DEVICE_ATTR_RO(broadcast);
167 
168 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
169 {
170 	if (!netif_running(dev))
171 		return -EINVAL;
172 	return dev_change_carrier(dev, (bool)new_carrier);
173 }
174 
175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
176 			     const char *buf, size_t len)
177 {
178 	return netdev_store(dev, attr, buf, len, change_carrier);
179 }
180 
181 static ssize_t carrier_show(struct device *dev,
182 			    struct device_attribute *attr, char *buf)
183 {
184 	struct net_device *netdev = to_net_dev(dev);
185 
186 	if (netif_running(netdev))
187 		return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
188 
189 	return -EINVAL;
190 }
191 static DEVICE_ATTR_RW(carrier);
192 
193 static ssize_t speed_show(struct device *dev,
194 			  struct device_attribute *attr, char *buf)
195 {
196 	struct net_device *netdev = to_net_dev(dev);
197 	int ret = -EINVAL;
198 
199 	if (!rtnl_trylock())
200 		return restart_syscall();
201 
202 	if (netif_running(netdev)) {
203 		struct ethtool_link_ksettings cmd;
204 
205 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
206 			ret = sprintf(buf, fmt_dec, cmd.base.speed);
207 	}
208 	rtnl_unlock();
209 	return ret;
210 }
211 static DEVICE_ATTR_RO(speed);
212 
213 static ssize_t duplex_show(struct device *dev,
214 			   struct device_attribute *attr, char *buf)
215 {
216 	struct net_device *netdev = to_net_dev(dev);
217 	int ret = -EINVAL;
218 
219 	if (!rtnl_trylock())
220 		return restart_syscall();
221 
222 	if (netif_running(netdev)) {
223 		struct ethtool_link_ksettings cmd;
224 
225 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
226 			const char *duplex;
227 
228 			switch (cmd.base.duplex) {
229 			case DUPLEX_HALF:
230 				duplex = "half";
231 				break;
232 			case DUPLEX_FULL:
233 				duplex = "full";
234 				break;
235 			default:
236 				duplex = "unknown";
237 				break;
238 			}
239 			ret = sprintf(buf, "%s\n", duplex);
240 		}
241 	}
242 	rtnl_unlock();
243 	return ret;
244 }
245 static DEVICE_ATTR_RO(duplex);
246 
247 static ssize_t testing_show(struct device *dev,
248 			    struct device_attribute *attr, char *buf)
249 {
250 	struct net_device *netdev = to_net_dev(dev);
251 
252 	if (netif_running(netdev))
253 		return sprintf(buf, fmt_dec, !!netif_testing(netdev));
254 
255 	return -EINVAL;
256 }
257 static DEVICE_ATTR_RO(testing);
258 
259 static ssize_t dormant_show(struct device *dev,
260 			    struct device_attribute *attr, char *buf)
261 {
262 	struct net_device *netdev = to_net_dev(dev);
263 
264 	if (netif_running(netdev))
265 		return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
266 
267 	return -EINVAL;
268 }
269 static DEVICE_ATTR_RO(dormant);
270 
271 static const char *const operstates[] = {
272 	"unknown",
273 	"notpresent", /* currently unused */
274 	"down",
275 	"lowerlayerdown",
276 	"testing",
277 	"dormant",
278 	"up"
279 };
280 
281 static ssize_t operstate_show(struct device *dev,
282 			      struct device_attribute *attr, char *buf)
283 {
284 	const struct net_device *netdev = to_net_dev(dev);
285 	unsigned char operstate;
286 
287 	read_lock(&dev_base_lock);
288 	operstate = netdev->operstate;
289 	if (!netif_running(netdev))
290 		operstate = IF_OPER_DOWN;
291 	read_unlock(&dev_base_lock);
292 
293 	if (operstate >= ARRAY_SIZE(operstates))
294 		return -EINVAL; /* should not happen */
295 
296 	return sprintf(buf, "%s\n", operstates[operstate]);
297 }
298 static DEVICE_ATTR_RO(operstate);
299 
300 static ssize_t carrier_changes_show(struct device *dev,
301 				    struct device_attribute *attr,
302 				    char *buf)
303 {
304 	struct net_device *netdev = to_net_dev(dev);
305 
306 	return sprintf(buf, fmt_dec,
307 		       atomic_read(&netdev->carrier_up_count) +
308 		       atomic_read(&netdev->carrier_down_count));
309 }
310 static DEVICE_ATTR_RO(carrier_changes);
311 
312 static ssize_t carrier_up_count_show(struct device *dev,
313 				     struct device_attribute *attr,
314 				     char *buf)
315 {
316 	struct net_device *netdev = to_net_dev(dev);
317 
318 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
319 }
320 static DEVICE_ATTR_RO(carrier_up_count);
321 
322 static ssize_t carrier_down_count_show(struct device *dev,
323 				       struct device_attribute *attr,
324 				       char *buf)
325 {
326 	struct net_device *netdev = to_net_dev(dev);
327 
328 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
329 }
330 static DEVICE_ATTR_RO(carrier_down_count);
331 
332 /* read-write attributes */
333 
334 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
335 {
336 	return dev_set_mtu(dev, (int)new_mtu);
337 }
338 
339 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
340 			 const char *buf, size_t len)
341 {
342 	return netdev_store(dev, attr, buf, len, change_mtu);
343 }
344 NETDEVICE_SHOW_RW(mtu, fmt_dec);
345 
346 static int change_flags(struct net_device *dev, unsigned long new_flags)
347 {
348 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
349 }
350 
351 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
352 			   const char *buf, size_t len)
353 {
354 	return netdev_store(dev, attr, buf, len, change_flags);
355 }
356 NETDEVICE_SHOW_RW(flags, fmt_hex);
357 
358 static ssize_t tx_queue_len_store(struct device *dev,
359 				  struct device_attribute *attr,
360 				  const char *buf, size_t len)
361 {
362 	if (!capable(CAP_NET_ADMIN))
363 		return -EPERM;
364 
365 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
366 }
367 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
368 
369 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
370 {
371 	WRITE_ONCE(dev->gro_flush_timeout, val);
372 	return 0;
373 }
374 
375 static ssize_t gro_flush_timeout_store(struct device *dev,
376 				       struct device_attribute *attr,
377 				       const char *buf, size_t len)
378 {
379 	if (!capable(CAP_NET_ADMIN))
380 		return -EPERM;
381 
382 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
383 }
384 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
385 
386 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
387 {
388 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
389 	return 0;
390 }
391 
392 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
393 					  struct device_attribute *attr,
394 					  const char *buf, size_t len)
395 {
396 	if (!capable(CAP_NET_ADMIN))
397 		return -EPERM;
398 
399 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
400 }
401 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
402 
403 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
404 			     const char *buf, size_t len)
405 {
406 	struct net_device *netdev = to_net_dev(dev);
407 	struct net *net = dev_net(netdev);
408 	size_t count = len;
409 	ssize_t ret = 0;
410 
411 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
412 		return -EPERM;
413 
414 	/* ignore trailing newline */
415 	if (len >  0 && buf[len - 1] == '\n')
416 		--count;
417 
418 	if (!rtnl_trylock())
419 		return restart_syscall();
420 
421 	if (dev_isalive(netdev)) {
422 		ret = dev_set_alias(netdev, buf, count);
423 		if (ret < 0)
424 			goto err;
425 		ret = len;
426 		netdev_state_change(netdev);
427 	}
428 err:
429 	rtnl_unlock();
430 
431 	return ret;
432 }
433 
434 static ssize_t ifalias_show(struct device *dev,
435 			    struct device_attribute *attr, char *buf)
436 {
437 	const struct net_device *netdev = to_net_dev(dev);
438 	char tmp[IFALIASZ];
439 	ssize_t ret = 0;
440 
441 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
442 	if (ret > 0)
443 		ret = sprintf(buf, "%s\n", tmp);
444 	return ret;
445 }
446 static DEVICE_ATTR_RW(ifalias);
447 
448 static int change_group(struct net_device *dev, unsigned long new_group)
449 {
450 	dev_set_group(dev, (int)new_group);
451 	return 0;
452 }
453 
454 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
455 			   const char *buf, size_t len)
456 {
457 	return netdev_store(dev, attr, buf, len, change_group);
458 }
459 NETDEVICE_SHOW(group, fmt_dec);
460 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
461 
462 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
463 {
464 	return dev_change_proto_down(dev, (bool)proto_down);
465 }
466 
467 static ssize_t proto_down_store(struct device *dev,
468 				struct device_attribute *attr,
469 				const char *buf, size_t len)
470 {
471 	return netdev_store(dev, attr, buf, len, change_proto_down);
472 }
473 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
474 
475 static ssize_t phys_port_id_show(struct device *dev,
476 				 struct device_attribute *attr, char *buf)
477 {
478 	struct net_device *netdev = to_net_dev(dev);
479 	ssize_t ret = -EINVAL;
480 
481 	if (!rtnl_trylock())
482 		return restart_syscall();
483 
484 	if (dev_isalive(netdev)) {
485 		struct netdev_phys_item_id ppid;
486 
487 		ret = dev_get_phys_port_id(netdev, &ppid);
488 		if (!ret)
489 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
490 	}
491 	rtnl_unlock();
492 
493 	return ret;
494 }
495 static DEVICE_ATTR_RO(phys_port_id);
496 
497 static ssize_t phys_port_name_show(struct device *dev,
498 				   struct device_attribute *attr, char *buf)
499 {
500 	struct net_device *netdev = to_net_dev(dev);
501 	ssize_t ret = -EINVAL;
502 
503 	if (!rtnl_trylock())
504 		return restart_syscall();
505 
506 	if (dev_isalive(netdev)) {
507 		char name[IFNAMSIZ];
508 
509 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
510 		if (!ret)
511 			ret = sprintf(buf, "%s\n", name);
512 	}
513 	rtnl_unlock();
514 
515 	return ret;
516 }
517 static DEVICE_ATTR_RO(phys_port_name);
518 
519 static ssize_t phys_switch_id_show(struct device *dev,
520 				   struct device_attribute *attr, char *buf)
521 {
522 	struct net_device *netdev = to_net_dev(dev);
523 	ssize_t ret = -EINVAL;
524 
525 	if (!rtnl_trylock())
526 		return restart_syscall();
527 
528 	if (dev_isalive(netdev)) {
529 		struct netdev_phys_item_id ppid = { };
530 
531 		ret = dev_get_port_parent_id(netdev, &ppid, false);
532 		if (!ret)
533 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
534 	}
535 	rtnl_unlock();
536 
537 	return ret;
538 }
539 static DEVICE_ATTR_RO(phys_switch_id);
540 
541 static struct attribute *net_class_attrs[] __ro_after_init = {
542 	&dev_attr_netdev_group.attr,
543 	&dev_attr_type.attr,
544 	&dev_attr_dev_id.attr,
545 	&dev_attr_dev_port.attr,
546 	&dev_attr_iflink.attr,
547 	&dev_attr_ifindex.attr,
548 	&dev_attr_name_assign_type.attr,
549 	&dev_attr_addr_assign_type.attr,
550 	&dev_attr_addr_len.attr,
551 	&dev_attr_link_mode.attr,
552 	&dev_attr_address.attr,
553 	&dev_attr_broadcast.attr,
554 	&dev_attr_speed.attr,
555 	&dev_attr_duplex.attr,
556 	&dev_attr_dormant.attr,
557 	&dev_attr_testing.attr,
558 	&dev_attr_operstate.attr,
559 	&dev_attr_carrier_changes.attr,
560 	&dev_attr_ifalias.attr,
561 	&dev_attr_carrier.attr,
562 	&dev_attr_mtu.attr,
563 	&dev_attr_flags.attr,
564 	&dev_attr_tx_queue_len.attr,
565 	&dev_attr_gro_flush_timeout.attr,
566 	&dev_attr_napi_defer_hard_irqs.attr,
567 	&dev_attr_phys_port_id.attr,
568 	&dev_attr_phys_port_name.attr,
569 	&dev_attr_phys_switch_id.attr,
570 	&dev_attr_proto_down.attr,
571 	&dev_attr_carrier_up_count.attr,
572 	&dev_attr_carrier_down_count.attr,
573 	NULL,
574 };
575 ATTRIBUTE_GROUPS(net_class);
576 
577 /* Show a given an attribute in the statistics group */
578 static ssize_t netstat_show(const struct device *d,
579 			    struct device_attribute *attr, char *buf,
580 			    unsigned long offset)
581 {
582 	struct net_device *dev = to_net_dev(d);
583 	ssize_t ret = -EINVAL;
584 
585 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
586 		offset % sizeof(u64) != 0);
587 
588 	read_lock(&dev_base_lock);
589 	if (dev_isalive(dev)) {
590 		struct rtnl_link_stats64 temp;
591 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
592 
593 		ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
594 	}
595 	read_unlock(&dev_base_lock);
596 	return ret;
597 }
598 
599 /* generate a read-only statistics attribute */
600 #define NETSTAT_ENTRY(name)						\
601 static ssize_t name##_show(struct device *d,				\
602 			   struct device_attribute *attr, char *buf)	\
603 {									\
604 	return netstat_show(d, attr, buf,				\
605 			    offsetof(struct rtnl_link_stats64, name));	\
606 }									\
607 static DEVICE_ATTR_RO(name)
608 
609 NETSTAT_ENTRY(rx_packets);
610 NETSTAT_ENTRY(tx_packets);
611 NETSTAT_ENTRY(rx_bytes);
612 NETSTAT_ENTRY(tx_bytes);
613 NETSTAT_ENTRY(rx_errors);
614 NETSTAT_ENTRY(tx_errors);
615 NETSTAT_ENTRY(rx_dropped);
616 NETSTAT_ENTRY(tx_dropped);
617 NETSTAT_ENTRY(multicast);
618 NETSTAT_ENTRY(collisions);
619 NETSTAT_ENTRY(rx_length_errors);
620 NETSTAT_ENTRY(rx_over_errors);
621 NETSTAT_ENTRY(rx_crc_errors);
622 NETSTAT_ENTRY(rx_frame_errors);
623 NETSTAT_ENTRY(rx_fifo_errors);
624 NETSTAT_ENTRY(rx_missed_errors);
625 NETSTAT_ENTRY(tx_aborted_errors);
626 NETSTAT_ENTRY(tx_carrier_errors);
627 NETSTAT_ENTRY(tx_fifo_errors);
628 NETSTAT_ENTRY(tx_heartbeat_errors);
629 NETSTAT_ENTRY(tx_window_errors);
630 NETSTAT_ENTRY(rx_compressed);
631 NETSTAT_ENTRY(tx_compressed);
632 NETSTAT_ENTRY(rx_nohandler);
633 
634 static struct attribute *netstat_attrs[] __ro_after_init = {
635 	&dev_attr_rx_packets.attr,
636 	&dev_attr_tx_packets.attr,
637 	&dev_attr_rx_bytes.attr,
638 	&dev_attr_tx_bytes.attr,
639 	&dev_attr_rx_errors.attr,
640 	&dev_attr_tx_errors.attr,
641 	&dev_attr_rx_dropped.attr,
642 	&dev_attr_tx_dropped.attr,
643 	&dev_attr_multicast.attr,
644 	&dev_attr_collisions.attr,
645 	&dev_attr_rx_length_errors.attr,
646 	&dev_attr_rx_over_errors.attr,
647 	&dev_attr_rx_crc_errors.attr,
648 	&dev_attr_rx_frame_errors.attr,
649 	&dev_attr_rx_fifo_errors.attr,
650 	&dev_attr_rx_missed_errors.attr,
651 	&dev_attr_tx_aborted_errors.attr,
652 	&dev_attr_tx_carrier_errors.attr,
653 	&dev_attr_tx_fifo_errors.attr,
654 	&dev_attr_tx_heartbeat_errors.attr,
655 	&dev_attr_tx_window_errors.attr,
656 	&dev_attr_rx_compressed.attr,
657 	&dev_attr_tx_compressed.attr,
658 	&dev_attr_rx_nohandler.attr,
659 	NULL
660 };
661 
662 static const struct attribute_group netstat_group = {
663 	.name  = "statistics",
664 	.attrs  = netstat_attrs,
665 };
666 
667 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
668 static struct attribute *wireless_attrs[] = {
669 	NULL
670 };
671 
672 static const struct attribute_group wireless_group = {
673 	.name = "wireless",
674 	.attrs = wireless_attrs,
675 };
676 #endif
677 
678 #else /* CONFIG_SYSFS */
679 #define net_class_groups	NULL
680 #endif /* CONFIG_SYSFS */
681 
682 #ifdef CONFIG_SYSFS
683 #define to_rx_queue_attr(_attr) \
684 	container_of(_attr, struct rx_queue_attribute, attr)
685 
686 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
687 
688 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
689 				  char *buf)
690 {
691 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
692 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
693 
694 	if (!attribute->show)
695 		return -EIO;
696 
697 	return attribute->show(queue, buf);
698 }
699 
700 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
701 				   const char *buf, size_t count)
702 {
703 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
704 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
705 
706 	if (!attribute->store)
707 		return -EIO;
708 
709 	return attribute->store(queue, buf, count);
710 }
711 
712 static const struct sysfs_ops rx_queue_sysfs_ops = {
713 	.show = rx_queue_attr_show,
714 	.store = rx_queue_attr_store,
715 };
716 
717 #ifdef CONFIG_RPS
718 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
719 {
720 	struct rps_map *map;
721 	cpumask_var_t mask;
722 	int i, len;
723 
724 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
725 		return -ENOMEM;
726 
727 	rcu_read_lock();
728 	map = rcu_dereference(queue->rps_map);
729 	if (map)
730 		for (i = 0; i < map->len; i++)
731 			cpumask_set_cpu(map->cpus[i], mask);
732 
733 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
734 	rcu_read_unlock();
735 	free_cpumask_var(mask);
736 
737 	return len < PAGE_SIZE ? len : -EINVAL;
738 }
739 
740 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
741 			     const char *buf, size_t len)
742 {
743 	struct rps_map *old_map, *map;
744 	cpumask_var_t mask;
745 	int err, cpu, i, hk_flags;
746 	static DEFINE_MUTEX(rps_map_mutex);
747 
748 	if (!capable(CAP_NET_ADMIN))
749 		return -EPERM;
750 
751 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
752 		return -ENOMEM;
753 
754 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
755 	if (err) {
756 		free_cpumask_var(mask);
757 		return err;
758 	}
759 
760 	if (!cpumask_empty(mask)) {
761 		hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
762 		cpumask_and(mask, mask, housekeeping_cpumask(hk_flags));
763 		if (cpumask_empty(mask)) {
764 			free_cpumask_var(mask);
765 			return -EINVAL;
766 		}
767 	}
768 
769 	map = kzalloc(max_t(unsigned int,
770 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
771 		      GFP_KERNEL);
772 	if (!map) {
773 		free_cpumask_var(mask);
774 		return -ENOMEM;
775 	}
776 
777 	i = 0;
778 	for_each_cpu_and(cpu, mask, cpu_online_mask)
779 		map->cpus[i++] = cpu;
780 
781 	if (i) {
782 		map->len = i;
783 	} else {
784 		kfree(map);
785 		map = NULL;
786 	}
787 
788 	mutex_lock(&rps_map_mutex);
789 	old_map = rcu_dereference_protected(queue->rps_map,
790 					    mutex_is_locked(&rps_map_mutex));
791 	rcu_assign_pointer(queue->rps_map, map);
792 
793 	if (map)
794 		static_branch_inc(&rps_needed);
795 	if (old_map)
796 		static_branch_dec(&rps_needed);
797 
798 	mutex_unlock(&rps_map_mutex);
799 
800 	if (old_map)
801 		kfree_rcu(old_map, rcu);
802 
803 	free_cpumask_var(mask);
804 	return len;
805 }
806 
807 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
808 					   char *buf)
809 {
810 	struct rps_dev_flow_table *flow_table;
811 	unsigned long val = 0;
812 
813 	rcu_read_lock();
814 	flow_table = rcu_dereference(queue->rps_flow_table);
815 	if (flow_table)
816 		val = (unsigned long)flow_table->mask + 1;
817 	rcu_read_unlock();
818 
819 	return sprintf(buf, "%lu\n", val);
820 }
821 
822 static void rps_dev_flow_table_release(struct rcu_head *rcu)
823 {
824 	struct rps_dev_flow_table *table = container_of(rcu,
825 	    struct rps_dev_flow_table, rcu);
826 	vfree(table);
827 }
828 
829 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
830 					    const char *buf, size_t len)
831 {
832 	unsigned long mask, count;
833 	struct rps_dev_flow_table *table, *old_table;
834 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
835 	int rc;
836 
837 	if (!capable(CAP_NET_ADMIN))
838 		return -EPERM;
839 
840 	rc = kstrtoul(buf, 0, &count);
841 	if (rc < 0)
842 		return rc;
843 
844 	if (count) {
845 		mask = count - 1;
846 		/* mask = roundup_pow_of_two(count) - 1;
847 		 * without overflows...
848 		 */
849 		while ((mask | (mask >> 1)) != mask)
850 			mask |= (mask >> 1);
851 		/* On 64 bit arches, must check mask fits in table->mask (u32),
852 		 * and on 32bit arches, must check
853 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
854 		 */
855 #if BITS_PER_LONG > 32
856 		if (mask > (unsigned long)(u32)mask)
857 			return -EINVAL;
858 #else
859 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
860 				/ sizeof(struct rps_dev_flow)) {
861 			/* Enforce a limit to prevent overflow */
862 			return -EINVAL;
863 		}
864 #endif
865 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
866 		if (!table)
867 			return -ENOMEM;
868 
869 		table->mask = mask;
870 		for (count = 0; count <= mask; count++)
871 			table->flows[count].cpu = RPS_NO_CPU;
872 	} else {
873 		table = NULL;
874 	}
875 
876 	spin_lock(&rps_dev_flow_lock);
877 	old_table = rcu_dereference_protected(queue->rps_flow_table,
878 					      lockdep_is_held(&rps_dev_flow_lock));
879 	rcu_assign_pointer(queue->rps_flow_table, table);
880 	spin_unlock(&rps_dev_flow_lock);
881 
882 	if (old_table)
883 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
884 
885 	return len;
886 }
887 
888 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
889 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
890 
891 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
892 	= __ATTR(rps_flow_cnt, 0644,
893 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
894 #endif /* CONFIG_RPS */
895 
896 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
897 #ifdef CONFIG_RPS
898 	&rps_cpus_attribute.attr,
899 	&rps_dev_flow_table_cnt_attribute.attr,
900 #endif
901 	NULL
902 };
903 ATTRIBUTE_GROUPS(rx_queue_default);
904 
905 static void rx_queue_release(struct kobject *kobj)
906 {
907 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
908 #ifdef CONFIG_RPS
909 	struct rps_map *map;
910 	struct rps_dev_flow_table *flow_table;
911 
912 	map = rcu_dereference_protected(queue->rps_map, 1);
913 	if (map) {
914 		RCU_INIT_POINTER(queue->rps_map, NULL);
915 		kfree_rcu(map, rcu);
916 	}
917 
918 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
919 	if (flow_table) {
920 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
921 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
922 	}
923 #endif
924 
925 	memset(kobj, 0, sizeof(*kobj));
926 	dev_put(queue->dev);
927 }
928 
929 static const void *rx_queue_namespace(struct kobject *kobj)
930 {
931 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
932 	struct device *dev = &queue->dev->dev;
933 	const void *ns = NULL;
934 
935 	if (dev->class && dev->class->ns_type)
936 		ns = dev->class->namespace(dev);
937 
938 	return ns;
939 }
940 
941 static void rx_queue_get_ownership(struct kobject *kobj,
942 				   kuid_t *uid, kgid_t *gid)
943 {
944 	const struct net *net = rx_queue_namespace(kobj);
945 
946 	net_ns_get_ownership(net, uid, gid);
947 }
948 
949 static struct kobj_type rx_queue_ktype __ro_after_init = {
950 	.sysfs_ops = &rx_queue_sysfs_ops,
951 	.release = rx_queue_release,
952 	.default_groups = rx_queue_default_groups,
953 	.namespace = rx_queue_namespace,
954 	.get_ownership = rx_queue_get_ownership,
955 };
956 
957 static int rx_queue_add_kobject(struct net_device *dev, int index)
958 {
959 	struct netdev_rx_queue *queue = dev->_rx + index;
960 	struct kobject *kobj = &queue->kobj;
961 	int error = 0;
962 
963 	/* Kobject_put later will trigger rx_queue_release call which
964 	 * decreases dev refcount: Take that reference here
965 	 */
966 	dev_hold(queue->dev);
967 
968 	kobj->kset = dev->queues_kset;
969 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
970 				     "rx-%u", index);
971 	if (error)
972 		goto err;
973 
974 	if (dev->sysfs_rx_queue_group) {
975 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
976 		if (error)
977 			goto err;
978 	}
979 
980 	kobject_uevent(kobj, KOBJ_ADD);
981 
982 	return error;
983 
984 err:
985 	kobject_put(kobj);
986 	return error;
987 }
988 
989 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
990 				 kgid_t kgid)
991 {
992 	struct netdev_rx_queue *queue = dev->_rx + index;
993 	struct kobject *kobj = &queue->kobj;
994 	int error;
995 
996 	error = sysfs_change_owner(kobj, kuid, kgid);
997 	if (error)
998 		return error;
999 
1000 	if (dev->sysfs_rx_queue_group)
1001 		error = sysfs_group_change_owner(
1002 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1003 
1004 	return error;
1005 }
1006 #endif /* CONFIG_SYSFS */
1007 
1008 int
1009 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1010 {
1011 #ifdef CONFIG_SYSFS
1012 	int i;
1013 	int error = 0;
1014 
1015 #ifndef CONFIG_RPS
1016 	if (!dev->sysfs_rx_queue_group)
1017 		return 0;
1018 #endif
1019 	for (i = old_num; i < new_num; i++) {
1020 		error = rx_queue_add_kobject(dev, i);
1021 		if (error) {
1022 			new_num = old_num;
1023 			break;
1024 		}
1025 	}
1026 
1027 	while (--i >= new_num) {
1028 		struct kobject *kobj = &dev->_rx[i].kobj;
1029 
1030 		if (!refcount_read(&dev_net(dev)->count))
1031 			kobj->uevent_suppress = 1;
1032 		if (dev->sysfs_rx_queue_group)
1033 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1034 		kobject_put(kobj);
1035 	}
1036 
1037 	return error;
1038 #else
1039 	return 0;
1040 #endif
1041 }
1042 
1043 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1044 				     kuid_t kuid, kgid_t kgid)
1045 {
1046 #ifdef CONFIG_SYSFS
1047 	int error = 0;
1048 	int i;
1049 
1050 #ifndef CONFIG_RPS
1051 	if (!dev->sysfs_rx_queue_group)
1052 		return 0;
1053 #endif
1054 	for (i = 0; i < num; i++) {
1055 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1056 		if (error)
1057 			break;
1058 	}
1059 
1060 	return error;
1061 #else
1062 	return 0;
1063 #endif
1064 }
1065 
1066 #ifdef CONFIG_SYSFS
1067 /*
1068  * netdev_queue sysfs structures and functions.
1069  */
1070 struct netdev_queue_attribute {
1071 	struct attribute attr;
1072 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1073 	ssize_t (*store)(struct netdev_queue *queue,
1074 			 const char *buf, size_t len);
1075 };
1076 #define to_netdev_queue_attr(_attr) \
1077 	container_of(_attr, struct netdev_queue_attribute, attr)
1078 
1079 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1080 
1081 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1082 				      struct attribute *attr, char *buf)
1083 {
1084 	const struct netdev_queue_attribute *attribute
1085 		= to_netdev_queue_attr(attr);
1086 	struct netdev_queue *queue = to_netdev_queue(kobj);
1087 
1088 	if (!attribute->show)
1089 		return -EIO;
1090 
1091 	return attribute->show(queue, buf);
1092 }
1093 
1094 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1095 				       struct attribute *attr,
1096 				       const char *buf, size_t count)
1097 {
1098 	const struct netdev_queue_attribute *attribute
1099 		= to_netdev_queue_attr(attr);
1100 	struct netdev_queue *queue = to_netdev_queue(kobj);
1101 
1102 	if (!attribute->store)
1103 		return -EIO;
1104 
1105 	return attribute->store(queue, buf, count);
1106 }
1107 
1108 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1109 	.show = netdev_queue_attr_show,
1110 	.store = netdev_queue_attr_store,
1111 };
1112 
1113 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1114 {
1115 	unsigned long trans_timeout;
1116 
1117 	spin_lock_irq(&queue->_xmit_lock);
1118 	trans_timeout = queue->trans_timeout;
1119 	spin_unlock_irq(&queue->_xmit_lock);
1120 
1121 	return sprintf(buf, fmt_ulong, trans_timeout);
1122 }
1123 
1124 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1125 {
1126 	struct net_device *dev = queue->dev;
1127 	unsigned int i;
1128 
1129 	i = queue - dev->_tx;
1130 	BUG_ON(i >= dev->num_tx_queues);
1131 
1132 	return i;
1133 }
1134 
1135 static ssize_t traffic_class_show(struct netdev_queue *queue,
1136 				  char *buf)
1137 {
1138 	struct net_device *dev = queue->dev;
1139 	int index;
1140 	int tc;
1141 
1142 	if (!netif_is_multiqueue(dev))
1143 		return -ENOENT;
1144 
1145 	index = get_netdev_queue_index(queue);
1146 
1147 	/* If queue belongs to subordinate dev use its TC mapping */
1148 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1149 
1150 	tc = netdev_txq_to_tc(dev, index);
1151 	if (tc < 0)
1152 		return -EINVAL;
1153 
1154 	/* We can report the traffic class one of two ways:
1155 	 * Subordinate device traffic classes are reported with the traffic
1156 	 * class first, and then the subordinate class so for example TC0 on
1157 	 * subordinate device 2 will be reported as "0-2". If the queue
1158 	 * belongs to the root device it will be reported with just the
1159 	 * traffic class, so just "0" for TC 0 for example.
1160 	 */
1161 	return dev->num_tc < 0 ? sprintf(buf, "%u%d\n", tc, dev->num_tc) :
1162 				 sprintf(buf, "%u\n", tc);
1163 }
1164 
1165 #ifdef CONFIG_XPS
1166 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1167 			       char *buf)
1168 {
1169 	return sprintf(buf, "%lu\n", queue->tx_maxrate);
1170 }
1171 
1172 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1173 				const char *buf, size_t len)
1174 {
1175 	struct net_device *dev = queue->dev;
1176 	int err, index = get_netdev_queue_index(queue);
1177 	u32 rate = 0;
1178 
1179 	if (!capable(CAP_NET_ADMIN))
1180 		return -EPERM;
1181 
1182 	err = kstrtou32(buf, 10, &rate);
1183 	if (err < 0)
1184 		return err;
1185 
1186 	if (!rtnl_trylock())
1187 		return restart_syscall();
1188 
1189 	err = -EOPNOTSUPP;
1190 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1191 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1192 
1193 	rtnl_unlock();
1194 	if (!err) {
1195 		queue->tx_maxrate = rate;
1196 		return len;
1197 	}
1198 	return err;
1199 }
1200 
1201 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1202 	= __ATTR_RW(tx_maxrate);
1203 #endif
1204 
1205 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1206 	= __ATTR_RO(tx_timeout);
1207 
1208 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1209 	= __ATTR_RO(traffic_class);
1210 
1211 #ifdef CONFIG_BQL
1212 /*
1213  * Byte queue limits sysfs structures and functions.
1214  */
1215 static ssize_t bql_show(char *buf, unsigned int value)
1216 {
1217 	return sprintf(buf, "%u\n", value);
1218 }
1219 
1220 static ssize_t bql_set(const char *buf, const size_t count,
1221 		       unsigned int *pvalue)
1222 {
1223 	unsigned int value;
1224 	int err;
1225 
1226 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1227 		value = DQL_MAX_LIMIT;
1228 	} else {
1229 		err = kstrtouint(buf, 10, &value);
1230 		if (err < 0)
1231 			return err;
1232 		if (value > DQL_MAX_LIMIT)
1233 			return -EINVAL;
1234 	}
1235 
1236 	*pvalue = value;
1237 
1238 	return count;
1239 }
1240 
1241 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1242 				  char *buf)
1243 {
1244 	struct dql *dql = &queue->dql;
1245 
1246 	return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1247 }
1248 
1249 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1250 				 const char *buf, size_t len)
1251 {
1252 	struct dql *dql = &queue->dql;
1253 	unsigned int value;
1254 	int err;
1255 
1256 	err = kstrtouint(buf, 10, &value);
1257 	if (err < 0)
1258 		return err;
1259 
1260 	dql->slack_hold_time = msecs_to_jiffies(value);
1261 
1262 	return len;
1263 }
1264 
1265 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1266 	= __ATTR(hold_time, 0644,
1267 		 bql_show_hold_time, bql_set_hold_time);
1268 
1269 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1270 				 char *buf)
1271 {
1272 	struct dql *dql = &queue->dql;
1273 
1274 	return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1275 }
1276 
1277 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1278 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1279 
1280 #define BQL_ATTR(NAME, FIELD)						\
1281 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1282 				 char *buf)				\
1283 {									\
1284 	return bql_show(buf, queue->dql.FIELD);				\
1285 }									\
1286 									\
1287 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1288 				const char *buf, size_t len)		\
1289 {									\
1290 	return bql_set(buf, len, &queue->dql.FIELD);			\
1291 }									\
1292 									\
1293 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1294 	= __ATTR(NAME, 0644,				\
1295 		 bql_show_ ## NAME, bql_set_ ## NAME)
1296 
1297 BQL_ATTR(limit, limit);
1298 BQL_ATTR(limit_max, max_limit);
1299 BQL_ATTR(limit_min, min_limit);
1300 
1301 static struct attribute *dql_attrs[] __ro_after_init = {
1302 	&bql_limit_attribute.attr,
1303 	&bql_limit_max_attribute.attr,
1304 	&bql_limit_min_attribute.attr,
1305 	&bql_hold_time_attribute.attr,
1306 	&bql_inflight_attribute.attr,
1307 	NULL
1308 };
1309 
1310 static const struct attribute_group dql_group = {
1311 	.name  = "byte_queue_limits",
1312 	.attrs  = dql_attrs,
1313 };
1314 #endif /* CONFIG_BQL */
1315 
1316 #ifdef CONFIG_XPS
1317 static ssize_t xps_cpus_show(struct netdev_queue *queue,
1318 			     char *buf)
1319 {
1320 	struct net_device *dev = queue->dev;
1321 	int cpu, len, num_tc = 1, tc = 0;
1322 	struct xps_dev_maps *dev_maps;
1323 	cpumask_var_t mask;
1324 	unsigned long index;
1325 
1326 	if (!netif_is_multiqueue(dev))
1327 		return -ENOENT;
1328 
1329 	index = get_netdev_queue_index(queue);
1330 
1331 	if (dev->num_tc) {
1332 		/* Do not allow XPS on subordinate device directly */
1333 		num_tc = dev->num_tc;
1334 		if (num_tc < 0)
1335 			return -EINVAL;
1336 
1337 		/* If queue belongs to subordinate dev use its map */
1338 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1339 
1340 		tc = netdev_txq_to_tc(dev, index);
1341 		if (tc < 0)
1342 			return -EINVAL;
1343 	}
1344 
1345 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1346 		return -ENOMEM;
1347 
1348 	rcu_read_lock();
1349 	dev_maps = rcu_dereference(dev->xps_cpus_map);
1350 	if (dev_maps) {
1351 		for_each_possible_cpu(cpu) {
1352 			int i, tci = cpu * num_tc + tc;
1353 			struct xps_map *map;
1354 
1355 			map = rcu_dereference(dev_maps->attr_map[tci]);
1356 			if (!map)
1357 				continue;
1358 
1359 			for (i = map->len; i--;) {
1360 				if (map->queues[i] == index) {
1361 					cpumask_set_cpu(cpu, mask);
1362 					break;
1363 				}
1364 			}
1365 		}
1366 	}
1367 	rcu_read_unlock();
1368 
1369 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
1370 	free_cpumask_var(mask);
1371 	return len < PAGE_SIZE ? len : -EINVAL;
1372 }
1373 
1374 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1375 			      const char *buf, size_t len)
1376 {
1377 	struct net_device *dev = queue->dev;
1378 	unsigned long index;
1379 	cpumask_var_t mask;
1380 	int err;
1381 
1382 	if (!netif_is_multiqueue(dev))
1383 		return -ENOENT;
1384 
1385 	if (!capable(CAP_NET_ADMIN))
1386 		return -EPERM;
1387 
1388 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1389 		return -ENOMEM;
1390 
1391 	index = get_netdev_queue_index(queue);
1392 
1393 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1394 	if (err) {
1395 		free_cpumask_var(mask);
1396 		return err;
1397 	}
1398 
1399 	err = netif_set_xps_queue(dev, mask, index);
1400 
1401 	free_cpumask_var(mask);
1402 
1403 	return err ? : len;
1404 }
1405 
1406 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1407 	= __ATTR_RW(xps_cpus);
1408 
1409 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1410 {
1411 	struct net_device *dev = queue->dev;
1412 	struct xps_dev_maps *dev_maps;
1413 	unsigned long *mask, index;
1414 	int j, len, num_tc = 1, tc = 0;
1415 
1416 	index = get_netdev_queue_index(queue);
1417 
1418 	if (dev->num_tc) {
1419 		num_tc = dev->num_tc;
1420 		tc = netdev_txq_to_tc(dev, index);
1421 		if (tc < 0)
1422 			return -EINVAL;
1423 	}
1424 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1425 	if (!mask)
1426 		return -ENOMEM;
1427 
1428 	rcu_read_lock();
1429 	dev_maps = rcu_dereference(dev->xps_rxqs_map);
1430 	if (!dev_maps)
1431 		goto out_no_maps;
1432 
1433 	for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues),
1434 	     j < dev->num_rx_queues;) {
1435 		int i, tci = j * num_tc + tc;
1436 		struct xps_map *map;
1437 
1438 		map = rcu_dereference(dev_maps->attr_map[tci]);
1439 		if (!map)
1440 			continue;
1441 
1442 		for (i = map->len; i--;) {
1443 			if (map->queues[i] == index) {
1444 				set_bit(j, mask);
1445 				break;
1446 			}
1447 		}
1448 	}
1449 out_no_maps:
1450 	rcu_read_unlock();
1451 
1452 	len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues);
1453 	bitmap_free(mask);
1454 
1455 	return len < PAGE_SIZE ? len : -EINVAL;
1456 }
1457 
1458 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1459 			      size_t len)
1460 {
1461 	struct net_device *dev = queue->dev;
1462 	struct net *net = dev_net(dev);
1463 	unsigned long *mask, index;
1464 	int err;
1465 
1466 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1467 		return -EPERM;
1468 
1469 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1470 	if (!mask)
1471 		return -ENOMEM;
1472 
1473 	index = get_netdev_queue_index(queue);
1474 
1475 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1476 	if (err) {
1477 		bitmap_free(mask);
1478 		return err;
1479 	}
1480 
1481 	cpus_read_lock();
1482 	err = __netif_set_xps_queue(dev, mask, index, true);
1483 	cpus_read_unlock();
1484 
1485 	bitmap_free(mask);
1486 	return err ? : len;
1487 }
1488 
1489 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1490 	= __ATTR_RW(xps_rxqs);
1491 #endif /* CONFIG_XPS */
1492 
1493 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1494 	&queue_trans_timeout.attr,
1495 	&queue_traffic_class.attr,
1496 #ifdef CONFIG_XPS
1497 	&xps_cpus_attribute.attr,
1498 	&xps_rxqs_attribute.attr,
1499 	&queue_tx_maxrate.attr,
1500 #endif
1501 	NULL
1502 };
1503 ATTRIBUTE_GROUPS(netdev_queue_default);
1504 
1505 static void netdev_queue_release(struct kobject *kobj)
1506 {
1507 	struct netdev_queue *queue = to_netdev_queue(kobj);
1508 
1509 	memset(kobj, 0, sizeof(*kobj));
1510 	dev_put(queue->dev);
1511 }
1512 
1513 static const void *netdev_queue_namespace(struct kobject *kobj)
1514 {
1515 	struct netdev_queue *queue = to_netdev_queue(kobj);
1516 	struct device *dev = &queue->dev->dev;
1517 	const void *ns = NULL;
1518 
1519 	if (dev->class && dev->class->ns_type)
1520 		ns = dev->class->namespace(dev);
1521 
1522 	return ns;
1523 }
1524 
1525 static void netdev_queue_get_ownership(struct kobject *kobj,
1526 				       kuid_t *uid, kgid_t *gid)
1527 {
1528 	const struct net *net = netdev_queue_namespace(kobj);
1529 
1530 	net_ns_get_ownership(net, uid, gid);
1531 }
1532 
1533 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1534 	.sysfs_ops = &netdev_queue_sysfs_ops,
1535 	.release = netdev_queue_release,
1536 	.default_groups = netdev_queue_default_groups,
1537 	.namespace = netdev_queue_namespace,
1538 	.get_ownership = netdev_queue_get_ownership,
1539 };
1540 
1541 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1542 {
1543 	struct netdev_queue *queue = dev->_tx + index;
1544 	struct kobject *kobj = &queue->kobj;
1545 	int error = 0;
1546 
1547 	/* Kobject_put later will trigger netdev_queue_release call
1548 	 * which decreases dev refcount: Take that reference here
1549 	 */
1550 	dev_hold(queue->dev);
1551 
1552 	kobj->kset = dev->queues_kset;
1553 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1554 				     "tx-%u", index);
1555 	if (error)
1556 		goto err;
1557 
1558 #ifdef CONFIG_BQL
1559 	error = sysfs_create_group(kobj, &dql_group);
1560 	if (error)
1561 		goto err;
1562 #endif
1563 
1564 	kobject_uevent(kobj, KOBJ_ADD);
1565 	return 0;
1566 
1567 err:
1568 	kobject_put(kobj);
1569 	return error;
1570 }
1571 
1572 static int tx_queue_change_owner(struct net_device *ndev, int index,
1573 				 kuid_t kuid, kgid_t kgid)
1574 {
1575 	struct netdev_queue *queue = ndev->_tx + index;
1576 	struct kobject *kobj = &queue->kobj;
1577 	int error;
1578 
1579 	error = sysfs_change_owner(kobj, kuid, kgid);
1580 	if (error)
1581 		return error;
1582 
1583 #ifdef CONFIG_BQL
1584 	error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1585 #endif
1586 	return error;
1587 }
1588 #endif /* CONFIG_SYSFS */
1589 
1590 int
1591 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1592 {
1593 #ifdef CONFIG_SYSFS
1594 	int i;
1595 	int error = 0;
1596 
1597 	for (i = old_num; i < new_num; i++) {
1598 		error = netdev_queue_add_kobject(dev, i);
1599 		if (error) {
1600 			new_num = old_num;
1601 			break;
1602 		}
1603 	}
1604 
1605 	while (--i >= new_num) {
1606 		struct netdev_queue *queue = dev->_tx + i;
1607 
1608 		if (!refcount_read(&dev_net(dev)->count))
1609 			queue->kobj.uevent_suppress = 1;
1610 #ifdef CONFIG_BQL
1611 		sysfs_remove_group(&queue->kobj, &dql_group);
1612 #endif
1613 		kobject_put(&queue->kobj);
1614 	}
1615 
1616 	return error;
1617 #else
1618 	return 0;
1619 #endif /* CONFIG_SYSFS */
1620 }
1621 
1622 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1623 				     kuid_t kuid, kgid_t kgid)
1624 {
1625 #ifdef CONFIG_SYSFS
1626 	int error = 0;
1627 	int i;
1628 
1629 	for (i = 0; i < num; i++) {
1630 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1631 		if (error)
1632 			break;
1633 	}
1634 
1635 	return error;
1636 #else
1637 	return 0;
1638 #endif /* CONFIG_SYSFS */
1639 }
1640 
1641 static int register_queue_kobjects(struct net_device *dev)
1642 {
1643 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1644 
1645 #ifdef CONFIG_SYSFS
1646 	dev->queues_kset = kset_create_and_add("queues",
1647 					       NULL, &dev->dev.kobj);
1648 	if (!dev->queues_kset)
1649 		return -ENOMEM;
1650 	real_rx = dev->real_num_rx_queues;
1651 #endif
1652 	real_tx = dev->real_num_tx_queues;
1653 
1654 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1655 	if (error)
1656 		goto error;
1657 	rxq = real_rx;
1658 
1659 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1660 	if (error)
1661 		goto error;
1662 	txq = real_tx;
1663 
1664 	return 0;
1665 
1666 error:
1667 	netdev_queue_update_kobjects(dev, txq, 0);
1668 	net_rx_queue_update_kobjects(dev, rxq, 0);
1669 #ifdef CONFIG_SYSFS
1670 	kset_unregister(dev->queues_kset);
1671 #endif
1672 	return error;
1673 }
1674 
1675 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1676 {
1677 	int error = 0, real_rx = 0, real_tx = 0;
1678 
1679 #ifdef CONFIG_SYSFS
1680 	if (ndev->queues_kset) {
1681 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1682 		if (error)
1683 			return error;
1684 	}
1685 	real_rx = ndev->real_num_rx_queues;
1686 #endif
1687 	real_tx = ndev->real_num_tx_queues;
1688 
1689 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1690 	if (error)
1691 		return error;
1692 
1693 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1694 	if (error)
1695 		return error;
1696 
1697 	return 0;
1698 }
1699 
1700 static void remove_queue_kobjects(struct net_device *dev)
1701 {
1702 	int real_rx = 0, real_tx = 0;
1703 
1704 #ifdef CONFIG_SYSFS
1705 	real_rx = dev->real_num_rx_queues;
1706 #endif
1707 	real_tx = dev->real_num_tx_queues;
1708 
1709 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1710 	netdev_queue_update_kobjects(dev, real_tx, 0);
1711 #ifdef CONFIG_SYSFS
1712 	kset_unregister(dev->queues_kset);
1713 #endif
1714 }
1715 
1716 static bool net_current_may_mount(void)
1717 {
1718 	struct net *net = current->nsproxy->net_ns;
1719 
1720 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1721 }
1722 
1723 static void *net_grab_current_ns(void)
1724 {
1725 	struct net *ns = current->nsproxy->net_ns;
1726 #ifdef CONFIG_NET_NS
1727 	if (ns)
1728 		refcount_inc(&ns->passive);
1729 #endif
1730 	return ns;
1731 }
1732 
1733 static const void *net_initial_ns(void)
1734 {
1735 	return &init_net;
1736 }
1737 
1738 static const void *net_netlink_ns(struct sock *sk)
1739 {
1740 	return sock_net(sk);
1741 }
1742 
1743 const struct kobj_ns_type_operations net_ns_type_operations = {
1744 	.type = KOBJ_NS_TYPE_NET,
1745 	.current_may_mount = net_current_may_mount,
1746 	.grab_current_ns = net_grab_current_ns,
1747 	.netlink_ns = net_netlink_ns,
1748 	.initial_ns = net_initial_ns,
1749 	.drop_ns = net_drop_ns,
1750 };
1751 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1752 
1753 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1754 {
1755 	struct net_device *dev = to_net_dev(d);
1756 	int retval;
1757 
1758 	/* pass interface to uevent. */
1759 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1760 	if (retval)
1761 		goto exit;
1762 
1763 	/* pass ifindex to uevent.
1764 	 * ifindex is useful as it won't change (interface name may change)
1765 	 * and is what RtNetlink uses natively.
1766 	 */
1767 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1768 
1769 exit:
1770 	return retval;
1771 }
1772 
1773 /*
1774  *	netdev_release -- destroy and free a dead device.
1775  *	Called when last reference to device kobject is gone.
1776  */
1777 static void netdev_release(struct device *d)
1778 {
1779 	struct net_device *dev = to_net_dev(d);
1780 
1781 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1782 
1783 	/* no need to wait for rcu grace period:
1784 	 * device is dead and about to be freed.
1785 	 */
1786 	kfree(rcu_access_pointer(dev->ifalias));
1787 	netdev_freemem(dev);
1788 }
1789 
1790 static const void *net_namespace(struct device *d)
1791 {
1792 	struct net_device *dev = to_net_dev(d);
1793 
1794 	return dev_net(dev);
1795 }
1796 
1797 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1798 {
1799 	struct net_device *dev = to_net_dev(d);
1800 	const struct net *net = dev_net(dev);
1801 
1802 	net_ns_get_ownership(net, uid, gid);
1803 }
1804 
1805 static struct class net_class __ro_after_init = {
1806 	.name = "net",
1807 	.dev_release = netdev_release,
1808 	.dev_groups = net_class_groups,
1809 	.dev_uevent = netdev_uevent,
1810 	.ns_type = &net_ns_type_operations,
1811 	.namespace = net_namespace,
1812 	.get_ownership = net_get_ownership,
1813 };
1814 
1815 #ifdef CONFIG_OF_NET
1816 static int of_dev_node_match(struct device *dev, const void *data)
1817 {
1818 	for (; dev; dev = dev->parent) {
1819 		if (dev->of_node == data)
1820 			return 1;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 /*
1827  * of_find_net_device_by_node - lookup the net device for the device node
1828  * @np: OF device node
1829  *
1830  * Looks up the net_device structure corresponding with the device node.
1831  * If successful, returns a pointer to the net_device with the embedded
1832  * struct device refcount incremented by one, or NULL on failure. The
1833  * refcount must be dropped when done with the net_device.
1834  */
1835 struct net_device *of_find_net_device_by_node(struct device_node *np)
1836 {
1837 	struct device *dev;
1838 
1839 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1840 	if (!dev)
1841 		return NULL;
1842 
1843 	return to_net_dev(dev);
1844 }
1845 EXPORT_SYMBOL(of_find_net_device_by_node);
1846 #endif
1847 
1848 /* Delete sysfs entries but hold kobject reference until after all
1849  * netdev references are gone.
1850  */
1851 void netdev_unregister_kobject(struct net_device *ndev)
1852 {
1853 	struct device *dev = &ndev->dev;
1854 
1855 	if (!refcount_read(&dev_net(ndev)->count))
1856 		dev_set_uevent_suppress(dev, 1);
1857 
1858 	kobject_get(&dev->kobj);
1859 
1860 	remove_queue_kobjects(ndev);
1861 
1862 	pm_runtime_set_memalloc_noio(dev, false);
1863 
1864 	device_del(dev);
1865 }
1866 
1867 /* Create sysfs entries for network device. */
1868 int netdev_register_kobject(struct net_device *ndev)
1869 {
1870 	struct device *dev = &ndev->dev;
1871 	const struct attribute_group **groups = ndev->sysfs_groups;
1872 	int error = 0;
1873 
1874 	device_initialize(dev);
1875 	dev->class = &net_class;
1876 	dev->platform_data = ndev;
1877 	dev->groups = groups;
1878 
1879 	dev_set_name(dev, "%s", ndev->name);
1880 
1881 #ifdef CONFIG_SYSFS
1882 	/* Allow for a device specific group */
1883 	if (*groups)
1884 		groups++;
1885 
1886 	*groups++ = &netstat_group;
1887 
1888 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1889 	if (ndev->ieee80211_ptr)
1890 		*groups++ = &wireless_group;
1891 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
1892 	else if (ndev->wireless_handlers)
1893 		*groups++ = &wireless_group;
1894 #endif
1895 #endif
1896 #endif /* CONFIG_SYSFS */
1897 
1898 	error = device_add(dev);
1899 	if (error)
1900 		return error;
1901 
1902 	error = register_queue_kobjects(ndev);
1903 	if (error) {
1904 		device_del(dev);
1905 		return error;
1906 	}
1907 
1908 	pm_runtime_set_memalloc_noio(dev, true);
1909 
1910 	return error;
1911 }
1912 
1913 /* Change owner for sysfs entries when moving network devices across network
1914  * namespaces owned by different user namespaces.
1915  */
1916 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
1917 			const struct net *net_new)
1918 {
1919 	struct device *dev = &ndev->dev;
1920 	kuid_t old_uid, new_uid;
1921 	kgid_t old_gid, new_gid;
1922 	int error;
1923 
1924 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
1925 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
1926 
1927 	/* The network namespace was changed but the owning user namespace is
1928 	 * identical so there's no need to change the owner of sysfs entries.
1929 	 */
1930 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
1931 		return 0;
1932 
1933 	error = device_change_owner(dev, new_uid, new_gid);
1934 	if (error)
1935 		return error;
1936 
1937 	error = queue_change_owner(ndev, new_uid, new_gid);
1938 	if (error)
1939 		return error;
1940 
1941 	return 0;
1942 }
1943 
1944 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
1945 				const void *ns)
1946 {
1947 	return class_create_file_ns(&net_class, class_attr, ns);
1948 }
1949 EXPORT_SYMBOL(netdev_class_create_file_ns);
1950 
1951 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
1952 				 const void *ns)
1953 {
1954 	class_remove_file_ns(&net_class, class_attr, ns);
1955 }
1956 EXPORT_SYMBOL(netdev_class_remove_file_ns);
1957 
1958 int __init netdev_kobject_init(void)
1959 {
1960 	kobj_ns_type_register(&net_ns_type_operations);
1961 	return class_register(&net_class);
1962 }
1963