1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 27 #include "dev.h" 28 #include "net-sysfs.h" 29 30 #ifdef CONFIG_SYSFS 31 static const char fmt_hex[] = "%#x\n"; 32 static const char fmt_dec[] = "%d\n"; 33 static const char fmt_ulong[] = "%lu\n"; 34 static const char fmt_u64[] = "%llu\n"; 35 36 /* Caller holds RTNL or dev_base_lock */ 37 static inline int dev_isalive(const struct net_device *dev) 38 { 39 return dev->reg_state <= NETREG_REGISTERED; 40 } 41 42 /* use same locking rules as GIF* ioctl's */ 43 static ssize_t netdev_show(const struct device *dev, 44 struct device_attribute *attr, char *buf, 45 ssize_t (*format)(const struct net_device *, char *)) 46 { 47 struct net_device *ndev = to_net_dev(dev); 48 ssize_t ret = -EINVAL; 49 50 read_lock(&dev_base_lock); 51 if (dev_isalive(ndev)) 52 ret = (*format)(ndev, buf); 53 read_unlock(&dev_base_lock); 54 55 return ret; 56 } 57 58 /* generate a show function for simple field */ 59 #define NETDEVICE_SHOW(field, format_string) \ 60 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 61 { \ 62 return sysfs_emit(buf, format_string, dev->field); \ 63 } \ 64 static ssize_t field##_show(struct device *dev, \ 65 struct device_attribute *attr, char *buf) \ 66 { \ 67 return netdev_show(dev, attr, buf, format_##field); \ 68 } \ 69 70 #define NETDEVICE_SHOW_RO(field, format_string) \ 71 NETDEVICE_SHOW(field, format_string); \ 72 static DEVICE_ATTR_RO(field) 73 74 #define NETDEVICE_SHOW_RW(field, format_string) \ 75 NETDEVICE_SHOW(field, format_string); \ 76 static DEVICE_ATTR_RW(field) 77 78 /* use same locking and permission rules as SIF* ioctl's */ 79 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 80 const char *buf, size_t len, 81 int (*set)(struct net_device *, unsigned long)) 82 { 83 struct net_device *netdev = to_net_dev(dev); 84 struct net *net = dev_net(netdev); 85 unsigned long new; 86 int ret; 87 88 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 89 return -EPERM; 90 91 ret = kstrtoul(buf, 0, &new); 92 if (ret) 93 goto err; 94 95 if (!rtnl_trylock()) 96 return restart_syscall(); 97 98 if (dev_isalive(netdev)) { 99 ret = (*set)(netdev, new); 100 if (ret == 0) 101 ret = len; 102 } 103 rtnl_unlock(); 104 err: 105 return ret; 106 } 107 108 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 109 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 110 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 111 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 112 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 113 NETDEVICE_SHOW_RO(type, fmt_dec); 114 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 115 116 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 117 char *buf) 118 { 119 struct net_device *ndev = to_net_dev(dev); 120 121 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev)); 122 } 123 static DEVICE_ATTR_RO(iflink); 124 125 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 126 { 127 return sysfs_emit(buf, fmt_dec, dev->name_assign_type); 128 } 129 130 static ssize_t name_assign_type_show(struct device *dev, 131 struct device_attribute *attr, 132 char *buf) 133 { 134 struct net_device *ndev = to_net_dev(dev); 135 ssize_t ret = -EINVAL; 136 137 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 138 ret = netdev_show(dev, attr, buf, format_name_assign_type); 139 140 return ret; 141 } 142 static DEVICE_ATTR_RO(name_assign_type); 143 144 /* use same locking rules as GIFHWADDR ioctl's */ 145 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 146 char *buf) 147 { 148 struct net_device *ndev = to_net_dev(dev); 149 ssize_t ret = -EINVAL; 150 151 read_lock(&dev_base_lock); 152 if (dev_isalive(ndev)) 153 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 154 read_unlock(&dev_base_lock); 155 return ret; 156 } 157 static DEVICE_ATTR_RO(address); 158 159 static ssize_t broadcast_show(struct device *dev, 160 struct device_attribute *attr, char *buf) 161 { 162 struct net_device *ndev = to_net_dev(dev); 163 164 if (dev_isalive(ndev)) 165 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 166 return -EINVAL; 167 } 168 static DEVICE_ATTR_RO(broadcast); 169 170 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 171 { 172 if (!netif_running(dev)) 173 return -EINVAL; 174 return dev_change_carrier(dev, (bool)new_carrier); 175 } 176 177 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 178 const char *buf, size_t len) 179 { 180 struct net_device *netdev = to_net_dev(dev); 181 182 /* The check is also done in change_carrier; this helps returning early 183 * without hitting the trylock/restart in netdev_store. 184 */ 185 if (!netdev->netdev_ops->ndo_change_carrier) 186 return -EOPNOTSUPP; 187 188 return netdev_store(dev, attr, buf, len, change_carrier); 189 } 190 191 static ssize_t carrier_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct net_device *netdev = to_net_dev(dev); 195 196 if (netif_running(netdev)) 197 return sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev)); 198 199 return -EINVAL; 200 } 201 static DEVICE_ATTR_RW(carrier); 202 203 static ssize_t speed_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct net_device *netdev = to_net_dev(dev); 207 int ret = -EINVAL; 208 209 /* The check is also done in __ethtool_get_link_ksettings; this helps 210 * returning early without hitting the trylock/restart below. 211 */ 212 if (!netdev->ethtool_ops->get_link_ksettings) 213 return ret; 214 215 if (!rtnl_trylock()) 216 return restart_syscall(); 217 218 if (netif_running(netdev) && netif_device_present(netdev)) { 219 struct ethtool_link_ksettings cmd; 220 221 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 222 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed); 223 } 224 rtnl_unlock(); 225 return ret; 226 } 227 static DEVICE_ATTR_RO(speed); 228 229 static ssize_t duplex_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231 { 232 struct net_device *netdev = to_net_dev(dev); 233 int ret = -EINVAL; 234 235 /* The check is also done in __ethtool_get_link_ksettings; this helps 236 * returning early without hitting the trylock/restart below. 237 */ 238 if (!netdev->ethtool_ops->get_link_ksettings) 239 return ret; 240 241 if (!rtnl_trylock()) 242 return restart_syscall(); 243 244 if (netif_running(netdev)) { 245 struct ethtool_link_ksettings cmd; 246 247 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 248 const char *duplex; 249 250 switch (cmd.base.duplex) { 251 case DUPLEX_HALF: 252 duplex = "half"; 253 break; 254 case DUPLEX_FULL: 255 duplex = "full"; 256 break; 257 default: 258 duplex = "unknown"; 259 break; 260 } 261 ret = sysfs_emit(buf, "%s\n", duplex); 262 } 263 } 264 rtnl_unlock(); 265 return ret; 266 } 267 static DEVICE_ATTR_RO(duplex); 268 269 static ssize_t testing_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271 { 272 struct net_device *netdev = to_net_dev(dev); 273 274 if (netif_running(netdev)) 275 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev)); 276 277 return -EINVAL; 278 } 279 static DEVICE_ATTR_RO(testing); 280 281 static ssize_t dormant_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct net_device *netdev = to_net_dev(dev); 285 286 if (netif_running(netdev)) 287 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev)); 288 289 return -EINVAL; 290 } 291 static DEVICE_ATTR_RO(dormant); 292 293 static const char *const operstates[] = { 294 "unknown", 295 "notpresent", /* currently unused */ 296 "down", 297 "lowerlayerdown", 298 "testing", 299 "dormant", 300 "up" 301 }; 302 303 static ssize_t operstate_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 const struct net_device *netdev = to_net_dev(dev); 307 unsigned char operstate; 308 309 read_lock(&dev_base_lock); 310 operstate = netdev->operstate; 311 if (!netif_running(netdev)) 312 operstate = IF_OPER_DOWN; 313 read_unlock(&dev_base_lock); 314 315 if (operstate >= ARRAY_SIZE(operstates)) 316 return -EINVAL; /* should not happen */ 317 318 return sysfs_emit(buf, "%s\n", operstates[operstate]); 319 } 320 static DEVICE_ATTR_RO(operstate); 321 322 static ssize_t carrier_changes_show(struct device *dev, 323 struct device_attribute *attr, 324 char *buf) 325 { 326 struct net_device *netdev = to_net_dev(dev); 327 328 return sysfs_emit(buf, fmt_dec, 329 atomic_read(&netdev->carrier_up_count) + 330 atomic_read(&netdev->carrier_down_count)); 331 } 332 static DEVICE_ATTR_RO(carrier_changes); 333 334 static ssize_t carrier_up_count_show(struct device *dev, 335 struct device_attribute *attr, 336 char *buf) 337 { 338 struct net_device *netdev = to_net_dev(dev); 339 340 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 341 } 342 static DEVICE_ATTR_RO(carrier_up_count); 343 344 static ssize_t carrier_down_count_show(struct device *dev, 345 struct device_attribute *attr, 346 char *buf) 347 { 348 struct net_device *netdev = to_net_dev(dev); 349 350 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 351 } 352 static DEVICE_ATTR_RO(carrier_down_count); 353 354 /* read-write attributes */ 355 356 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 357 { 358 return dev_set_mtu(dev, (int)new_mtu); 359 } 360 361 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 362 const char *buf, size_t len) 363 { 364 return netdev_store(dev, attr, buf, len, change_mtu); 365 } 366 NETDEVICE_SHOW_RW(mtu, fmt_dec); 367 368 static int change_flags(struct net_device *dev, unsigned long new_flags) 369 { 370 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 371 } 372 373 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 374 const char *buf, size_t len) 375 { 376 return netdev_store(dev, attr, buf, len, change_flags); 377 } 378 NETDEVICE_SHOW_RW(flags, fmt_hex); 379 380 static ssize_t tx_queue_len_store(struct device *dev, 381 struct device_attribute *attr, 382 const char *buf, size_t len) 383 { 384 if (!capable(CAP_NET_ADMIN)) 385 return -EPERM; 386 387 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 388 } 389 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 390 391 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 392 { 393 WRITE_ONCE(dev->gro_flush_timeout, val); 394 return 0; 395 } 396 397 static ssize_t gro_flush_timeout_store(struct device *dev, 398 struct device_attribute *attr, 399 const char *buf, size_t len) 400 { 401 if (!capable(CAP_NET_ADMIN)) 402 return -EPERM; 403 404 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 405 } 406 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 407 408 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 409 { 410 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 411 return 0; 412 } 413 414 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 415 struct device_attribute *attr, 416 const char *buf, size_t len) 417 { 418 if (!capable(CAP_NET_ADMIN)) 419 return -EPERM; 420 421 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 422 } 423 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 424 425 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 426 const char *buf, size_t len) 427 { 428 struct net_device *netdev = to_net_dev(dev); 429 struct net *net = dev_net(netdev); 430 size_t count = len; 431 ssize_t ret = 0; 432 433 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 434 return -EPERM; 435 436 /* ignore trailing newline */ 437 if (len > 0 && buf[len - 1] == '\n') 438 --count; 439 440 if (!rtnl_trylock()) 441 return restart_syscall(); 442 443 if (dev_isalive(netdev)) { 444 ret = dev_set_alias(netdev, buf, count); 445 if (ret < 0) 446 goto err; 447 ret = len; 448 netdev_state_change(netdev); 449 } 450 err: 451 rtnl_unlock(); 452 453 return ret; 454 } 455 456 static ssize_t ifalias_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 const struct net_device *netdev = to_net_dev(dev); 460 char tmp[IFALIASZ]; 461 ssize_t ret = 0; 462 463 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 464 if (ret > 0) 465 ret = sysfs_emit(buf, "%s\n", tmp); 466 return ret; 467 } 468 static DEVICE_ATTR_RW(ifalias); 469 470 static int change_group(struct net_device *dev, unsigned long new_group) 471 { 472 dev_set_group(dev, (int)new_group); 473 return 0; 474 } 475 476 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 477 const char *buf, size_t len) 478 { 479 return netdev_store(dev, attr, buf, len, change_group); 480 } 481 NETDEVICE_SHOW(group, fmt_dec); 482 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 483 484 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 485 { 486 return dev_change_proto_down(dev, (bool)proto_down); 487 } 488 489 static ssize_t proto_down_store(struct device *dev, 490 struct device_attribute *attr, 491 const char *buf, size_t len) 492 { 493 return netdev_store(dev, attr, buf, len, change_proto_down); 494 } 495 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 496 497 static ssize_t phys_port_id_show(struct device *dev, 498 struct device_attribute *attr, char *buf) 499 { 500 struct net_device *netdev = to_net_dev(dev); 501 ssize_t ret = -EINVAL; 502 503 /* The check is also done in dev_get_phys_port_id; this helps returning 504 * early without hitting the trylock/restart below. 505 */ 506 if (!netdev->netdev_ops->ndo_get_phys_port_id) 507 return -EOPNOTSUPP; 508 509 if (!rtnl_trylock()) 510 return restart_syscall(); 511 512 if (dev_isalive(netdev)) { 513 struct netdev_phys_item_id ppid; 514 515 ret = dev_get_phys_port_id(netdev, &ppid); 516 if (!ret) 517 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 518 } 519 rtnl_unlock(); 520 521 return ret; 522 } 523 static DEVICE_ATTR_RO(phys_port_id); 524 525 static ssize_t phys_port_name_show(struct device *dev, 526 struct device_attribute *attr, char *buf) 527 { 528 struct net_device *netdev = to_net_dev(dev); 529 ssize_t ret = -EINVAL; 530 531 /* The checks are also done in dev_get_phys_port_name; this helps 532 * returning early without hitting the trylock/restart below. 533 */ 534 if (!netdev->netdev_ops->ndo_get_phys_port_name && 535 !netdev->netdev_ops->ndo_get_devlink_port) 536 return -EOPNOTSUPP; 537 538 if (!rtnl_trylock()) 539 return restart_syscall(); 540 541 if (dev_isalive(netdev)) { 542 char name[IFNAMSIZ]; 543 544 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 545 if (!ret) 546 ret = sysfs_emit(buf, "%s\n", name); 547 } 548 rtnl_unlock(); 549 550 return ret; 551 } 552 static DEVICE_ATTR_RO(phys_port_name); 553 554 static ssize_t phys_switch_id_show(struct device *dev, 555 struct device_attribute *attr, char *buf) 556 { 557 struct net_device *netdev = to_net_dev(dev); 558 ssize_t ret = -EINVAL; 559 560 /* The checks are also done in dev_get_phys_port_name; this helps 561 * returning early without hitting the trylock/restart below. This works 562 * because recurse is false when calling dev_get_port_parent_id. 563 */ 564 if (!netdev->netdev_ops->ndo_get_port_parent_id && 565 !netdev->netdev_ops->ndo_get_devlink_port) 566 return -EOPNOTSUPP; 567 568 if (!rtnl_trylock()) 569 return restart_syscall(); 570 571 if (dev_isalive(netdev)) { 572 struct netdev_phys_item_id ppid = { }; 573 574 ret = dev_get_port_parent_id(netdev, &ppid, false); 575 if (!ret) 576 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 577 } 578 rtnl_unlock(); 579 580 return ret; 581 } 582 static DEVICE_ATTR_RO(phys_switch_id); 583 584 static ssize_t threaded_show(struct device *dev, 585 struct device_attribute *attr, char *buf) 586 { 587 struct net_device *netdev = to_net_dev(dev); 588 ssize_t ret = -EINVAL; 589 590 if (!rtnl_trylock()) 591 return restart_syscall(); 592 593 if (dev_isalive(netdev)) 594 ret = sysfs_emit(buf, fmt_dec, netdev->threaded); 595 596 rtnl_unlock(); 597 return ret; 598 } 599 600 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 601 { 602 int ret; 603 604 if (list_empty(&dev->napi_list)) 605 return -EOPNOTSUPP; 606 607 if (val != 0 && val != 1) 608 return -EOPNOTSUPP; 609 610 ret = dev_set_threaded(dev, val); 611 612 return ret; 613 } 614 615 static ssize_t threaded_store(struct device *dev, 616 struct device_attribute *attr, 617 const char *buf, size_t len) 618 { 619 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 620 } 621 static DEVICE_ATTR_RW(threaded); 622 623 static struct attribute *net_class_attrs[] __ro_after_init = { 624 &dev_attr_netdev_group.attr, 625 &dev_attr_type.attr, 626 &dev_attr_dev_id.attr, 627 &dev_attr_dev_port.attr, 628 &dev_attr_iflink.attr, 629 &dev_attr_ifindex.attr, 630 &dev_attr_name_assign_type.attr, 631 &dev_attr_addr_assign_type.attr, 632 &dev_attr_addr_len.attr, 633 &dev_attr_link_mode.attr, 634 &dev_attr_address.attr, 635 &dev_attr_broadcast.attr, 636 &dev_attr_speed.attr, 637 &dev_attr_duplex.attr, 638 &dev_attr_dormant.attr, 639 &dev_attr_testing.attr, 640 &dev_attr_operstate.attr, 641 &dev_attr_carrier_changes.attr, 642 &dev_attr_ifalias.attr, 643 &dev_attr_carrier.attr, 644 &dev_attr_mtu.attr, 645 &dev_attr_flags.attr, 646 &dev_attr_tx_queue_len.attr, 647 &dev_attr_gro_flush_timeout.attr, 648 &dev_attr_napi_defer_hard_irqs.attr, 649 &dev_attr_phys_port_id.attr, 650 &dev_attr_phys_port_name.attr, 651 &dev_attr_phys_switch_id.attr, 652 &dev_attr_proto_down.attr, 653 &dev_attr_carrier_up_count.attr, 654 &dev_attr_carrier_down_count.attr, 655 &dev_attr_threaded.attr, 656 NULL, 657 }; 658 ATTRIBUTE_GROUPS(net_class); 659 660 /* Show a given an attribute in the statistics group */ 661 static ssize_t netstat_show(const struct device *d, 662 struct device_attribute *attr, char *buf, 663 unsigned long offset) 664 { 665 struct net_device *dev = to_net_dev(d); 666 ssize_t ret = -EINVAL; 667 668 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 669 offset % sizeof(u64) != 0); 670 671 read_lock(&dev_base_lock); 672 if (dev_isalive(dev)) { 673 struct rtnl_link_stats64 temp; 674 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 675 676 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 677 } 678 read_unlock(&dev_base_lock); 679 return ret; 680 } 681 682 /* generate a read-only statistics attribute */ 683 #define NETSTAT_ENTRY(name) \ 684 static ssize_t name##_show(struct device *d, \ 685 struct device_attribute *attr, char *buf) \ 686 { \ 687 return netstat_show(d, attr, buf, \ 688 offsetof(struct rtnl_link_stats64, name)); \ 689 } \ 690 static DEVICE_ATTR_RO(name) 691 692 NETSTAT_ENTRY(rx_packets); 693 NETSTAT_ENTRY(tx_packets); 694 NETSTAT_ENTRY(rx_bytes); 695 NETSTAT_ENTRY(tx_bytes); 696 NETSTAT_ENTRY(rx_errors); 697 NETSTAT_ENTRY(tx_errors); 698 NETSTAT_ENTRY(rx_dropped); 699 NETSTAT_ENTRY(tx_dropped); 700 NETSTAT_ENTRY(multicast); 701 NETSTAT_ENTRY(collisions); 702 NETSTAT_ENTRY(rx_length_errors); 703 NETSTAT_ENTRY(rx_over_errors); 704 NETSTAT_ENTRY(rx_crc_errors); 705 NETSTAT_ENTRY(rx_frame_errors); 706 NETSTAT_ENTRY(rx_fifo_errors); 707 NETSTAT_ENTRY(rx_missed_errors); 708 NETSTAT_ENTRY(tx_aborted_errors); 709 NETSTAT_ENTRY(tx_carrier_errors); 710 NETSTAT_ENTRY(tx_fifo_errors); 711 NETSTAT_ENTRY(tx_heartbeat_errors); 712 NETSTAT_ENTRY(tx_window_errors); 713 NETSTAT_ENTRY(rx_compressed); 714 NETSTAT_ENTRY(tx_compressed); 715 NETSTAT_ENTRY(rx_nohandler); 716 717 static struct attribute *netstat_attrs[] __ro_after_init = { 718 &dev_attr_rx_packets.attr, 719 &dev_attr_tx_packets.attr, 720 &dev_attr_rx_bytes.attr, 721 &dev_attr_tx_bytes.attr, 722 &dev_attr_rx_errors.attr, 723 &dev_attr_tx_errors.attr, 724 &dev_attr_rx_dropped.attr, 725 &dev_attr_tx_dropped.attr, 726 &dev_attr_multicast.attr, 727 &dev_attr_collisions.attr, 728 &dev_attr_rx_length_errors.attr, 729 &dev_attr_rx_over_errors.attr, 730 &dev_attr_rx_crc_errors.attr, 731 &dev_attr_rx_frame_errors.attr, 732 &dev_attr_rx_fifo_errors.attr, 733 &dev_attr_rx_missed_errors.attr, 734 &dev_attr_tx_aborted_errors.attr, 735 &dev_attr_tx_carrier_errors.attr, 736 &dev_attr_tx_fifo_errors.attr, 737 &dev_attr_tx_heartbeat_errors.attr, 738 &dev_attr_tx_window_errors.attr, 739 &dev_attr_rx_compressed.attr, 740 &dev_attr_tx_compressed.attr, 741 &dev_attr_rx_nohandler.attr, 742 NULL 743 }; 744 745 static const struct attribute_group netstat_group = { 746 .name = "statistics", 747 .attrs = netstat_attrs, 748 }; 749 750 static struct attribute *wireless_attrs[] = { 751 NULL 752 }; 753 754 static const struct attribute_group wireless_group = { 755 .name = "wireless", 756 .attrs = wireless_attrs, 757 }; 758 759 static bool wireless_group_needed(struct net_device *ndev) 760 { 761 #if IS_ENABLED(CONFIG_CFG80211) 762 if (ndev->ieee80211_ptr) 763 return true; 764 #endif 765 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 766 if (ndev->wireless_handlers) 767 return true; 768 #endif 769 return false; 770 } 771 772 #else /* CONFIG_SYSFS */ 773 #define net_class_groups NULL 774 #endif /* CONFIG_SYSFS */ 775 776 #ifdef CONFIG_SYSFS 777 #define to_rx_queue_attr(_attr) \ 778 container_of(_attr, struct rx_queue_attribute, attr) 779 780 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 781 782 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 783 char *buf) 784 { 785 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 786 struct netdev_rx_queue *queue = to_rx_queue(kobj); 787 788 if (!attribute->show) 789 return -EIO; 790 791 return attribute->show(queue, buf); 792 } 793 794 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 795 const char *buf, size_t count) 796 { 797 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 798 struct netdev_rx_queue *queue = to_rx_queue(kobj); 799 800 if (!attribute->store) 801 return -EIO; 802 803 return attribute->store(queue, buf, count); 804 } 805 806 static const struct sysfs_ops rx_queue_sysfs_ops = { 807 .show = rx_queue_attr_show, 808 .store = rx_queue_attr_store, 809 }; 810 811 #ifdef CONFIG_RPS 812 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 813 { 814 struct rps_map *map; 815 cpumask_var_t mask; 816 int i, len; 817 818 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 819 return -ENOMEM; 820 821 rcu_read_lock(); 822 map = rcu_dereference(queue->rps_map); 823 if (map) 824 for (i = 0; i < map->len; i++) 825 cpumask_set_cpu(map->cpus[i], mask); 826 827 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask)); 828 rcu_read_unlock(); 829 free_cpumask_var(mask); 830 831 return len < PAGE_SIZE ? len : -EINVAL; 832 } 833 834 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 835 const char *buf, size_t len) 836 { 837 struct rps_map *old_map, *map; 838 cpumask_var_t mask; 839 int err, cpu, i; 840 static DEFINE_MUTEX(rps_map_mutex); 841 842 if (!capable(CAP_NET_ADMIN)) 843 return -EPERM; 844 845 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 846 return -ENOMEM; 847 848 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 849 if (err) { 850 free_cpumask_var(mask); 851 return err; 852 } 853 854 if (!cpumask_empty(mask)) { 855 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 856 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); 857 if (cpumask_empty(mask)) { 858 free_cpumask_var(mask); 859 return -EINVAL; 860 } 861 } 862 863 map = kzalloc(max_t(unsigned int, 864 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 865 GFP_KERNEL); 866 if (!map) { 867 free_cpumask_var(mask); 868 return -ENOMEM; 869 } 870 871 i = 0; 872 for_each_cpu_and(cpu, mask, cpu_online_mask) 873 map->cpus[i++] = cpu; 874 875 if (i) { 876 map->len = i; 877 } else { 878 kfree(map); 879 map = NULL; 880 } 881 882 mutex_lock(&rps_map_mutex); 883 old_map = rcu_dereference_protected(queue->rps_map, 884 mutex_is_locked(&rps_map_mutex)); 885 rcu_assign_pointer(queue->rps_map, map); 886 887 if (map) 888 static_branch_inc(&rps_needed); 889 if (old_map) 890 static_branch_dec(&rps_needed); 891 892 mutex_unlock(&rps_map_mutex); 893 894 if (old_map) 895 kfree_rcu(old_map, rcu); 896 897 free_cpumask_var(mask); 898 return len; 899 } 900 901 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 902 char *buf) 903 { 904 struct rps_dev_flow_table *flow_table; 905 unsigned long val = 0; 906 907 rcu_read_lock(); 908 flow_table = rcu_dereference(queue->rps_flow_table); 909 if (flow_table) 910 val = (unsigned long)flow_table->mask + 1; 911 rcu_read_unlock(); 912 913 return sysfs_emit(buf, "%lu\n", val); 914 } 915 916 static void rps_dev_flow_table_release(struct rcu_head *rcu) 917 { 918 struct rps_dev_flow_table *table = container_of(rcu, 919 struct rps_dev_flow_table, rcu); 920 vfree(table); 921 } 922 923 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 924 const char *buf, size_t len) 925 { 926 unsigned long mask, count; 927 struct rps_dev_flow_table *table, *old_table; 928 static DEFINE_SPINLOCK(rps_dev_flow_lock); 929 int rc; 930 931 if (!capable(CAP_NET_ADMIN)) 932 return -EPERM; 933 934 rc = kstrtoul(buf, 0, &count); 935 if (rc < 0) 936 return rc; 937 938 if (count) { 939 mask = count - 1; 940 /* mask = roundup_pow_of_two(count) - 1; 941 * without overflows... 942 */ 943 while ((mask | (mask >> 1)) != mask) 944 mask |= (mask >> 1); 945 /* On 64 bit arches, must check mask fits in table->mask (u32), 946 * and on 32bit arches, must check 947 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 948 */ 949 #if BITS_PER_LONG > 32 950 if (mask > (unsigned long)(u32)mask) 951 return -EINVAL; 952 #else 953 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 954 / sizeof(struct rps_dev_flow)) { 955 /* Enforce a limit to prevent overflow */ 956 return -EINVAL; 957 } 958 #endif 959 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 960 if (!table) 961 return -ENOMEM; 962 963 table->mask = mask; 964 for (count = 0; count <= mask; count++) 965 table->flows[count].cpu = RPS_NO_CPU; 966 } else { 967 table = NULL; 968 } 969 970 spin_lock(&rps_dev_flow_lock); 971 old_table = rcu_dereference_protected(queue->rps_flow_table, 972 lockdep_is_held(&rps_dev_flow_lock)); 973 rcu_assign_pointer(queue->rps_flow_table, table); 974 spin_unlock(&rps_dev_flow_lock); 975 976 if (old_table) 977 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 978 979 return len; 980 } 981 982 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 983 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 984 985 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 986 = __ATTR(rps_flow_cnt, 0644, 987 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 988 #endif /* CONFIG_RPS */ 989 990 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 991 #ifdef CONFIG_RPS 992 &rps_cpus_attribute.attr, 993 &rps_dev_flow_table_cnt_attribute.attr, 994 #endif 995 NULL 996 }; 997 ATTRIBUTE_GROUPS(rx_queue_default); 998 999 static void rx_queue_release(struct kobject *kobj) 1000 { 1001 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1002 #ifdef CONFIG_RPS 1003 struct rps_map *map; 1004 struct rps_dev_flow_table *flow_table; 1005 1006 map = rcu_dereference_protected(queue->rps_map, 1); 1007 if (map) { 1008 RCU_INIT_POINTER(queue->rps_map, NULL); 1009 kfree_rcu(map, rcu); 1010 } 1011 1012 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1013 if (flow_table) { 1014 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1015 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1016 } 1017 #endif 1018 1019 memset(kobj, 0, sizeof(*kobj)); 1020 netdev_put(queue->dev, &queue->dev_tracker); 1021 } 1022 1023 static const void *rx_queue_namespace(struct kobject *kobj) 1024 { 1025 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1026 struct device *dev = &queue->dev->dev; 1027 const void *ns = NULL; 1028 1029 if (dev->class && dev->class->ns_type) 1030 ns = dev->class->namespace(dev); 1031 1032 return ns; 1033 } 1034 1035 static void rx_queue_get_ownership(struct kobject *kobj, 1036 kuid_t *uid, kgid_t *gid) 1037 { 1038 const struct net *net = rx_queue_namespace(kobj); 1039 1040 net_ns_get_ownership(net, uid, gid); 1041 } 1042 1043 static struct kobj_type rx_queue_ktype __ro_after_init = { 1044 .sysfs_ops = &rx_queue_sysfs_ops, 1045 .release = rx_queue_release, 1046 .default_groups = rx_queue_default_groups, 1047 .namespace = rx_queue_namespace, 1048 .get_ownership = rx_queue_get_ownership, 1049 }; 1050 1051 static int rx_queue_add_kobject(struct net_device *dev, int index) 1052 { 1053 struct netdev_rx_queue *queue = dev->_rx + index; 1054 struct kobject *kobj = &queue->kobj; 1055 int error = 0; 1056 1057 /* Kobject_put later will trigger rx_queue_release call which 1058 * decreases dev refcount: Take that reference here 1059 */ 1060 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1061 1062 kobj->kset = dev->queues_kset; 1063 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1064 "rx-%u", index); 1065 if (error) 1066 goto err; 1067 1068 if (dev->sysfs_rx_queue_group) { 1069 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1070 if (error) 1071 goto err; 1072 } 1073 1074 kobject_uevent(kobj, KOBJ_ADD); 1075 1076 return error; 1077 1078 err: 1079 kobject_put(kobj); 1080 return error; 1081 } 1082 1083 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1084 kgid_t kgid) 1085 { 1086 struct netdev_rx_queue *queue = dev->_rx + index; 1087 struct kobject *kobj = &queue->kobj; 1088 int error; 1089 1090 error = sysfs_change_owner(kobj, kuid, kgid); 1091 if (error) 1092 return error; 1093 1094 if (dev->sysfs_rx_queue_group) 1095 error = sysfs_group_change_owner( 1096 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1097 1098 return error; 1099 } 1100 #endif /* CONFIG_SYSFS */ 1101 1102 int 1103 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1104 { 1105 #ifdef CONFIG_SYSFS 1106 int i; 1107 int error = 0; 1108 1109 #ifndef CONFIG_RPS 1110 if (!dev->sysfs_rx_queue_group) 1111 return 0; 1112 #endif 1113 for (i = old_num; i < new_num; i++) { 1114 error = rx_queue_add_kobject(dev, i); 1115 if (error) { 1116 new_num = old_num; 1117 break; 1118 } 1119 } 1120 1121 while (--i >= new_num) { 1122 struct kobject *kobj = &dev->_rx[i].kobj; 1123 1124 if (!refcount_read(&dev_net(dev)->ns.count)) 1125 kobj->uevent_suppress = 1; 1126 if (dev->sysfs_rx_queue_group) 1127 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1128 kobject_put(kobj); 1129 } 1130 1131 return error; 1132 #else 1133 return 0; 1134 #endif 1135 } 1136 1137 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1138 kuid_t kuid, kgid_t kgid) 1139 { 1140 #ifdef CONFIG_SYSFS 1141 int error = 0; 1142 int i; 1143 1144 #ifndef CONFIG_RPS 1145 if (!dev->sysfs_rx_queue_group) 1146 return 0; 1147 #endif 1148 for (i = 0; i < num; i++) { 1149 error = rx_queue_change_owner(dev, i, kuid, kgid); 1150 if (error) 1151 break; 1152 } 1153 1154 return error; 1155 #else 1156 return 0; 1157 #endif 1158 } 1159 1160 #ifdef CONFIG_SYSFS 1161 /* 1162 * netdev_queue sysfs structures and functions. 1163 */ 1164 struct netdev_queue_attribute { 1165 struct attribute attr; 1166 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1167 ssize_t (*store)(struct netdev_queue *queue, 1168 const char *buf, size_t len); 1169 }; 1170 #define to_netdev_queue_attr(_attr) \ 1171 container_of(_attr, struct netdev_queue_attribute, attr) 1172 1173 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1174 1175 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1176 struct attribute *attr, char *buf) 1177 { 1178 const struct netdev_queue_attribute *attribute 1179 = to_netdev_queue_attr(attr); 1180 struct netdev_queue *queue = to_netdev_queue(kobj); 1181 1182 if (!attribute->show) 1183 return -EIO; 1184 1185 return attribute->show(queue, buf); 1186 } 1187 1188 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1189 struct attribute *attr, 1190 const char *buf, size_t count) 1191 { 1192 const struct netdev_queue_attribute *attribute 1193 = to_netdev_queue_attr(attr); 1194 struct netdev_queue *queue = to_netdev_queue(kobj); 1195 1196 if (!attribute->store) 1197 return -EIO; 1198 1199 return attribute->store(queue, buf, count); 1200 } 1201 1202 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1203 .show = netdev_queue_attr_show, 1204 .store = netdev_queue_attr_store, 1205 }; 1206 1207 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1208 { 1209 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1210 1211 return sysfs_emit(buf, fmt_ulong, trans_timeout); 1212 } 1213 1214 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1215 { 1216 struct net_device *dev = queue->dev; 1217 unsigned int i; 1218 1219 i = queue - dev->_tx; 1220 BUG_ON(i >= dev->num_tx_queues); 1221 1222 return i; 1223 } 1224 1225 static ssize_t traffic_class_show(struct netdev_queue *queue, 1226 char *buf) 1227 { 1228 struct net_device *dev = queue->dev; 1229 int num_tc, tc; 1230 int index; 1231 1232 if (!netif_is_multiqueue(dev)) 1233 return -ENOENT; 1234 1235 if (!rtnl_trylock()) 1236 return restart_syscall(); 1237 1238 index = get_netdev_queue_index(queue); 1239 1240 /* If queue belongs to subordinate dev use its TC mapping */ 1241 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1242 1243 num_tc = dev->num_tc; 1244 tc = netdev_txq_to_tc(dev, index); 1245 1246 rtnl_unlock(); 1247 1248 if (tc < 0) 1249 return -EINVAL; 1250 1251 /* We can report the traffic class one of two ways: 1252 * Subordinate device traffic classes are reported with the traffic 1253 * class first, and then the subordinate class so for example TC0 on 1254 * subordinate device 2 will be reported as "0-2". If the queue 1255 * belongs to the root device it will be reported with just the 1256 * traffic class, so just "0" for TC 0 for example. 1257 */ 1258 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) : 1259 sysfs_emit(buf, "%d\n", tc); 1260 } 1261 1262 #ifdef CONFIG_XPS 1263 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1264 char *buf) 1265 { 1266 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate); 1267 } 1268 1269 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1270 const char *buf, size_t len) 1271 { 1272 struct net_device *dev = queue->dev; 1273 int err, index = get_netdev_queue_index(queue); 1274 u32 rate = 0; 1275 1276 if (!capable(CAP_NET_ADMIN)) 1277 return -EPERM; 1278 1279 /* The check is also done later; this helps returning early without 1280 * hitting the trylock/restart below. 1281 */ 1282 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1283 return -EOPNOTSUPP; 1284 1285 err = kstrtou32(buf, 10, &rate); 1286 if (err < 0) 1287 return err; 1288 1289 if (!rtnl_trylock()) 1290 return restart_syscall(); 1291 1292 err = -EOPNOTSUPP; 1293 if (dev->netdev_ops->ndo_set_tx_maxrate) 1294 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1295 1296 rtnl_unlock(); 1297 if (!err) { 1298 queue->tx_maxrate = rate; 1299 return len; 1300 } 1301 return err; 1302 } 1303 1304 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1305 = __ATTR_RW(tx_maxrate); 1306 #endif 1307 1308 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1309 = __ATTR_RO(tx_timeout); 1310 1311 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1312 = __ATTR_RO(traffic_class); 1313 1314 #ifdef CONFIG_BQL 1315 /* 1316 * Byte queue limits sysfs structures and functions. 1317 */ 1318 static ssize_t bql_show(char *buf, unsigned int value) 1319 { 1320 return sysfs_emit(buf, "%u\n", value); 1321 } 1322 1323 static ssize_t bql_set(const char *buf, const size_t count, 1324 unsigned int *pvalue) 1325 { 1326 unsigned int value; 1327 int err; 1328 1329 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1330 value = DQL_MAX_LIMIT; 1331 } else { 1332 err = kstrtouint(buf, 10, &value); 1333 if (err < 0) 1334 return err; 1335 if (value > DQL_MAX_LIMIT) 1336 return -EINVAL; 1337 } 1338 1339 *pvalue = value; 1340 1341 return count; 1342 } 1343 1344 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1345 char *buf) 1346 { 1347 struct dql *dql = &queue->dql; 1348 1349 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1350 } 1351 1352 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1353 const char *buf, size_t len) 1354 { 1355 struct dql *dql = &queue->dql; 1356 unsigned int value; 1357 int err; 1358 1359 err = kstrtouint(buf, 10, &value); 1360 if (err < 0) 1361 return err; 1362 1363 dql->slack_hold_time = msecs_to_jiffies(value); 1364 1365 return len; 1366 } 1367 1368 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1369 = __ATTR(hold_time, 0644, 1370 bql_show_hold_time, bql_set_hold_time); 1371 1372 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1373 char *buf) 1374 { 1375 struct dql *dql = &queue->dql; 1376 1377 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed); 1378 } 1379 1380 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1381 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1382 1383 #define BQL_ATTR(NAME, FIELD) \ 1384 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1385 char *buf) \ 1386 { \ 1387 return bql_show(buf, queue->dql.FIELD); \ 1388 } \ 1389 \ 1390 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1391 const char *buf, size_t len) \ 1392 { \ 1393 return bql_set(buf, len, &queue->dql.FIELD); \ 1394 } \ 1395 \ 1396 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1397 = __ATTR(NAME, 0644, \ 1398 bql_show_ ## NAME, bql_set_ ## NAME) 1399 1400 BQL_ATTR(limit, limit); 1401 BQL_ATTR(limit_max, max_limit); 1402 BQL_ATTR(limit_min, min_limit); 1403 1404 static struct attribute *dql_attrs[] __ro_after_init = { 1405 &bql_limit_attribute.attr, 1406 &bql_limit_max_attribute.attr, 1407 &bql_limit_min_attribute.attr, 1408 &bql_hold_time_attribute.attr, 1409 &bql_inflight_attribute.attr, 1410 NULL 1411 }; 1412 1413 static const struct attribute_group dql_group = { 1414 .name = "byte_queue_limits", 1415 .attrs = dql_attrs, 1416 }; 1417 #endif /* CONFIG_BQL */ 1418 1419 #ifdef CONFIG_XPS 1420 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1421 int tc, char *buf, enum xps_map_type type) 1422 { 1423 struct xps_dev_maps *dev_maps; 1424 unsigned long *mask; 1425 unsigned int nr_ids; 1426 int j, len; 1427 1428 rcu_read_lock(); 1429 dev_maps = rcu_dereference(dev->xps_maps[type]); 1430 1431 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1432 * when dev_maps hasn't been allocated yet, to be backward compatible. 1433 */ 1434 nr_ids = dev_maps ? dev_maps->nr_ids : 1435 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1436 1437 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1438 if (!mask) { 1439 rcu_read_unlock(); 1440 return -ENOMEM; 1441 } 1442 1443 if (!dev_maps || tc >= dev_maps->num_tc) 1444 goto out_no_maps; 1445 1446 for (j = 0; j < nr_ids; j++) { 1447 int i, tci = j * dev_maps->num_tc + tc; 1448 struct xps_map *map; 1449 1450 map = rcu_dereference(dev_maps->attr_map[tci]); 1451 if (!map) 1452 continue; 1453 1454 for (i = map->len; i--;) { 1455 if (map->queues[i] == index) { 1456 __set_bit(j, mask); 1457 break; 1458 } 1459 } 1460 } 1461 out_no_maps: 1462 rcu_read_unlock(); 1463 1464 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1465 bitmap_free(mask); 1466 1467 return len < PAGE_SIZE ? len : -EINVAL; 1468 } 1469 1470 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1471 { 1472 struct net_device *dev = queue->dev; 1473 unsigned int index; 1474 int len, tc; 1475 1476 if (!netif_is_multiqueue(dev)) 1477 return -ENOENT; 1478 1479 index = get_netdev_queue_index(queue); 1480 1481 if (!rtnl_trylock()) 1482 return restart_syscall(); 1483 1484 /* If queue belongs to subordinate dev use its map */ 1485 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1486 1487 tc = netdev_txq_to_tc(dev, index); 1488 if (tc < 0) { 1489 rtnl_unlock(); 1490 return -EINVAL; 1491 } 1492 1493 /* Make sure the subordinate device can't be freed */ 1494 get_device(&dev->dev); 1495 rtnl_unlock(); 1496 1497 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1498 1499 put_device(&dev->dev); 1500 return len; 1501 } 1502 1503 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1504 const char *buf, size_t len) 1505 { 1506 struct net_device *dev = queue->dev; 1507 unsigned int index; 1508 cpumask_var_t mask; 1509 int err; 1510 1511 if (!netif_is_multiqueue(dev)) 1512 return -ENOENT; 1513 1514 if (!capable(CAP_NET_ADMIN)) 1515 return -EPERM; 1516 1517 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1518 return -ENOMEM; 1519 1520 index = get_netdev_queue_index(queue); 1521 1522 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1523 if (err) { 1524 free_cpumask_var(mask); 1525 return err; 1526 } 1527 1528 if (!rtnl_trylock()) { 1529 free_cpumask_var(mask); 1530 return restart_syscall(); 1531 } 1532 1533 err = netif_set_xps_queue(dev, mask, index); 1534 rtnl_unlock(); 1535 1536 free_cpumask_var(mask); 1537 1538 return err ? : len; 1539 } 1540 1541 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1542 = __ATTR_RW(xps_cpus); 1543 1544 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1545 { 1546 struct net_device *dev = queue->dev; 1547 unsigned int index; 1548 int tc; 1549 1550 index = get_netdev_queue_index(queue); 1551 1552 if (!rtnl_trylock()) 1553 return restart_syscall(); 1554 1555 tc = netdev_txq_to_tc(dev, index); 1556 rtnl_unlock(); 1557 if (tc < 0) 1558 return -EINVAL; 1559 1560 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1561 } 1562 1563 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1564 size_t len) 1565 { 1566 struct net_device *dev = queue->dev; 1567 struct net *net = dev_net(dev); 1568 unsigned long *mask; 1569 unsigned int index; 1570 int err; 1571 1572 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1573 return -EPERM; 1574 1575 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1576 if (!mask) 1577 return -ENOMEM; 1578 1579 index = get_netdev_queue_index(queue); 1580 1581 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1582 if (err) { 1583 bitmap_free(mask); 1584 return err; 1585 } 1586 1587 if (!rtnl_trylock()) { 1588 bitmap_free(mask); 1589 return restart_syscall(); 1590 } 1591 1592 cpus_read_lock(); 1593 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1594 cpus_read_unlock(); 1595 1596 rtnl_unlock(); 1597 1598 bitmap_free(mask); 1599 return err ? : len; 1600 } 1601 1602 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1603 = __ATTR_RW(xps_rxqs); 1604 #endif /* CONFIG_XPS */ 1605 1606 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1607 &queue_trans_timeout.attr, 1608 &queue_traffic_class.attr, 1609 #ifdef CONFIG_XPS 1610 &xps_cpus_attribute.attr, 1611 &xps_rxqs_attribute.attr, 1612 &queue_tx_maxrate.attr, 1613 #endif 1614 NULL 1615 }; 1616 ATTRIBUTE_GROUPS(netdev_queue_default); 1617 1618 static void netdev_queue_release(struct kobject *kobj) 1619 { 1620 struct netdev_queue *queue = to_netdev_queue(kobj); 1621 1622 memset(kobj, 0, sizeof(*kobj)); 1623 netdev_put(queue->dev, &queue->dev_tracker); 1624 } 1625 1626 static const void *netdev_queue_namespace(struct kobject *kobj) 1627 { 1628 struct netdev_queue *queue = to_netdev_queue(kobj); 1629 struct device *dev = &queue->dev->dev; 1630 const void *ns = NULL; 1631 1632 if (dev->class && dev->class->ns_type) 1633 ns = dev->class->namespace(dev); 1634 1635 return ns; 1636 } 1637 1638 static void netdev_queue_get_ownership(struct kobject *kobj, 1639 kuid_t *uid, kgid_t *gid) 1640 { 1641 const struct net *net = netdev_queue_namespace(kobj); 1642 1643 net_ns_get_ownership(net, uid, gid); 1644 } 1645 1646 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1647 .sysfs_ops = &netdev_queue_sysfs_ops, 1648 .release = netdev_queue_release, 1649 .default_groups = netdev_queue_default_groups, 1650 .namespace = netdev_queue_namespace, 1651 .get_ownership = netdev_queue_get_ownership, 1652 }; 1653 1654 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1655 { 1656 struct netdev_queue *queue = dev->_tx + index; 1657 struct kobject *kobj = &queue->kobj; 1658 int error = 0; 1659 1660 /* Kobject_put later will trigger netdev_queue_release call 1661 * which decreases dev refcount: Take that reference here 1662 */ 1663 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1664 1665 kobj->kset = dev->queues_kset; 1666 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1667 "tx-%u", index); 1668 if (error) 1669 goto err; 1670 1671 #ifdef CONFIG_BQL 1672 error = sysfs_create_group(kobj, &dql_group); 1673 if (error) 1674 goto err; 1675 #endif 1676 1677 kobject_uevent(kobj, KOBJ_ADD); 1678 return 0; 1679 1680 err: 1681 kobject_put(kobj); 1682 return error; 1683 } 1684 1685 static int tx_queue_change_owner(struct net_device *ndev, int index, 1686 kuid_t kuid, kgid_t kgid) 1687 { 1688 struct netdev_queue *queue = ndev->_tx + index; 1689 struct kobject *kobj = &queue->kobj; 1690 int error; 1691 1692 error = sysfs_change_owner(kobj, kuid, kgid); 1693 if (error) 1694 return error; 1695 1696 #ifdef CONFIG_BQL 1697 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1698 #endif 1699 return error; 1700 } 1701 #endif /* CONFIG_SYSFS */ 1702 1703 int 1704 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1705 { 1706 #ifdef CONFIG_SYSFS 1707 int i; 1708 int error = 0; 1709 1710 /* Tx queue kobjects are allowed to be updated when a device is being 1711 * unregistered, but solely to remove queues from qdiscs. Any path 1712 * adding queues should be fixed. 1713 */ 1714 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 1715 "New queues can't be registered after device unregistration."); 1716 1717 for (i = old_num; i < new_num; i++) { 1718 error = netdev_queue_add_kobject(dev, i); 1719 if (error) { 1720 new_num = old_num; 1721 break; 1722 } 1723 } 1724 1725 while (--i >= new_num) { 1726 struct netdev_queue *queue = dev->_tx + i; 1727 1728 if (!refcount_read(&dev_net(dev)->ns.count)) 1729 queue->kobj.uevent_suppress = 1; 1730 #ifdef CONFIG_BQL 1731 sysfs_remove_group(&queue->kobj, &dql_group); 1732 #endif 1733 kobject_put(&queue->kobj); 1734 } 1735 1736 return error; 1737 #else 1738 return 0; 1739 #endif /* CONFIG_SYSFS */ 1740 } 1741 1742 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1743 kuid_t kuid, kgid_t kgid) 1744 { 1745 #ifdef CONFIG_SYSFS 1746 int error = 0; 1747 int i; 1748 1749 for (i = 0; i < num; i++) { 1750 error = tx_queue_change_owner(dev, i, kuid, kgid); 1751 if (error) 1752 break; 1753 } 1754 1755 return error; 1756 #else 1757 return 0; 1758 #endif /* CONFIG_SYSFS */ 1759 } 1760 1761 static int register_queue_kobjects(struct net_device *dev) 1762 { 1763 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1764 1765 #ifdef CONFIG_SYSFS 1766 dev->queues_kset = kset_create_and_add("queues", 1767 NULL, &dev->dev.kobj); 1768 if (!dev->queues_kset) 1769 return -ENOMEM; 1770 real_rx = dev->real_num_rx_queues; 1771 #endif 1772 real_tx = dev->real_num_tx_queues; 1773 1774 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1775 if (error) 1776 goto error; 1777 rxq = real_rx; 1778 1779 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1780 if (error) 1781 goto error; 1782 txq = real_tx; 1783 1784 return 0; 1785 1786 error: 1787 netdev_queue_update_kobjects(dev, txq, 0); 1788 net_rx_queue_update_kobjects(dev, rxq, 0); 1789 #ifdef CONFIG_SYSFS 1790 kset_unregister(dev->queues_kset); 1791 #endif 1792 return error; 1793 } 1794 1795 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1796 { 1797 int error = 0, real_rx = 0, real_tx = 0; 1798 1799 #ifdef CONFIG_SYSFS 1800 if (ndev->queues_kset) { 1801 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1802 if (error) 1803 return error; 1804 } 1805 real_rx = ndev->real_num_rx_queues; 1806 #endif 1807 real_tx = ndev->real_num_tx_queues; 1808 1809 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1810 if (error) 1811 return error; 1812 1813 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1814 if (error) 1815 return error; 1816 1817 return 0; 1818 } 1819 1820 static void remove_queue_kobjects(struct net_device *dev) 1821 { 1822 int real_rx = 0, real_tx = 0; 1823 1824 #ifdef CONFIG_SYSFS 1825 real_rx = dev->real_num_rx_queues; 1826 #endif 1827 real_tx = dev->real_num_tx_queues; 1828 1829 net_rx_queue_update_kobjects(dev, real_rx, 0); 1830 netdev_queue_update_kobjects(dev, real_tx, 0); 1831 1832 dev->real_num_rx_queues = 0; 1833 dev->real_num_tx_queues = 0; 1834 #ifdef CONFIG_SYSFS 1835 kset_unregister(dev->queues_kset); 1836 #endif 1837 } 1838 1839 static bool net_current_may_mount(void) 1840 { 1841 struct net *net = current->nsproxy->net_ns; 1842 1843 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1844 } 1845 1846 static void *net_grab_current_ns(void) 1847 { 1848 struct net *ns = current->nsproxy->net_ns; 1849 #ifdef CONFIG_NET_NS 1850 if (ns) 1851 refcount_inc(&ns->passive); 1852 #endif 1853 return ns; 1854 } 1855 1856 static const void *net_initial_ns(void) 1857 { 1858 return &init_net; 1859 } 1860 1861 static const void *net_netlink_ns(struct sock *sk) 1862 { 1863 return sock_net(sk); 1864 } 1865 1866 const struct kobj_ns_type_operations net_ns_type_operations = { 1867 .type = KOBJ_NS_TYPE_NET, 1868 .current_may_mount = net_current_may_mount, 1869 .grab_current_ns = net_grab_current_ns, 1870 .netlink_ns = net_netlink_ns, 1871 .initial_ns = net_initial_ns, 1872 .drop_ns = net_drop_ns, 1873 }; 1874 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1875 1876 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 1877 { 1878 struct net_device *dev = to_net_dev(d); 1879 int retval; 1880 1881 /* pass interface to uevent. */ 1882 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1883 if (retval) 1884 goto exit; 1885 1886 /* pass ifindex to uevent. 1887 * ifindex is useful as it won't change (interface name may change) 1888 * and is what RtNetlink uses natively. 1889 */ 1890 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1891 1892 exit: 1893 return retval; 1894 } 1895 1896 /* 1897 * netdev_release -- destroy and free a dead device. 1898 * Called when last reference to device kobject is gone. 1899 */ 1900 static void netdev_release(struct device *d) 1901 { 1902 struct net_device *dev = to_net_dev(d); 1903 1904 BUG_ON(dev->reg_state != NETREG_RELEASED); 1905 1906 /* no need to wait for rcu grace period: 1907 * device is dead and about to be freed. 1908 */ 1909 kfree(rcu_access_pointer(dev->ifalias)); 1910 netdev_freemem(dev); 1911 } 1912 1913 static const void *net_namespace(struct device *d) 1914 { 1915 struct net_device *dev = to_net_dev(d); 1916 1917 return dev_net(dev); 1918 } 1919 1920 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) 1921 { 1922 struct net_device *dev = to_net_dev(d); 1923 const struct net *net = dev_net(dev); 1924 1925 net_ns_get_ownership(net, uid, gid); 1926 } 1927 1928 static struct class net_class __ro_after_init = { 1929 .name = "net", 1930 .dev_release = netdev_release, 1931 .dev_groups = net_class_groups, 1932 .dev_uevent = netdev_uevent, 1933 .ns_type = &net_ns_type_operations, 1934 .namespace = net_namespace, 1935 .get_ownership = net_get_ownership, 1936 }; 1937 1938 #ifdef CONFIG_OF 1939 static int of_dev_node_match(struct device *dev, const void *data) 1940 { 1941 for (; dev; dev = dev->parent) { 1942 if (dev->of_node == data) 1943 return 1; 1944 } 1945 1946 return 0; 1947 } 1948 1949 /* 1950 * of_find_net_device_by_node - lookup the net device for the device node 1951 * @np: OF device node 1952 * 1953 * Looks up the net_device structure corresponding with the device node. 1954 * If successful, returns a pointer to the net_device with the embedded 1955 * struct device refcount incremented by one, or NULL on failure. The 1956 * refcount must be dropped when done with the net_device. 1957 */ 1958 struct net_device *of_find_net_device_by_node(struct device_node *np) 1959 { 1960 struct device *dev; 1961 1962 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1963 if (!dev) 1964 return NULL; 1965 1966 return to_net_dev(dev); 1967 } 1968 EXPORT_SYMBOL(of_find_net_device_by_node); 1969 #endif 1970 1971 /* Delete sysfs entries but hold kobject reference until after all 1972 * netdev references are gone. 1973 */ 1974 void netdev_unregister_kobject(struct net_device *ndev) 1975 { 1976 struct device *dev = &ndev->dev; 1977 1978 if (!refcount_read(&dev_net(ndev)->ns.count)) 1979 dev_set_uevent_suppress(dev, 1); 1980 1981 kobject_get(&dev->kobj); 1982 1983 remove_queue_kobjects(ndev); 1984 1985 pm_runtime_set_memalloc_noio(dev, false); 1986 1987 device_del(dev); 1988 } 1989 1990 /* Create sysfs entries for network device. */ 1991 int netdev_register_kobject(struct net_device *ndev) 1992 { 1993 struct device *dev = &ndev->dev; 1994 const struct attribute_group **groups = ndev->sysfs_groups; 1995 int error = 0; 1996 1997 device_initialize(dev); 1998 dev->class = &net_class; 1999 dev->platform_data = ndev; 2000 dev->groups = groups; 2001 2002 dev_set_name(dev, "%s", ndev->name); 2003 2004 #ifdef CONFIG_SYSFS 2005 /* Allow for a device specific group */ 2006 if (*groups) 2007 groups++; 2008 2009 *groups++ = &netstat_group; 2010 2011 if (wireless_group_needed(ndev)) 2012 *groups++ = &wireless_group; 2013 #endif /* CONFIG_SYSFS */ 2014 2015 error = device_add(dev); 2016 if (error) 2017 return error; 2018 2019 error = register_queue_kobjects(ndev); 2020 if (error) { 2021 device_del(dev); 2022 return error; 2023 } 2024 2025 pm_runtime_set_memalloc_noio(dev, true); 2026 2027 return error; 2028 } 2029 2030 /* Change owner for sysfs entries when moving network devices across network 2031 * namespaces owned by different user namespaces. 2032 */ 2033 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2034 const struct net *net_new) 2035 { 2036 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2037 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2038 struct device *dev = &ndev->dev; 2039 int error; 2040 2041 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2042 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2043 2044 /* The network namespace was changed but the owning user namespace is 2045 * identical so there's no need to change the owner of sysfs entries. 2046 */ 2047 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2048 return 0; 2049 2050 error = device_change_owner(dev, new_uid, new_gid); 2051 if (error) 2052 return error; 2053 2054 error = queue_change_owner(ndev, new_uid, new_gid); 2055 if (error) 2056 return error; 2057 2058 return 0; 2059 } 2060 2061 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2062 const void *ns) 2063 { 2064 return class_create_file_ns(&net_class, class_attr, ns); 2065 } 2066 EXPORT_SYMBOL(netdev_class_create_file_ns); 2067 2068 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2069 const void *ns) 2070 { 2071 class_remove_file_ns(&net_class, class_attr, ns); 2072 } 2073 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2074 2075 int __init netdev_kobject_init(void) 2076 { 2077 kobj_ns_type_register(&net_ns_type_operations); 2078 return class_register(&net_class); 2079 } 2080