xref: /openbmc/linux/net/core/net-sysfs.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * net-sysfs.c - network device class and attributes
3  *
4  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/capability.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <net/switchdev.h>
16 #include <linux/if_arp.h>
17 #include <linux/slab.h>
18 #include <linux/sched/signal.h>
19 #include <linux/nsproxy.h>
20 #include <net/sock.h>
21 #include <net/net_namespace.h>
22 #include <linux/rtnetlink.h>
23 #include <linux/vmalloc.h>
24 #include <linux/export.h>
25 #include <linux/jiffies.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/of.h>
28 #include <linux/of_net.h>
29 #include <linux/cpu.h>
30 
31 #include "net-sysfs.h"
32 
33 #ifdef CONFIG_SYSFS
34 static const char fmt_hex[] = "%#x\n";
35 static const char fmt_dec[] = "%d\n";
36 static const char fmt_ulong[] = "%lu\n";
37 static const char fmt_u64[] = "%llu\n";
38 
39 static inline int dev_isalive(const struct net_device *dev)
40 {
41 	return dev->reg_state <= NETREG_REGISTERED;
42 }
43 
44 /* use same locking rules as GIF* ioctl's */
45 static ssize_t netdev_show(const struct device *dev,
46 			   struct device_attribute *attr, char *buf,
47 			   ssize_t (*format)(const struct net_device *, char *))
48 {
49 	struct net_device *ndev = to_net_dev(dev);
50 	ssize_t ret = -EINVAL;
51 
52 	read_lock(&dev_base_lock);
53 	if (dev_isalive(ndev))
54 		ret = (*format)(ndev, buf);
55 	read_unlock(&dev_base_lock);
56 
57 	return ret;
58 }
59 
60 /* generate a show function for simple field */
61 #define NETDEVICE_SHOW(field, format_string)				\
62 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
63 {									\
64 	return sprintf(buf, format_string, dev->field);			\
65 }									\
66 static ssize_t field##_show(struct device *dev,				\
67 			    struct device_attribute *attr, char *buf)	\
68 {									\
69 	return netdev_show(dev, attr, buf, format_##field);		\
70 }									\
71 
72 #define NETDEVICE_SHOW_RO(field, format_string)				\
73 NETDEVICE_SHOW(field, format_string);					\
74 static DEVICE_ATTR_RO(field)
75 
76 #define NETDEVICE_SHOW_RW(field, format_string)				\
77 NETDEVICE_SHOW(field, format_string);					\
78 static DEVICE_ATTR_RW(field)
79 
80 /* use same locking and permission rules as SIF* ioctl's */
81 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
82 			    const char *buf, size_t len,
83 			    int (*set)(struct net_device *, unsigned long))
84 {
85 	struct net_device *netdev = to_net_dev(dev);
86 	struct net *net = dev_net(netdev);
87 	unsigned long new;
88 	int ret = -EINVAL;
89 
90 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
91 		return -EPERM;
92 
93 	ret = kstrtoul(buf, 0, &new);
94 	if (ret)
95 		goto err;
96 
97 	if (!rtnl_trylock())
98 		return restart_syscall();
99 
100 	if (dev_isalive(netdev)) {
101 		ret = (*set)(netdev, new);
102 		if (ret == 0)
103 			ret = len;
104 	}
105 	rtnl_unlock();
106  err:
107 	return ret;
108 }
109 
110 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
111 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
112 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
113 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
114 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
115 NETDEVICE_SHOW_RO(type, fmt_dec);
116 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
117 
118 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
119 			   char *buf)
120 {
121 	struct net_device *ndev = to_net_dev(dev);
122 
123 	return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
124 }
125 static DEVICE_ATTR_RO(iflink);
126 
127 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
128 {
129 	return sprintf(buf, fmt_dec, dev->name_assign_type);
130 }
131 
132 static ssize_t name_assign_type_show(struct device *dev,
133 				     struct device_attribute *attr,
134 				     char *buf)
135 {
136 	struct net_device *ndev = to_net_dev(dev);
137 	ssize_t ret = -EINVAL;
138 
139 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
140 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
141 
142 	return ret;
143 }
144 static DEVICE_ATTR_RO(name_assign_type);
145 
146 /* use same locking rules as GIFHWADDR ioctl's */
147 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
148 			    char *buf)
149 {
150 	struct net_device *ndev = to_net_dev(dev);
151 	ssize_t ret = -EINVAL;
152 
153 	read_lock(&dev_base_lock);
154 	if (dev_isalive(ndev))
155 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
156 	read_unlock(&dev_base_lock);
157 	return ret;
158 }
159 static DEVICE_ATTR_RO(address);
160 
161 static ssize_t broadcast_show(struct device *dev,
162 			      struct device_attribute *attr, char *buf)
163 {
164 	struct net_device *ndev = to_net_dev(dev);
165 
166 	if (dev_isalive(ndev))
167 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
168 	return -EINVAL;
169 }
170 static DEVICE_ATTR_RO(broadcast);
171 
172 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
173 {
174 	if (!netif_running(dev))
175 		return -EINVAL;
176 	return dev_change_carrier(dev, (bool)new_carrier);
177 }
178 
179 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
180 			     const char *buf, size_t len)
181 {
182 	return netdev_store(dev, attr, buf, len, change_carrier);
183 }
184 
185 static ssize_t carrier_show(struct device *dev,
186 			    struct device_attribute *attr, char *buf)
187 {
188 	struct net_device *netdev = to_net_dev(dev);
189 
190 	if (netif_running(netdev))
191 		return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
192 
193 	return -EINVAL;
194 }
195 static DEVICE_ATTR_RW(carrier);
196 
197 static ssize_t speed_show(struct device *dev,
198 			  struct device_attribute *attr, char *buf)
199 {
200 	struct net_device *netdev = to_net_dev(dev);
201 	int ret = -EINVAL;
202 
203 	if (!rtnl_trylock())
204 		return restart_syscall();
205 
206 	if (netif_running(netdev)) {
207 		struct ethtool_link_ksettings cmd;
208 
209 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
210 			ret = sprintf(buf, fmt_dec, cmd.base.speed);
211 	}
212 	rtnl_unlock();
213 	return ret;
214 }
215 static DEVICE_ATTR_RO(speed);
216 
217 static ssize_t duplex_show(struct device *dev,
218 			   struct device_attribute *attr, char *buf)
219 {
220 	struct net_device *netdev = to_net_dev(dev);
221 	int ret = -EINVAL;
222 
223 	if (!rtnl_trylock())
224 		return restart_syscall();
225 
226 	if (netif_running(netdev)) {
227 		struct ethtool_link_ksettings cmd;
228 
229 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
230 			const char *duplex;
231 
232 			switch (cmd.base.duplex) {
233 			case DUPLEX_HALF:
234 				duplex = "half";
235 				break;
236 			case DUPLEX_FULL:
237 				duplex = "full";
238 				break;
239 			default:
240 				duplex = "unknown";
241 				break;
242 			}
243 			ret = sprintf(buf, "%s\n", duplex);
244 		}
245 	}
246 	rtnl_unlock();
247 	return ret;
248 }
249 static DEVICE_ATTR_RO(duplex);
250 
251 static ssize_t dormant_show(struct device *dev,
252 			    struct device_attribute *attr, char *buf)
253 {
254 	struct net_device *netdev = to_net_dev(dev);
255 
256 	if (netif_running(netdev))
257 		return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
258 
259 	return -EINVAL;
260 }
261 static DEVICE_ATTR_RO(dormant);
262 
263 static const char *const operstates[] = {
264 	"unknown",
265 	"notpresent", /* currently unused */
266 	"down",
267 	"lowerlayerdown",
268 	"testing", /* currently unused */
269 	"dormant",
270 	"up"
271 };
272 
273 static ssize_t operstate_show(struct device *dev,
274 			      struct device_attribute *attr, char *buf)
275 {
276 	const struct net_device *netdev = to_net_dev(dev);
277 	unsigned char operstate;
278 
279 	read_lock(&dev_base_lock);
280 	operstate = netdev->operstate;
281 	if (!netif_running(netdev))
282 		operstate = IF_OPER_DOWN;
283 	read_unlock(&dev_base_lock);
284 
285 	if (operstate >= ARRAY_SIZE(operstates))
286 		return -EINVAL; /* should not happen */
287 
288 	return sprintf(buf, "%s\n", operstates[operstate]);
289 }
290 static DEVICE_ATTR_RO(operstate);
291 
292 static ssize_t carrier_changes_show(struct device *dev,
293 				    struct device_attribute *attr,
294 				    char *buf)
295 {
296 	struct net_device *netdev = to_net_dev(dev);
297 
298 	return sprintf(buf, fmt_dec,
299 		       atomic_read(&netdev->carrier_up_count) +
300 		       atomic_read(&netdev->carrier_down_count));
301 }
302 static DEVICE_ATTR_RO(carrier_changes);
303 
304 static ssize_t carrier_up_count_show(struct device *dev,
305 				     struct device_attribute *attr,
306 				     char *buf)
307 {
308 	struct net_device *netdev = to_net_dev(dev);
309 
310 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
311 }
312 static DEVICE_ATTR_RO(carrier_up_count);
313 
314 static ssize_t carrier_down_count_show(struct device *dev,
315 				       struct device_attribute *attr,
316 				       char *buf)
317 {
318 	struct net_device *netdev = to_net_dev(dev);
319 
320 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
321 }
322 static DEVICE_ATTR_RO(carrier_down_count);
323 
324 /* read-write attributes */
325 
326 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
327 {
328 	return dev_set_mtu(dev, (int)new_mtu);
329 }
330 
331 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
332 			 const char *buf, size_t len)
333 {
334 	return netdev_store(dev, attr, buf, len, change_mtu);
335 }
336 NETDEVICE_SHOW_RW(mtu, fmt_dec);
337 
338 static int change_flags(struct net_device *dev, unsigned long new_flags)
339 {
340 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
341 }
342 
343 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
344 			   const char *buf, size_t len)
345 {
346 	return netdev_store(dev, attr, buf, len, change_flags);
347 }
348 NETDEVICE_SHOW_RW(flags, fmt_hex);
349 
350 static ssize_t tx_queue_len_store(struct device *dev,
351 				  struct device_attribute *attr,
352 				  const char *buf, size_t len)
353 {
354 	if (!capable(CAP_NET_ADMIN))
355 		return -EPERM;
356 
357 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
358 }
359 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
360 
361 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
362 {
363 	dev->gro_flush_timeout = val;
364 	return 0;
365 }
366 
367 static ssize_t gro_flush_timeout_store(struct device *dev,
368 				       struct device_attribute *attr,
369 				       const char *buf, size_t len)
370 {
371 	if (!capable(CAP_NET_ADMIN))
372 		return -EPERM;
373 
374 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
375 }
376 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
377 
378 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
379 			     const char *buf, size_t len)
380 {
381 	struct net_device *netdev = to_net_dev(dev);
382 	struct net *net = dev_net(netdev);
383 	size_t count = len;
384 	ssize_t ret = 0;
385 
386 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
387 		return -EPERM;
388 
389 	/* ignore trailing newline */
390 	if (len >  0 && buf[len - 1] == '\n')
391 		--count;
392 
393 	if (!rtnl_trylock())
394 		return restart_syscall();
395 
396 	if (dev_isalive(netdev)) {
397 		ret = dev_set_alias(netdev, buf, count);
398 		if (ret < 0)
399 			goto err;
400 		ret = len;
401 		netdev_state_change(netdev);
402 	}
403 err:
404 	rtnl_unlock();
405 
406 	return ret;
407 }
408 
409 static ssize_t ifalias_show(struct device *dev,
410 			    struct device_attribute *attr, char *buf)
411 {
412 	const struct net_device *netdev = to_net_dev(dev);
413 	char tmp[IFALIASZ];
414 	ssize_t ret = 0;
415 
416 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
417 	if (ret > 0)
418 		ret = sprintf(buf, "%s\n", tmp);
419 	return ret;
420 }
421 static DEVICE_ATTR_RW(ifalias);
422 
423 static int change_group(struct net_device *dev, unsigned long new_group)
424 {
425 	dev_set_group(dev, (int)new_group);
426 	return 0;
427 }
428 
429 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
430 			   const char *buf, size_t len)
431 {
432 	return netdev_store(dev, attr, buf, len, change_group);
433 }
434 NETDEVICE_SHOW(group, fmt_dec);
435 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
436 
437 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
438 {
439 	return dev_change_proto_down(dev, (bool)proto_down);
440 }
441 
442 static ssize_t proto_down_store(struct device *dev,
443 				struct device_attribute *attr,
444 				const char *buf, size_t len)
445 {
446 	return netdev_store(dev, attr, buf, len, change_proto_down);
447 }
448 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
449 
450 static ssize_t phys_port_id_show(struct device *dev,
451 				 struct device_attribute *attr, char *buf)
452 {
453 	struct net_device *netdev = to_net_dev(dev);
454 	ssize_t ret = -EINVAL;
455 
456 	if (!rtnl_trylock())
457 		return restart_syscall();
458 
459 	if (dev_isalive(netdev)) {
460 		struct netdev_phys_item_id ppid;
461 
462 		ret = dev_get_phys_port_id(netdev, &ppid);
463 		if (!ret)
464 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
465 	}
466 	rtnl_unlock();
467 
468 	return ret;
469 }
470 static DEVICE_ATTR_RO(phys_port_id);
471 
472 static ssize_t phys_port_name_show(struct device *dev,
473 				   struct device_attribute *attr, char *buf)
474 {
475 	struct net_device *netdev = to_net_dev(dev);
476 	ssize_t ret = -EINVAL;
477 
478 	if (!rtnl_trylock())
479 		return restart_syscall();
480 
481 	if (dev_isalive(netdev)) {
482 		char name[IFNAMSIZ];
483 
484 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
485 		if (!ret)
486 			ret = sprintf(buf, "%s\n", name);
487 	}
488 	rtnl_unlock();
489 
490 	return ret;
491 }
492 static DEVICE_ATTR_RO(phys_port_name);
493 
494 static ssize_t phys_switch_id_show(struct device *dev,
495 				   struct device_attribute *attr, char *buf)
496 {
497 	struct net_device *netdev = to_net_dev(dev);
498 	ssize_t ret = -EINVAL;
499 
500 	if (!rtnl_trylock())
501 		return restart_syscall();
502 
503 	if (dev_isalive(netdev)) {
504 		struct switchdev_attr attr = {
505 			.orig_dev = netdev,
506 			.id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
507 			.flags = SWITCHDEV_F_NO_RECURSE,
508 		};
509 
510 		ret = switchdev_port_attr_get(netdev, &attr);
511 		if (!ret)
512 			ret = sprintf(buf, "%*phN\n", attr.u.ppid.id_len,
513 				      attr.u.ppid.id);
514 	}
515 	rtnl_unlock();
516 
517 	return ret;
518 }
519 static DEVICE_ATTR_RO(phys_switch_id);
520 
521 static struct attribute *net_class_attrs[] __ro_after_init = {
522 	&dev_attr_netdev_group.attr,
523 	&dev_attr_type.attr,
524 	&dev_attr_dev_id.attr,
525 	&dev_attr_dev_port.attr,
526 	&dev_attr_iflink.attr,
527 	&dev_attr_ifindex.attr,
528 	&dev_attr_name_assign_type.attr,
529 	&dev_attr_addr_assign_type.attr,
530 	&dev_attr_addr_len.attr,
531 	&dev_attr_link_mode.attr,
532 	&dev_attr_address.attr,
533 	&dev_attr_broadcast.attr,
534 	&dev_attr_speed.attr,
535 	&dev_attr_duplex.attr,
536 	&dev_attr_dormant.attr,
537 	&dev_attr_operstate.attr,
538 	&dev_attr_carrier_changes.attr,
539 	&dev_attr_ifalias.attr,
540 	&dev_attr_carrier.attr,
541 	&dev_attr_mtu.attr,
542 	&dev_attr_flags.attr,
543 	&dev_attr_tx_queue_len.attr,
544 	&dev_attr_gro_flush_timeout.attr,
545 	&dev_attr_phys_port_id.attr,
546 	&dev_attr_phys_port_name.attr,
547 	&dev_attr_phys_switch_id.attr,
548 	&dev_attr_proto_down.attr,
549 	&dev_attr_carrier_up_count.attr,
550 	&dev_attr_carrier_down_count.attr,
551 	NULL,
552 };
553 ATTRIBUTE_GROUPS(net_class);
554 
555 /* Show a given an attribute in the statistics group */
556 static ssize_t netstat_show(const struct device *d,
557 			    struct device_attribute *attr, char *buf,
558 			    unsigned long offset)
559 {
560 	struct net_device *dev = to_net_dev(d);
561 	ssize_t ret = -EINVAL;
562 
563 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
564 		offset % sizeof(u64) != 0);
565 
566 	read_lock(&dev_base_lock);
567 	if (dev_isalive(dev)) {
568 		struct rtnl_link_stats64 temp;
569 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
570 
571 		ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
572 	}
573 	read_unlock(&dev_base_lock);
574 	return ret;
575 }
576 
577 /* generate a read-only statistics attribute */
578 #define NETSTAT_ENTRY(name)						\
579 static ssize_t name##_show(struct device *d,				\
580 			   struct device_attribute *attr, char *buf)	\
581 {									\
582 	return netstat_show(d, attr, buf,				\
583 			    offsetof(struct rtnl_link_stats64, name));	\
584 }									\
585 static DEVICE_ATTR_RO(name)
586 
587 NETSTAT_ENTRY(rx_packets);
588 NETSTAT_ENTRY(tx_packets);
589 NETSTAT_ENTRY(rx_bytes);
590 NETSTAT_ENTRY(tx_bytes);
591 NETSTAT_ENTRY(rx_errors);
592 NETSTAT_ENTRY(tx_errors);
593 NETSTAT_ENTRY(rx_dropped);
594 NETSTAT_ENTRY(tx_dropped);
595 NETSTAT_ENTRY(multicast);
596 NETSTAT_ENTRY(collisions);
597 NETSTAT_ENTRY(rx_length_errors);
598 NETSTAT_ENTRY(rx_over_errors);
599 NETSTAT_ENTRY(rx_crc_errors);
600 NETSTAT_ENTRY(rx_frame_errors);
601 NETSTAT_ENTRY(rx_fifo_errors);
602 NETSTAT_ENTRY(rx_missed_errors);
603 NETSTAT_ENTRY(tx_aborted_errors);
604 NETSTAT_ENTRY(tx_carrier_errors);
605 NETSTAT_ENTRY(tx_fifo_errors);
606 NETSTAT_ENTRY(tx_heartbeat_errors);
607 NETSTAT_ENTRY(tx_window_errors);
608 NETSTAT_ENTRY(rx_compressed);
609 NETSTAT_ENTRY(tx_compressed);
610 NETSTAT_ENTRY(rx_nohandler);
611 
612 static struct attribute *netstat_attrs[] __ro_after_init = {
613 	&dev_attr_rx_packets.attr,
614 	&dev_attr_tx_packets.attr,
615 	&dev_attr_rx_bytes.attr,
616 	&dev_attr_tx_bytes.attr,
617 	&dev_attr_rx_errors.attr,
618 	&dev_attr_tx_errors.attr,
619 	&dev_attr_rx_dropped.attr,
620 	&dev_attr_tx_dropped.attr,
621 	&dev_attr_multicast.attr,
622 	&dev_attr_collisions.attr,
623 	&dev_attr_rx_length_errors.attr,
624 	&dev_attr_rx_over_errors.attr,
625 	&dev_attr_rx_crc_errors.attr,
626 	&dev_attr_rx_frame_errors.attr,
627 	&dev_attr_rx_fifo_errors.attr,
628 	&dev_attr_rx_missed_errors.attr,
629 	&dev_attr_tx_aborted_errors.attr,
630 	&dev_attr_tx_carrier_errors.attr,
631 	&dev_attr_tx_fifo_errors.attr,
632 	&dev_attr_tx_heartbeat_errors.attr,
633 	&dev_attr_tx_window_errors.attr,
634 	&dev_attr_rx_compressed.attr,
635 	&dev_attr_tx_compressed.attr,
636 	&dev_attr_rx_nohandler.attr,
637 	NULL
638 };
639 
640 static const struct attribute_group netstat_group = {
641 	.name  = "statistics",
642 	.attrs  = netstat_attrs,
643 };
644 
645 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
646 static struct attribute *wireless_attrs[] = {
647 	NULL
648 };
649 
650 static const struct attribute_group wireless_group = {
651 	.name = "wireless",
652 	.attrs = wireless_attrs,
653 };
654 #endif
655 
656 #else /* CONFIG_SYSFS */
657 #define net_class_groups	NULL
658 #endif /* CONFIG_SYSFS */
659 
660 #ifdef CONFIG_SYSFS
661 #define to_rx_queue_attr(_attr) \
662 	container_of(_attr, struct rx_queue_attribute, attr)
663 
664 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
665 
666 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
667 				  char *buf)
668 {
669 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
670 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
671 
672 	if (!attribute->show)
673 		return -EIO;
674 
675 	return attribute->show(queue, buf);
676 }
677 
678 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
679 				   const char *buf, size_t count)
680 {
681 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
682 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
683 
684 	if (!attribute->store)
685 		return -EIO;
686 
687 	return attribute->store(queue, buf, count);
688 }
689 
690 static const struct sysfs_ops rx_queue_sysfs_ops = {
691 	.show = rx_queue_attr_show,
692 	.store = rx_queue_attr_store,
693 };
694 
695 #ifdef CONFIG_RPS
696 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
697 {
698 	struct rps_map *map;
699 	cpumask_var_t mask;
700 	int i, len;
701 
702 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
703 		return -ENOMEM;
704 
705 	rcu_read_lock();
706 	map = rcu_dereference(queue->rps_map);
707 	if (map)
708 		for (i = 0; i < map->len; i++)
709 			cpumask_set_cpu(map->cpus[i], mask);
710 
711 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
712 	rcu_read_unlock();
713 	free_cpumask_var(mask);
714 
715 	return len < PAGE_SIZE ? len : -EINVAL;
716 }
717 
718 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
719 			     const char *buf, size_t len)
720 {
721 	struct rps_map *old_map, *map;
722 	cpumask_var_t mask;
723 	int err, cpu, i;
724 	static DEFINE_MUTEX(rps_map_mutex);
725 
726 	if (!capable(CAP_NET_ADMIN))
727 		return -EPERM;
728 
729 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
730 		return -ENOMEM;
731 
732 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
733 	if (err) {
734 		free_cpumask_var(mask);
735 		return err;
736 	}
737 
738 	map = kzalloc(max_t(unsigned int,
739 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
740 		      GFP_KERNEL);
741 	if (!map) {
742 		free_cpumask_var(mask);
743 		return -ENOMEM;
744 	}
745 
746 	i = 0;
747 	for_each_cpu_and(cpu, mask, cpu_online_mask)
748 		map->cpus[i++] = cpu;
749 
750 	if (i) {
751 		map->len = i;
752 	} else {
753 		kfree(map);
754 		map = NULL;
755 	}
756 
757 	mutex_lock(&rps_map_mutex);
758 	old_map = rcu_dereference_protected(queue->rps_map,
759 					    mutex_is_locked(&rps_map_mutex));
760 	rcu_assign_pointer(queue->rps_map, map);
761 
762 	if (map)
763 		static_key_slow_inc(&rps_needed);
764 	if (old_map)
765 		static_key_slow_dec(&rps_needed);
766 
767 	mutex_unlock(&rps_map_mutex);
768 
769 	if (old_map)
770 		kfree_rcu(old_map, rcu);
771 
772 	free_cpumask_var(mask);
773 	return len;
774 }
775 
776 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
777 					   char *buf)
778 {
779 	struct rps_dev_flow_table *flow_table;
780 	unsigned long val = 0;
781 
782 	rcu_read_lock();
783 	flow_table = rcu_dereference(queue->rps_flow_table);
784 	if (flow_table)
785 		val = (unsigned long)flow_table->mask + 1;
786 	rcu_read_unlock();
787 
788 	return sprintf(buf, "%lu\n", val);
789 }
790 
791 static void rps_dev_flow_table_release(struct rcu_head *rcu)
792 {
793 	struct rps_dev_flow_table *table = container_of(rcu,
794 	    struct rps_dev_flow_table, rcu);
795 	vfree(table);
796 }
797 
798 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
799 					    const char *buf, size_t len)
800 {
801 	unsigned long mask, count;
802 	struct rps_dev_flow_table *table, *old_table;
803 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
804 	int rc;
805 
806 	if (!capable(CAP_NET_ADMIN))
807 		return -EPERM;
808 
809 	rc = kstrtoul(buf, 0, &count);
810 	if (rc < 0)
811 		return rc;
812 
813 	if (count) {
814 		mask = count - 1;
815 		/* mask = roundup_pow_of_two(count) - 1;
816 		 * without overflows...
817 		 */
818 		while ((mask | (mask >> 1)) != mask)
819 			mask |= (mask >> 1);
820 		/* On 64 bit arches, must check mask fits in table->mask (u32),
821 		 * and on 32bit arches, must check
822 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
823 		 */
824 #if BITS_PER_LONG > 32
825 		if (mask > (unsigned long)(u32)mask)
826 			return -EINVAL;
827 #else
828 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
829 				/ sizeof(struct rps_dev_flow)) {
830 			/* Enforce a limit to prevent overflow */
831 			return -EINVAL;
832 		}
833 #endif
834 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
835 		if (!table)
836 			return -ENOMEM;
837 
838 		table->mask = mask;
839 		for (count = 0; count <= mask; count++)
840 			table->flows[count].cpu = RPS_NO_CPU;
841 	} else {
842 		table = NULL;
843 	}
844 
845 	spin_lock(&rps_dev_flow_lock);
846 	old_table = rcu_dereference_protected(queue->rps_flow_table,
847 					      lockdep_is_held(&rps_dev_flow_lock));
848 	rcu_assign_pointer(queue->rps_flow_table, table);
849 	spin_unlock(&rps_dev_flow_lock);
850 
851 	if (old_table)
852 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
853 
854 	return len;
855 }
856 
857 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
858 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
859 
860 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
861 	= __ATTR(rps_flow_cnt, 0644,
862 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
863 #endif /* CONFIG_RPS */
864 
865 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
866 #ifdef CONFIG_RPS
867 	&rps_cpus_attribute.attr,
868 	&rps_dev_flow_table_cnt_attribute.attr,
869 #endif
870 	NULL
871 };
872 
873 static void rx_queue_release(struct kobject *kobj)
874 {
875 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
876 #ifdef CONFIG_RPS
877 	struct rps_map *map;
878 	struct rps_dev_flow_table *flow_table;
879 
880 	map = rcu_dereference_protected(queue->rps_map, 1);
881 	if (map) {
882 		RCU_INIT_POINTER(queue->rps_map, NULL);
883 		kfree_rcu(map, rcu);
884 	}
885 
886 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
887 	if (flow_table) {
888 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
889 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
890 	}
891 #endif
892 
893 	memset(kobj, 0, sizeof(*kobj));
894 	dev_put(queue->dev);
895 }
896 
897 static const void *rx_queue_namespace(struct kobject *kobj)
898 {
899 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
900 	struct device *dev = &queue->dev->dev;
901 	const void *ns = NULL;
902 
903 	if (dev->class && dev->class->ns_type)
904 		ns = dev->class->namespace(dev);
905 
906 	return ns;
907 }
908 
909 static void rx_queue_get_ownership(struct kobject *kobj,
910 				   kuid_t *uid, kgid_t *gid)
911 {
912 	const struct net *net = rx_queue_namespace(kobj);
913 
914 	net_ns_get_ownership(net, uid, gid);
915 }
916 
917 static struct kobj_type rx_queue_ktype __ro_after_init = {
918 	.sysfs_ops = &rx_queue_sysfs_ops,
919 	.release = rx_queue_release,
920 	.default_attrs = rx_queue_default_attrs,
921 	.namespace = rx_queue_namespace,
922 	.get_ownership = rx_queue_get_ownership,
923 };
924 
925 static int rx_queue_add_kobject(struct net_device *dev, int index)
926 {
927 	struct netdev_rx_queue *queue = dev->_rx + index;
928 	struct kobject *kobj = &queue->kobj;
929 	int error = 0;
930 
931 	kobj->kset = dev->queues_kset;
932 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
933 				     "rx-%u", index);
934 	if (error)
935 		return error;
936 
937 	if (dev->sysfs_rx_queue_group) {
938 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
939 		if (error) {
940 			kobject_put(kobj);
941 			return error;
942 		}
943 	}
944 
945 	kobject_uevent(kobj, KOBJ_ADD);
946 	dev_hold(queue->dev);
947 
948 	return error;
949 }
950 #endif /* CONFIG_SYSFS */
951 
952 int
953 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
954 {
955 #ifdef CONFIG_SYSFS
956 	int i;
957 	int error = 0;
958 
959 #ifndef CONFIG_RPS
960 	if (!dev->sysfs_rx_queue_group)
961 		return 0;
962 #endif
963 	for (i = old_num; i < new_num; i++) {
964 		error = rx_queue_add_kobject(dev, i);
965 		if (error) {
966 			new_num = old_num;
967 			break;
968 		}
969 	}
970 
971 	while (--i >= new_num) {
972 		struct kobject *kobj = &dev->_rx[i].kobj;
973 
974 		if (!refcount_read(&dev_net(dev)->count))
975 			kobj->uevent_suppress = 1;
976 		if (dev->sysfs_rx_queue_group)
977 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
978 		kobject_put(kobj);
979 	}
980 
981 	return error;
982 #else
983 	return 0;
984 #endif
985 }
986 
987 #ifdef CONFIG_SYSFS
988 /*
989  * netdev_queue sysfs structures and functions.
990  */
991 struct netdev_queue_attribute {
992 	struct attribute attr;
993 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
994 	ssize_t (*store)(struct netdev_queue *queue,
995 			 const char *buf, size_t len);
996 };
997 #define to_netdev_queue_attr(_attr) \
998 	container_of(_attr, struct netdev_queue_attribute, attr)
999 
1000 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1001 
1002 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1003 				      struct attribute *attr, char *buf)
1004 {
1005 	const struct netdev_queue_attribute *attribute
1006 		= to_netdev_queue_attr(attr);
1007 	struct netdev_queue *queue = to_netdev_queue(kobj);
1008 
1009 	if (!attribute->show)
1010 		return -EIO;
1011 
1012 	return attribute->show(queue, buf);
1013 }
1014 
1015 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1016 				       struct attribute *attr,
1017 				       const char *buf, size_t count)
1018 {
1019 	const struct netdev_queue_attribute *attribute
1020 		= to_netdev_queue_attr(attr);
1021 	struct netdev_queue *queue = to_netdev_queue(kobj);
1022 
1023 	if (!attribute->store)
1024 		return -EIO;
1025 
1026 	return attribute->store(queue, buf, count);
1027 }
1028 
1029 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1030 	.show = netdev_queue_attr_show,
1031 	.store = netdev_queue_attr_store,
1032 };
1033 
1034 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1035 {
1036 	unsigned long trans_timeout;
1037 
1038 	spin_lock_irq(&queue->_xmit_lock);
1039 	trans_timeout = queue->trans_timeout;
1040 	spin_unlock_irq(&queue->_xmit_lock);
1041 
1042 	return sprintf(buf, "%lu", trans_timeout);
1043 }
1044 
1045 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1046 {
1047 	struct net_device *dev = queue->dev;
1048 	unsigned int i;
1049 
1050 	i = queue - dev->_tx;
1051 	BUG_ON(i >= dev->num_tx_queues);
1052 
1053 	return i;
1054 }
1055 
1056 static ssize_t traffic_class_show(struct netdev_queue *queue,
1057 				  char *buf)
1058 {
1059 	struct net_device *dev = queue->dev;
1060 	int index;
1061 	int tc;
1062 
1063 	if (!netif_is_multiqueue(dev))
1064 		return -ENOENT;
1065 
1066 	index = get_netdev_queue_index(queue);
1067 
1068 	/* If queue belongs to subordinate dev use its TC mapping */
1069 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1070 
1071 	tc = netdev_txq_to_tc(dev, index);
1072 	if (tc < 0)
1073 		return -EINVAL;
1074 
1075 	/* We can report the traffic class one of two ways:
1076 	 * Subordinate device traffic classes are reported with the traffic
1077 	 * class first, and then the subordinate class so for example TC0 on
1078 	 * subordinate device 2 will be reported as "0-2". If the queue
1079 	 * belongs to the root device it will be reported with just the
1080 	 * traffic class, so just "0" for TC 0 for example.
1081 	 */
1082 	return dev->num_tc < 0 ? sprintf(buf, "%u%d\n", tc, dev->num_tc) :
1083 				 sprintf(buf, "%u\n", tc);
1084 }
1085 
1086 #ifdef CONFIG_XPS
1087 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1088 			       char *buf)
1089 {
1090 	return sprintf(buf, "%lu\n", queue->tx_maxrate);
1091 }
1092 
1093 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1094 				const char *buf, size_t len)
1095 {
1096 	struct net_device *dev = queue->dev;
1097 	int err, index = get_netdev_queue_index(queue);
1098 	u32 rate = 0;
1099 
1100 	if (!capable(CAP_NET_ADMIN))
1101 		return -EPERM;
1102 
1103 	err = kstrtou32(buf, 10, &rate);
1104 	if (err < 0)
1105 		return err;
1106 
1107 	if (!rtnl_trylock())
1108 		return restart_syscall();
1109 
1110 	err = -EOPNOTSUPP;
1111 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1112 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1113 
1114 	rtnl_unlock();
1115 	if (!err) {
1116 		queue->tx_maxrate = rate;
1117 		return len;
1118 	}
1119 	return err;
1120 }
1121 
1122 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1123 	= __ATTR_RW(tx_maxrate);
1124 #endif
1125 
1126 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1127 	= __ATTR_RO(tx_timeout);
1128 
1129 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1130 	= __ATTR_RO(traffic_class);
1131 
1132 #ifdef CONFIG_BQL
1133 /*
1134  * Byte queue limits sysfs structures and functions.
1135  */
1136 static ssize_t bql_show(char *buf, unsigned int value)
1137 {
1138 	return sprintf(buf, "%u\n", value);
1139 }
1140 
1141 static ssize_t bql_set(const char *buf, const size_t count,
1142 		       unsigned int *pvalue)
1143 {
1144 	unsigned int value;
1145 	int err;
1146 
1147 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1148 		value = DQL_MAX_LIMIT;
1149 	} else {
1150 		err = kstrtouint(buf, 10, &value);
1151 		if (err < 0)
1152 			return err;
1153 		if (value > DQL_MAX_LIMIT)
1154 			return -EINVAL;
1155 	}
1156 
1157 	*pvalue = value;
1158 
1159 	return count;
1160 }
1161 
1162 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1163 				  char *buf)
1164 {
1165 	struct dql *dql = &queue->dql;
1166 
1167 	return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1168 }
1169 
1170 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1171 				 const char *buf, size_t len)
1172 {
1173 	struct dql *dql = &queue->dql;
1174 	unsigned int value;
1175 	int err;
1176 
1177 	err = kstrtouint(buf, 10, &value);
1178 	if (err < 0)
1179 		return err;
1180 
1181 	dql->slack_hold_time = msecs_to_jiffies(value);
1182 
1183 	return len;
1184 }
1185 
1186 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1187 	= __ATTR(hold_time, 0644,
1188 		 bql_show_hold_time, bql_set_hold_time);
1189 
1190 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1191 				 char *buf)
1192 {
1193 	struct dql *dql = &queue->dql;
1194 
1195 	return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1196 }
1197 
1198 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1199 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1200 
1201 #define BQL_ATTR(NAME, FIELD)						\
1202 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1203 				 char *buf)				\
1204 {									\
1205 	return bql_show(buf, queue->dql.FIELD);				\
1206 }									\
1207 									\
1208 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1209 				const char *buf, size_t len)		\
1210 {									\
1211 	return bql_set(buf, len, &queue->dql.FIELD);			\
1212 }									\
1213 									\
1214 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1215 	= __ATTR(NAME, 0644,				\
1216 		 bql_show_ ## NAME, bql_set_ ## NAME)
1217 
1218 BQL_ATTR(limit, limit);
1219 BQL_ATTR(limit_max, max_limit);
1220 BQL_ATTR(limit_min, min_limit);
1221 
1222 static struct attribute *dql_attrs[] __ro_after_init = {
1223 	&bql_limit_attribute.attr,
1224 	&bql_limit_max_attribute.attr,
1225 	&bql_limit_min_attribute.attr,
1226 	&bql_hold_time_attribute.attr,
1227 	&bql_inflight_attribute.attr,
1228 	NULL
1229 };
1230 
1231 static const struct attribute_group dql_group = {
1232 	.name  = "byte_queue_limits",
1233 	.attrs  = dql_attrs,
1234 };
1235 #endif /* CONFIG_BQL */
1236 
1237 #ifdef CONFIG_XPS
1238 static ssize_t xps_cpus_show(struct netdev_queue *queue,
1239 			     char *buf)
1240 {
1241 	struct net_device *dev = queue->dev;
1242 	int cpu, len, num_tc = 1, tc = 0;
1243 	struct xps_dev_maps *dev_maps;
1244 	cpumask_var_t mask;
1245 	unsigned long index;
1246 
1247 	if (!netif_is_multiqueue(dev))
1248 		return -ENOENT;
1249 
1250 	index = get_netdev_queue_index(queue);
1251 
1252 	if (dev->num_tc) {
1253 		/* Do not allow XPS on subordinate device directly */
1254 		num_tc = dev->num_tc;
1255 		if (num_tc < 0)
1256 			return -EINVAL;
1257 
1258 		/* If queue belongs to subordinate dev use its map */
1259 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1260 
1261 		tc = netdev_txq_to_tc(dev, index);
1262 		if (tc < 0)
1263 			return -EINVAL;
1264 	}
1265 
1266 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1267 		return -ENOMEM;
1268 
1269 	rcu_read_lock();
1270 	dev_maps = rcu_dereference(dev->xps_cpus_map);
1271 	if (dev_maps) {
1272 		for_each_possible_cpu(cpu) {
1273 			int i, tci = cpu * num_tc + tc;
1274 			struct xps_map *map;
1275 
1276 			map = rcu_dereference(dev_maps->attr_map[tci]);
1277 			if (!map)
1278 				continue;
1279 
1280 			for (i = map->len; i--;) {
1281 				if (map->queues[i] == index) {
1282 					cpumask_set_cpu(cpu, mask);
1283 					break;
1284 				}
1285 			}
1286 		}
1287 	}
1288 	rcu_read_unlock();
1289 
1290 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
1291 	free_cpumask_var(mask);
1292 	return len < PAGE_SIZE ? len : -EINVAL;
1293 }
1294 
1295 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1296 			      const char *buf, size_t len)
1297 {
1298 	struct net_device *dev = queue->dev;
1299 	unsigned long index;
1300 	cpumask_var_t mask;
1301 	int err;
1302 
1303 	if (!netif_is_multiqueue(dev))
1304 		return -ENOENT;
1305 
1306 	if (!capable(CAP_NET_ADMIN))
1307 		return -EPERM;
1308 
1309 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1310 		return -ENOMEM;
1311 
1312 	index = get_netdev_queue_index(queue);
1313 
1314 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1315 	if (err) {
1316 		free_cpumask_var(mask);
1317 		return err;
1318 	}
1319 
1320 	err = netif_set_xps_queue(dev, mask, index);
1321 
1322 	free_cpumask_var(mask);
1323 
1324 	return err ? : len;
1325 }
1326 
1327 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1328 	= __ATTR_RW(xps_cpus);
1329 
1330 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1331 {
1332 	struct net_device *dev = queue->dev;
1333 	struct xps_dev_maps *dev_maps;
1334 	unsigned long *mask, index;
1335 	int j, len, num_tc = 1, tc = 0;
1336 
1337 	index = get_netdev_queue_index(queue);
1338 
1339 	if (dev->num_tc) {
1340 		num_tc = dev->num_tc;
1341 		tc = netdev_txq_to_tc(dev, index);
1342 		if (tc < 0)
1343 			return -EINVAL;
1344 	}
1345 	mask = kcalloc(BITS_TO_LONGS(dev->num_rx_queues), sizeof(long),
1346 		       GFP_KERNEL);
1347 	if (!mask)
1348 		return -ENOMEM;
1349 
1350 	rcu_read_lock();
1351 	dev_maps = rcu_dereference(dev->xps_rxqs_map);
1352 	if (!dev_maps)
1353 		goto out_no_maps;
1354 
1355 	for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues),
1356 	     j < dev->num_rx_queues;) {
1357 		int i, tci = j * num_tc + tc;
1358 		struct xps_map *map;
1359 
1360 		map = rcu_dereference(dev_maps->attr_map[tci]);
1361 		if (!map)
1362 			continue;
1363 
1364 		for (i = map->len; i--;) {
1365 			if (map->queues[i] == index) {
1366 				set_bit(j, mask);
1367 				break;
1368 			}
1369 		}
1370 	}
1371 out_no_maps:
1372 	rcu_read_unlock();
1373 
1374 	len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues);
1375 	kfree(mask);
1376 
1377 	return len < PAGE_SIZE ? len : -EINVAL;
1378 }
1379 
1380 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1381 			      size_t len)
1382 {
1383 	struct net_device *dev = queue->dev;
1384 	struct net *net = dev_net(dev);
1385 	unsigned long *mask, index;
1386 	int err;
1387 
1388 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1389 		return -EPERM;
1390 
1391 	mask = kcalloc(BITS_TO_LONGS(dev->num_rx_queues), sizeof(long),
1392 		       GFP_KERNEL);
1393 	if (!mask)
1394 		return -ENOMEM;
1395 
1396 	index = get_netdev_queue_index(queue);
1397 
1398 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1399 	if (err) {
1400 		kfree(mask);
1401 		return err;
1402 	}
1403 
1404 	cpus_read_lock();
1405 	err = __netif_set_xps_queue(dev, mask, index, true);
1406 	cpus_read_unlock();
1407 
1408 	kfree(mask);
1409 	return err ? : len;
1410 }
1411 
1412 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1413 	= __ATTR_RW(xps_rxqs);
1414 #endif /* CONFIG_XPS */
1415 
1416 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1417 	&queue_trans_timeout.attr,
1418 	&queue_traffic_class.attr,
1419 #ifdef CONFIG_XPS
1420 	&xps_cpus_attribute.attr,
1421 	&xps_rxqs_attribute.attr,
1422 	&queue_tx_maxrate.attr,
1423 #endif
1424 	NULL
1425 };
1426 
1427 static void netdev_queue_release(struct kobject *kobj)
1428 {
1429 	struct netdev_queue *queue = to_netdev_queue(kobj);
1430 
1431 	memset(kobj, 0, sizeof(*kobj));
1432 	dev_put(queue->dev);
1433 }
1434 
1435 static const void *netdev_queue_namespace(struct kobject *kobj)
1436 {
1437 	struct netdev_queue *queue = to_netdev_queue(kobj);
1438 	struct device *dev = &queue->dev->dev;
1439 	const void *ns = NULL;
1440 
1441 	if (dev->class && dev->class->ns_type)
1442 		ns = dev->class->namespace(dev);
1443 
1444 	return ns;
1445 }
1446 
1447 static void netdev_queue_get_ownership(struct kobject *kobj,
1448 				       kuid_t *uid, kgid_t *gid)
1449 {
1450 	const struct net *net = netdev_queue_namespace(kobj);
1451 
1452 	net_ns_get_ownership(net, uid, gid);
1453 }
1454 
1455 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1456 	.sysfs_ops = &netdev_queue_sysfs_ops,
1457 	.release = netdev_queue_release,
1458 	.default_attrs = netdev_queue_default_attrs,
1459 	.namespace = netdev_queue_namespace,
1460 	.get_ownership = netdev_queue_get_ownership,
1461 };
1462 
1463 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1464 {
1465 	struct netdev_queue *queue = dev->_tx + index;
1466 	struct kobject *kobj = &queue->kobj;
1467 	int error = 0;
1468 
1469 	kobj->kset = dev->queues_kset;
1470 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1471 				     "tx-%u", index);
1472 	if (error)
1473 		return error;
1474 
1475 #ifdef CONFIG_BQL
1476 	error = sysfs_create_group(kobj, &dql_group);
1477 	if (error) {
1478 		kobject_put(kobj);
1479 		return error;
1480 	}
1481 #endif
1482 
1483 	kobject_uevent(kobj, KOBJ_ADD);
1484 	dev_hold(queue->dev);
1485 
1486 	return 0;
1487 }
1488 #endif /* CONFIG_SYSFS */
1489 
1490 int
1491 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1492 {
1493 #ifdef CONFIG_SYSFS
1494 	int i;
1495 	int error = 0;
1496 
1497 	for (i = old_num; i < new_num; i++) {
1498 		error = netdev_queue_add_kobject(dev, i);
1499 		if (error) {
1500 			new_num = old_num;
1501 			break;
1502 		}
1503 	}
1504 
1505 	while (--i >= new_num) {
1506 		struct netdev_queue *queue = dev->_tx + i;
1507 
1508 		if (!refcount_read(&dev_net(dev)->count))
1509 			queue->kobj.uevent_suppress = 1;
1510 #ifdef CONFIG_BQL
1511 		sysfs_remove_group(&queue->kobj, &dql_group);
1512 #endif
1513 		kobject_put(&queue->kobj);
1514 	}
1515 
1516 	return error;
1517 #else
1518 	return 0;
1519 #endif /* CONFIG_SYSFS */
1520 }
1521 
1522 static int register_queue_kobjects(struct net_device *dev)
1523 {
1524 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1525 
1526 #ifdef CONFIG_SYSFS
1527 	dev->queues_kset = kset_create_and_add("queues",
1528 					       NULL, &dev->dev.kobj);
1529 	if (!dev->queues_kset)
1530 		return -ENOMEM;
1531 	real_rx = dev->real_num_rx_queues;
1532 #endif
1533 	real_tx = dev->real_num_tx_queues;
1534 
1535 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1536 	if (error)
1537 		goto error;
1538 	rxq = real_rx;
1539 
1540 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1541 	if (error)
1542 		goto error;
1543 	txq = real_tx;
1544 
1545 	return 0;
1546 
1547 error:
1548 	netdev_queue_update_kobjects(dev, txq, 0);
1549 	net_rx_queue_update_kobjects(dev, rxq, 0);
1550 	return error;
1551 }
1552 
1553 static void remove_queue_kobjects(struct net_device *dev)
1554 {
1555 	int real_rx = 0, real_tx = 0;
1556 
1557 #ifdef CONFIG_SYSFS
1558 	real_rx = dev->real_num_rx_queues;
1559 #endif
1560 	real_tx = dev->real_num_tx_queues;
1561 
1562 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1563 	netdev_queue_update_kobjects(dev, real_tx, 0);
1564 #ifdef CONFIG_SYSFS
1565 	kset_unregister(dev->queues_kset);
1566 #endif
1567 }
1568 
1569 static bool net_current_may_mount(void)
1570 {
1571 	struct net *net = current->nsproxy->net_ns;
1572 
1573 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1574 }
1575 
1576 static void *net_grab_current_ns(void)
1577 {
1578 	struct net *ns = current->nsproxy->net_ns;
1579 #ifdef CONFIG_NET_NS
1580 	if (ns)
1581 		refcount_inc(&ns->passive);
1582 #endif
1583 	return ns;
1584 }
1585 
1586 static const void *net_initial_ns(void)
1587 {
1588 	return &init_net;
1589 }
1590 
1591 static const void *net_netlink_ns(struct sock *sk)
1592 {
1593 	return sock_net(sk);
1594 }
1595 
1596 const struct kobj_ns_type_operations net_ns_type_operations = {
1597 	.type = KOBJ_NS_TYPE_NET,
1598 	.current_may_mount = net_current_may_mount,
1599 	.grab_current_ns = net_grab_current_ns,
1600 	.netlink_ns = net_netlink_ns,
1601 	.initial_ns = net_initial_ns,
1602 	.drop_ns = net_drop_ns,
1603 };
1604 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1605 
1606 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1607 {
1608 	struct net_device *dev = to_net_dev(d);
1609 	int retval;
1610 
1611 	/* pass interface to uevent. */
1612 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1613 	if (retval)
1614 		goto exit;
1615 
1616 	/* pass ifindex to uevent.
1617 	 * ifindex is useful as it won't change (interface name may change)
1618 	 * and is what RtNetlink uses natively.
1619 	 */
1620 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1621 
1622 exit:
1623 	return retval;
1624 }
1625 
1626 /*
1627  *	netdev_release -- destroy and free a dead device.
1628  *	Called when last reference to device kobject is gone.
1629  */
1630 static void netdev_release(struct device *d)
1631 {
1632 	struct net_device *dev = to_net_dev(d);
1633 
1634 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1635 
1636 	/* no need to wait for rcu grace period:
1637 	 * device is dead and about to be freed.
1638 	 */
1639 	kfree(rcu_access_pointer(dev->ifalias));
1640 	netdev_freemem(dev);
1641 }
1642 
1643 static const void *net_namespace(struct device *d)
1644 {
1645 	struct net_device *dev = to_net_dev(d);
1646 
1647 	return dev_net(dev);
1648 }
1649 
1650 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1651 {
1652 	struct net_device *dev = to_net_dev(d);
1653 	const struct net *net = dev_net(dev);
1654 
1655 	net_ns_get_ownership(net, uid, gid);
1656 }
1657 
1658 static struct class net_class __ro_after_init = {
1659 	.name = "net",
1660 	.dev_release = netdev_release,
1661 	.dev_groups = net_class_groups,
1662 	.dev_uevent = netdev_uevent,
1663 	.ns_type = &net_ns_type_operations,
1664 	.namespace = net_namespace,
1665 	.get_ownership = net_get_ownership,
1666 };
1667 
1668 #ifdef CONFIG_OF_NET
1669 static int of_dev_node_match(struct device *dev, const void *data)
1670 {
1671 	int ret = 0;
1672 
1673 	if (dev->parent)
1674 		ret = dev->parent->of_node == data;
1675 
1676 	return ret == 0 ? dev->of_node == data : ret;
1677 }
1678 
1679 /*
1680  * of_find_net_device_by_node - lookup the net device for the device node
1681  * @np: OF device node
1682  *
1683  * Looks up the net_device structure corresponding with the device node.
1684  * If successful, returns a pointer to the net_device with the embedded
1685  * struct device refcount incremented by one, or NULL on failure. The
1686  * refcount must be dropped when done with the net_device.
1687  */
1688 struct net_device *of_find_net_device_by_node(struct device_node *np)
1689 {
1690 	struct device *dev;
1691 
1692 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1693 	if (!dev)
1694 		return NULL;
1695 
1696 	return to_net_dev(dev);
1697 }
1698 EXPORT_SYMBOL(of_find_net_device_by_node);
1699 #endif
1700 
1701 /* Delete sysfs entries but hold kobject reference until after all
1702  * netdev references are gone.
1703  */
1704 void netdev_unregister_kobject(struct net_device *ndev)
1705 {
1706 	struct device *dev = &ndev->dev;
1707 
1708 	if (!refcount_read(&dev_net(ndev)->count))
1709 		dev_set_uevent_suppress(dev, 1);
1710 
1711 	kobject_get(&dev->kobj);
1712 
1713 	remove_queue_kobjects(ndev);
1714 
1715 	pm_runtime_set_memalloc_noio(dev, false);
1716 
1717 	device_del(dev);
1718 }
1719 
1720 /* Create sysfs entries for network device. */
1721 int netdev_register_kobject(struct net_device *ndev)
1722 {
1723 	struct device *dev = &ndev->dev;
1724 	const struct attribute_group **groups = ndev->sysfs_groups;
1725 	int error = 0;
1726 
1727 	device_initialize(dev);
1728 	dev->class = &net_class;
1729 	dev->platform_data = ndev;
1730 	dev->groups = groups;
1731 
1732 	dev_set_name(dev, "%s", ndev->name);
1733 
1734 #ifdef CONFIG_SYSFS
1735 	/* Allow for a device specific group */
1736 	if (*groups)
1737 		groups++;
1738 
1739 	*groups++ = &netstat_group;
1740 
1741 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1742 	if (ndev->ieee80211_ptr)
1743 		*groups++ = &wireless_group;
1744 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
1745 	else if (ndev->wireless_handlers)
1746 		*groups++ = &wireless_group;
1747 #endif
1748 #endif
1749 #endif /* CONFIG_SYSFS */
1750 
1751 	error = device_add(dev);
1752 	if (error)
1753 		return error;
1754 
1755 	error = register_queue_kobjects(ndev);
1756 	if (error) {
1757 		device_del(dev);
1758 		return error;
1759 	}
1760 
1761 	pm_runtime_set_memalloc_noio(dev, true);
1762 
1763 	return error;
1764 }
1765 
1766 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
1767 				const void *ns)
1768 {
1769 	return class_create_file_ns(&net_class, class_attr, ns);
1770 }
1771 EXPORT_SYMBOL(netdev_class_create_file_ns);
1772 
1773 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
1774 				 const void *ns)
1775 {
1776 	class_remove_file_ns(&net_class, class_attr, ns);
1777 }
1778 EXPORT_SYMBOL(netdev_class_remove_file_ns);
1779 
1780 int __init netdev_kobject_init(void)
1781 {
1782 	kobj_ns_type_register(&net_ns_type_operations);
1783 	return class_register(&net_class);
1784 }
1785