1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/nsproxy.h> 15 #include <net/sock.h> 16 #include <net/net_namespace.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/vmalloc.h> 19 #include <linux/export.h> 20 #include <linux/jiffies.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/of.h> 23 #include <linux/of_net.h> 24 #include <linux/cpu.h> 25 26 #include "net-sysfs.h" 27 28 #ifdef CONFIG_SYSFS 29 static const char fmt_hex[] = "%#x\n"; 30 static const char fmt_dec[] = "%d\n"; 31 static const char fmt_ulong[] = "%lu\n"; 32 static const char fmt_u64[] = "%llu\n"; 33 34 static inline int dev_isalive(const struct net_device *dev) 35 { 36 return dev->reg_state <= NETREG_REGISTERED; 37 } 38 39 /* use same locking rules as GIF* ioctl's */ 40 static ssize_t netdev_show(const struct device *dev, 41 struct device_attribute *attr, char *buf, 42 ssize_t (*format)(const struct net_device *, char *)) 43 { 44 struct net_device *ndev = to_net_dev(dev); 45 ssize_t ret = -EINVAL; 46 47 read_lock(&dev_base_lock); 48 if (dev_isalive(ndev)) 49 ret = (*format)(ndev, buf); 50 read_unlock(&dev_base_lock); 51 52 return ret; 53 } 54 55 /* generate a show function for simple field */ 56 #define NETDEVICE_SHOW(field, format_string) \ 57 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 58 { \ 59 return sprintf(buf, format_string, dev->field); \ 60 } \ 61 static ssize_t field##_show(struct device *dev, \ 62 struct device_attribute *attr, char *buf) \ 63 { \ 64 return netdev_show(dev, attr, buf, format_##field); \ 65 } \ 66 67 #define NETDEVICE_SHOW_RO(field, format_string) \ 68 NETDEVICE_SHOW(field, format_string); \ 69 static DEVICE_ATTR_RO(field) 70 71 #define NETDEVICE_SHOW_RW(field, format_string) \ 72 NETDEVICE_SHOW(field, format_string); \ 73 static DEVICE_ATTR_RW(field) 74 75 /* use same locking and permission rules as SIF* ioctl's */ 76 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 77 const char *buf, size_t len, 78 int (*set)(struct net_device *, unsigned long)) 79 { 80 struct net_device *netdev = to_net_dev(dev); 81 struct net *net = dev_net(netdev); 82 unsigned long new; 83 int ret; 84 85 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 86 return -EPERM; 87 88 ret = kstrtoul(buf, 0, &new); 89 if (ret) 90 goto err; 91 92 if (!rtnl_trylock()) 93 return restart_syscall(); 94 95 if (dev_isalive(netdev)) { 96 ret = (*set)(netdev, new); 97 if (ret == 0) 98 ret = len; 99 } 100 rtnl_unlock(); 101 err: 102 return ret; 103 } 104 105 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 106 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 107 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 108 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 109 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 110 NETDEVICE_SHOW_RO(type, fmt_dec); 111 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 112 113 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 114 char *buf) 115 { 116 struct net_device *ndev = to_net_dev(dev); 117 118 return sprintf(buf, fmt_dec, dev_get_iflink(ndev)); 119 } 120 static DEVICE_ATTR_RO(iflink); 121 122 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 123 { 124 return sprintf(buf, fmt_dec, dev->name_assign_type); 125 } 126 127 static ssize_t name_assign_type_show(struct device *dev, 128 struct device_attribute *attr, 129 char *buf) 130 { 131 struct net_device *ndev = to_net_dev(dev); 132 ssize_t ret = -EINVAL; 133 134 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 135 ret = netdev_show(dev, attr, buf, format_name_assign_type); 136 137 return ret; 138 } 139 static DEVICE_ATTR_RO(name_assign_type); 140 141 /* use same locking rules as GIFHWADDR ioctl's */ 142 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 143 char *buf) 144 { 145 struct net_device *ndev = to_net_dev(dev); 146 ssize_t ret = -EINVAL; 147 148 read_lock(&dev_base_lock); 149 if (dev_isalive(ndev)) 150 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 151 read_unlock(&dev_base_lock); 152 return ret; 153 } 154 static DEVICE_ATTR_RO(address); 155 156 static ssize_t broadcast_show(struct device *dev, 157 struct device_attribute *attr, char *buf) 158 { 159 struct net_device *ndev = to_net_dev(dev); 160 161 if (dev_isalive(ndev)) 162 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 163 return -EINVAL; 164 } 165 static DEVICE_ATTR_RO(broadcast); 166 167 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 168 { 169 if (!netif_running(dev)) 170 return -EINVAL; 171 return dev_change_carrier(dev, (bool)new_carrier); 172 } 173 174 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 175 const char *buf, size_t len) 176 { 177 return netdev_store(dev, attr, buf, len, change_carrier); 178 } 179 180 static ssize_t carrier_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct net_device *netdev = to_net_dev(dev); 184 185 if (netif_running(netdev)) 186 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); 187 188 return -EINVAL; 189 } 190 static DEVICE_ATTR_RW(carrier); 191 192 static ssize_t speed_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct net_device *netdev = to_net_dev(dev); 196 int ret = -EINVAL; 197 198 if (!rtnl_trylock()) 199 return restart_syscall(); 200 201 if (netif_running(netdev)) { 202 struct ethtool_link_ksettings cmd; 203 204 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 205 ret = sprintf(buf, fmt_dec, cmd.base.speed); 206 } 207 rtnl_unlock(); 208 return ret; 209 } 210 static DEVICE_ATTR_RO(speed); 211 212 static ssize_t duplex_show(struct device *dev, 213 struct device_attribute *attr, char *buf) 214 { 215 struct net_device *netdev = to_net_dev(dev); 216 int ret = -EINVAL; 217 218 if (!rtnl_trylock()) 219 return restart_syscall(); 220 221 if (netif_running(netdev)) { 222 struct ethtool_link_ksettings cmd; 223 224 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 225 const char *duplex; 226 227 switch (cmd.base.duplex) { 228 case DUPLEX_HALF: 229 duplex = "half"; 230 break; 231 case DUPLEX_FULL: 232 duplex = "full"; 233 break; 234 default: 235 duplex = "unknown"; 236 break; 237 } 238 ret = sprintf(buf, "%s\n", duplex); 239 } 240 } 241 rtnl_unlock(); 242 return ret; 243 } 244 static DEVICE_ATTR_RO(duplex); 245 246 static ssize_t testing_show(struct device *dev, 247 struct device_attribute *attr, char *buf) 248 { 249 struct net_device *netdev = to_net_dev(dev); 250 251 if (netif_running(netdev)) 252 return sprintf(buf, fmt_dec, !!netif_testing(netdev)); 253 254 return -EINVAL; 255 } 256 static DEVICE_ATTR_RO(testing); 257 258 static ssize_t dormant_show(struct device *dev, 259 struct device_attribute *attr, char *buf) 260 { 261 struct net_device *netdev = to_net_dev(dev); 262 263 if (netif_running(netdev)) 264 return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); 265 266 return -EINVAL; 267 } 268 static DEVICE_ATTR_RO(dormant); 269 270 static const char *const operstates[] = { 271 "unknown", 272 "notpresent", /* currently unused */ 273 "down", 274 "lowerlayerdown", 275 "testing", 276 "dormant", 277 "up" 278 }; 279 280 static ssize_t operstate_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 const struct net_device *netdev = to_net_dev(dev); 284 unsigned char operstate; 285 286 read_lock(&dev_base_lock); 287 operstate = netdev->operstate; 288 if (!netif_running(netdev)) 289 operstate = IF_OPER_DOWN; 290 read_unlock(&dev_base_lock); 291 292 if (operstate >= ARRAY_SIZE(operstates)) 293 return -EINVAL; /* should not happen */ 294 295 return sprintf(buf, "%s\n", operstates[operstate]); 296 } 297 static DEVICE_ATTR_RO(operstate); 298 299 static ssize_t carrier_changes_show(struct device *dev, 300 struct device_attribute *attr, 301 char *buf) 302 { 303 struct net_device *netdev = to_net_dev(dev); 304 305 return sprintf(buf, fmt_dec, 306 atomic_read(&netdev->carrier_up_count) + 307 atomic_read(&netdev->carrier_down_count)); 308 } 309 static DEVICE_ATTR_RO(carrier_changes); 310 311 static ssize_t carrier_up_count_show(struct device *dev, 312 struct device_attribute *attr, 313 char *buf) 314 { 315 struct net_device *netdev = to_net_dev(dev); 316 317 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 318 } 319 static DEVICE_ATTR_RO(carrier_up_count); 320 321 static ssize_t carrier_down_count_show(struct device *dev, 322 struct device_attribute *attr, 323 char *buf) 324 { 325 struct net_device *netdev = to_net_dev(dev); 326 327 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 328 } 329 static DEVICE_ATTR_RO(carrier_down_count); 330 331 /* read-write attributes */ 332 333 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 334 { 335 return dev_set_mtu(dev, (int)new_mtu); 336 } 337 338 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 339 const char *buf, size_t len) 340 { 341 return netdev_store(dev, attr, buf, len, change_mtu); 342 } 343 NETDEVICE_SHOW_RW(mtu, fmt_dec); 344 345 static int change_flags(struct net_device *dev, unsigned long new_flags) 346 { 347 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 348 } 349 350 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 351 const char *buf, size_t len) 352 { 353 return netdev_store(dev, attr, buf, len, change_flags); 354 } 355 NETDEVICE_SHOW_RW(flags, fmt_hex); 356 357 static ssize_t tx_queue_len_store(struct device *dev, 358 struct device_attribute *attr, 359 const char *buf, size_t len) 360 { 361 if (!capable(CAP_NET_ADMIN)) 362 return -EPERM; 363 364 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 365 } 366 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 367 368 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 369 { 370 WRITE_ONCE(dev->gro_flush_timeout, val); 371 return 0; 372 } 373 374 static ssize_t gro_flush_timeout_store(struct device *dev, 375 struct device_attribute *attr, 376 const char *buf, size_t len) 377 { 378 if (!capable(CAP_NET_ADMIN)) 379 return -EPERM; 380 381 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 382 } 383 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 384 385 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 386 { 387 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 388 return 0; 389 } 390 391 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 392 struct device_attribute *attr, 393 const char *buf, size_t len) 394 { 395 if (!capable(CAP_NET_ADMIN)) 396 return -EPERM; 397 398 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 399 } 400 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 401 402 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 403 const char *buf, size_t len) 404 { 405 struct net_device *netdev = to_net_dev(dev); 406 struct net *net = dev_net(netdev); 407 size_t count = len; 408 ssize_t ret = 0; 409 410 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 411 return -EPERM; 412 413 /* ignore trailing newline */ 414 if (len > 0 && buf[len - 1] == '\n') 415 --count; 416 417 if (!rtnl_trylock()) 418 return restart_syscall(); 419 420 if (dev_isalive(netdev)) { 421 ret = dev_set_alias(netdev, buf, count); 422 if (ret < 0) 423 goto err; 424 ret = len; 425 netdev_state_change(netdev); 426 } 427 err: 428 rtnl_unlock(); 429 430 return ret; 431 } 432 433 static ssize_t ifalias_show(struct device *dev, 434 struct device_attribute *attr, char *buf) 435 { 436 const struct net_device *netdev = to_net_dev(dev); 437 char tmp[IFALIASZ]; 438 ssize_t ret = 0; 439 440 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 441 if (ret > 0) 442 ret = sprintf(buf, "%s\n", tmp); 443 return ret; 444 } 445 static DEVICE_ATTR_RW(ifalias); 446 447 static int change_group(struct net_device *dev, unsigned long new_group) 448 { 449 dev_set_group(dev, (int)new_group); 450 return 0; 451 } 452 453 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 454 const char *buf, size_t len) 455 { 456 return netdev_store(dev, attr, buf, len, change_group); 457 } 458 NETDEVICE_SHOW(group, fmt_dec); 459 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 460 461 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 462 { 463 return dev_change_proto_down(dev, (bool)proto_down); 464 } 465 466 static ssize_t proto_down_store(struct device *dev, 467 struct device_attribute *attr, 468 const char *buf, size_t len) 469 { 470 return netdev_store(dev, attr, buf, len, change_proto_down); 471 } 472 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 473 474 static ssize_t phys_port_id_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct net_device *netdev = to_net_dev(dev); 478 ssize_t ret = -EINVAL; 479 480 if (!rtnl_trylock()) 481 return restart_syscall(); 482 483 if (dev_isalive(netdev)) { 484 struct netdev_phys_item_id ppid; 485 486 ret = dev_get_phys_port_id(netdev, &ppid); 487 if (!ret) 488 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 489 } 490 rtnl_unlock(); 491 492 return ret; 493 } 494 static DEVICE_ATTR_RO(phys_port_id); 495 496 static ssize_t phys_port_name_show(struct device *dev, 497 struct device_attribute *attr, char *buf) 498 { 499 struct net_device *netdev = to_net_dev(dev); 500 ssize_t ret = -EINVAL; 501 502 if (!rtnl_trylock()) 503 return restart_syscall(); 504 505 if (dev_isalive(netdev)) { 506 char name[IFNAMSIZ]; 507 508 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 509 if (!ret) 510 ret = sprintf(buf, "%s\n", name); 511 } 512 rtnl_unlock(); 513 514 return ret; 515 } 516 static DEVICE_ATTR_RO(phys_port_name); 517 518 static ssize_t phys_switch_id_show(struct device *dev, 519 struct device_attribute *attr, char *buf) 520 { 521 struct net_device *netdev = to_net_dev(dev); 522 ssize_t ret = -EINVAL; 523 524 if (!rtnl_trylock()) 525 return restart_syscall(); 526 527 if (dev_isalive(netdev)) { 528 struct netdev_phys_item_id ppid = { }; 529 530 ret = dev_get_port_parent_id(netdev, &ppid, false); 531 if (!ret) 532 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 533 } 534 rtnl_unlock(); 535 536 return ret; 537 } 538 static DEVICE_ATTR_RO(phys_switch_id); 539 540 static struct attribute *net_class_attrs[] __ro_after_init = { 541 &dev_attr_netdev_group.attr, 542 &dev_attr_type.attr, 543 &dev_attr_dev_id.attr, 544 &dev_attr_dev_port.attr, 545 &dev_attr_iflink.attr, 546 &dev_attr_ifindex.attr, 547 &dev_attr_name_assign_type.attr, 548 &dev_attr_addr_assign_type.attr, 549 &dev_attr_addr_len.attr, 550 &dev_attr_link_mode.attr, 551 &dev_attr_address.attr, 552 &dev_attr_broadcast.attr, 553 &dev_attr_speed.attr, 554 &dev_attr_duplex.attr, 555 &dev_attr_dormant.attr, 556 &dev_attr_testing.attr, 557 &dev_attr_operstate.attr, 558 &dev_attr_carrier_changes.attr, 559 &dev_attr_ifalias.attr, 560 &dev_attr_carrier.attr, 561 &dev_attr_mtu.attr, 562 &dev_attr_flags.attr, 563 &dev_attr_tx_queue_len.attr, 564 &dev_attr_gro_flush_timeout.attr, 565 &dev_attr_napi_defer_hard_irqs.attr, 566 &dev_attr_phys_port_id.attr, 567 &dev_attr_phys_port_name.attr, 568 &dev_attr_phys_switch_id.attr, 569 &dev_attr_proto_down.attr, 570 &dev_attr_carrier_up_count.attr, 571 &dev_attr_carrier_down_count.attr, 572 NULL, 573 }; 574 ATTRIBUTE_GROUPS(net_class); 575 576 /* Show a given an attribute in the statistics group */ 577 static ssize_t netstat_show(const struct device *d, 578 struct device_attribute *attr, char *buf, 579 unsigned long offset) 580 { 581 struct net_device *dev = to_net_dev(d); 582 ssize_t ret = -EINVAL; 583 584 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 585 offset % sizeof(u64) != 0); 586 587 read_lock(&dev_base_lock); 588 if (dev_isalive(dev)) { 589 struct rtnl_link_stats64 temp; 590 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 591 592 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 593 } 594 read_unlock(&dev_base_lock); 595 return ret; 596 } 597 598 /* generate a read-only statistics attribute */ 599 #define NETSTAT_ENTRY(name) \ 600 static ssize_t name##_show(struct device *d, \ 601 struct device_attribute *attr, char *buf) \ 602 { \ 603 return netstat_show(d, attr, buf, \ 604 offsetof(struct rtnl_link_stats64, name)); \ 605 } \ 606 static DEVICE_ATTR_RO(name) 607 608 NETSTAT_ENTRY(rx_packets); 609 NETSTAT_ENTRY(tx_packets); 610 NETSTAT_ENTRY(rx_bytes); 611 NETSTAT_ENTRY(tx_bytes); 612 NETSTAT_ENTRY(rx_errors); 613 NETSTAT_ENTRY(tx_errors); 614 NETSTAT_ENTRY(rx_dropped); 615 NETSTAT_ENTRY(tx_dropped); 616 NETSTAT_ENTRY(multicast); 617 NETSTAT_ENTRY(collisions); 618 NETSTAT_ENTRY(rx_length_errors); 619 NETSTAT_ENTRY(rx_over_errors); 620 NETSTAT_ENTRY(rx_crc_errors); 621 NETSTAT_ENTRY(rx_frame_errors); 622 NETSTAT_ENTRY(rx_fifo_errors); 623 NETSTAT_ENTRY(rx_missed_errors); 624 NETSTAT_ENTRY(tx_aborted_errors); 625 NETSTAT_ENTRY(tx_carrier_errors); 626 NETSTAT_ENTRY(tx_fifo_errors); 627 NETSTAT_ENTRY(tx_heartbeat_errors); 628 NETSTAT_ENTRY(tx_window_errors); 629 NETSTAT_ENTRY(rx_compressed); 630 NETSTAT_ENTRY(tx_compressed); 631 NETSTAT_ENTRY(rx_nohandler); 632 633 static struct attribute *netstat_attrs[] __ro_after_init = { 634 &dev_attr_rx_packets.attr, 635 &dev_attr_tx_packets.attr, 636 &dev_attr_rx_bytes.attr, 637 &dev_attr_tx_bytes.attr, 638 &dev_attr_rx_errors.attr, 639 &dev_attr_tx_errors.attr, 640 &dev_attr_rx_dropped.attr, 641 &dev_attr_tx_dropped.attr, 642 &dev_attr_multicast.attr, 643 &dev_attr_collisions.attr, 644 &dev_attr_rx_length_errors.attr, 645 &dev_attr_rx_over_errors.attr, 646 &dev_attr_rx_crc_errors.attr, 647 &dev_attr_rx_frame_errors.attr, 648 &dev_attr_rx_fifo_errors.attr, 649 &dev_attr_rx_missed_errors.attr, 650 &dev_attr_tx_aborted_errors.attr, 651 &dev_attr_tx_carrier_errors.attr, 652 &dev_attr_tx_fifo_errors.attr, 653 &dev_attr_tx_heartbeat_errors.attr, 654 &dev_attr_tx_window_errors.attr, 655 &dev_attr_rx_compressed.attr, 656 &dev_attr_tx_compressed.attr, 657 &dev_attr_rx_nohandler.attr, 658 NULL 659 }; 660 661 static const struct attribute_group netstat_group = { 662 .name = "statistics", 663 .attrs = netstat_attrs, 664 }; 665 666 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 667 static struct attribute *wireless_attrs[] = { 668 NULL 669 }; 670 671 static const struct attribute_group wireless_group = { 672 .name = "wireless", 673 .attrs = wireless_attrs, 674 }; 675 #endif 676 677 #else /* CONFIG_SYSFS */ 678 #define net_class_groups NULL 679 #endif /* CONFIG_SYSFS */ 680 681 #ifdef CONFIG_SYSFS 682 #define to_rx_queue_attr(_attr) \ 683 container_of(_attr, struct rx_queue_attribute, attr) 684 685 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 686 687 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 688 char *buf) 689 { 690 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 691 struct netdev_rx_queue *queue = to_rx_queue(kobj); 692 693 if (!attribute->show) 694 return -EIO; 695 696 return attribute->show(queue, buf); 697 } 698 699 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 700 const char *buf, size_t count) 701 { 702 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 703 struct netdev_rx_queue *queue = to_rx_queue(kobj); 704 705 if (!attribute->store) 706 return -EIO; 707 708 return attribute->store(queue, buf, count); 709 } 710 711 static const struct sysfs_ops rx_queue_sysfs_ops = { 712 .show = rx_queue_attr_show, 713 .store = rx_queue_attr_store, 714 }; 715 716 #ifdef CONFIG_RPS 717 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 718 { 719 struct rps_map *map; 720 cpumask_var_t mask; 721 int i, len; 722 723 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 724 return -ENOMEM; 725 726 rcu_read_lock(); 727 map = rcu_dereference(queue->rps_map); 728 if (map) 729 for (i = 0; i < map->len; i++) 730 cpumask_set_cpu(map->cpus[i], mask); 731 732 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 733 rcu_read_unlock(); 734 free_cpumask_var(mask); 735 736 return len < PAGE_SIZE ? len : -EINVAL; 737 } 738 739 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 740 const char *buf, size_t len) 741 { 742 struct rps_map *old_map, *map; 743 cpumask_var_t mask; 744 int err, cpu, i; 745 static DEFINE_MUTEX(rps_map_mutex); 746 747 if (!capable(CAP_NET_ADMIN)) 748 return -EPERM; 749 750 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 751 return -ENOMEM; 752 753 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 754 if (err) { 755 free_cpumask_var(mask); 756 return err; 757 } 758 759 map = kzalloc(max_t(unsigned int, 760 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 761 GFP_KERNEL); 762 if (!map) { 763 free_cpumask_var(mask); 764 return -ENOMEM; 765 } 766 767 i = 0; 768 for_each_cpu_and(cpu, mask, cpu_online_mask) 769 map->cpus[i++] = cpu; 770 771 if (i) { 772 map->len = i; 773 } else { 774 kfree(map); 775 map = NULL; 776 } 777 778 mutex_lock(&rps_map_mutex); 779 old_map = rcu_dereference_protected(queue->rps_map, 780 mutex_is_locked(&rps_map_mutex)); 781 rcu_assign_pointer(queue->rps_map, map); 782 783 if (map) 784 static_branch_inc(&rps_needed); 785 if (old_map) 786 static_branch_dec(&rps_needed); 787 788 mutex_unlock(&rps_map_mutex); 789 790 if (old_map) 791 kfree_rcu(old_map, rcu); 792 793 free_cpumask_var(mask); 794 return len; 795 } 796 797 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 798 char *buf) 799 { 800 struct rps_dev_flow_table *flow_table; 801 unsigned long val = 0; 802 803 rcu_read_lock(); 804 flow_table = rcu_dereference(queue->rps_flow_table); 805 if (flow_table) 806 val = (unsigned long)flow_table->mask + 1; 807 rcu_read_unlock(); 808 809 return sprintf(buf, "%lu\n", val); 810 } 811 812 static void rps_dev_flow_table_release(struct rcu_head *rcu) 813 { 814 struct rps_dev_flow_table *table = container_of(rcu, 815 struct rps_dev_flow_table, rcu); 816 vfree(table); 817 } 818 819 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 820 const char *buf, size_t len) 821 { 822 unsigned long mask, count; 823 struct rps_dev_flow_table *table, *old_table; 824 static DEFINE_SPINLOCK(rps_dev_flow_lock); 825 int rc; 826 827 if (!capable(CAP_NET_ADMIN)) 828 return -EPERM; 829 830 rc = kstrtoul(buf, 0, &count); 831 if (rc < 0) 832 return rc; 833 834 if (count) { 835 mask = count - 1; 836 /* mask = roundup_pow_of_two(count) - 1; 837 * without overflows... 838 */ 839 while ((mask | (mask >> 1)) != mask) 840 mask |= (mask >> 1); 841 /* On 64 bit arches, must check mask fits in table->mask (u32), 842 * and on 32bit arches, must check 843 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 844 */ 845 #if BITS_PER_LONG > 32 846 if (mask > (unsigned long)(u32)mask) 847 return -EINVAL; 848 #else 849 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 850 / sizeof(struct rps_dev_flow)) { 851 /* Enforce a limit to prevent overflow */ 852 return -EINVAL; 853 } 854 #endif 855 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 856 if (!table) 857 return -ENOMEM; 858 859 table->mask = mask; 860 for (count = 0; count <= mask; count++) 861 table->flows[count].cpu = RPS_NO_CPU; 862 } else { 863 table = NULL; 864 } 865 866 spin_lock(&rps_dev_flow_lock); 867 old_table = rcu_dereference_protected(queue->rps_flow_table, 868 lockdep_is_held(&rps_dev_flow_lock)); 869 rcu_assign_pointer(queue->rps_flow_table, table); 870 spin_unlock(&rps_dev_flow_lock); 871 872 if (old_table) 873 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 874 875 return len; 876 } 877 878 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 879 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 880 881 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 882 = __ATTR(rps_flow_cnt, 0644, 883 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 884 #endif /* CONFIG_RPS */ 885 886 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 887 #ifdef CONFIG_RPS 888 &rps_cpus_attribute.attr, 889 &rps_dev_flow_table_cnt_attribute.attr, 890 #endif 891 NULL 892 }; 893 ATTRIBUTE_GROUPS(rx_queue_default); 894 895 static void rx_queue_release(struct kobject *kobj) 896 { 897 struct netdev_rx_queue *queue = to_rx_queue(kobj); 898 #ifdef CONFIG_RPS 899 struct rps_map *map; 900 struct rps_dev_flow_table *flow_table; 901 902 map = rcu_dereference_protected(queue->rps_map, 1); 903 if (map) { 904 RCU_INIT_POINTER(queue->rps_map, NULL); 905 kfree_rcu(map, rcu); 906 } 907 908 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 909 if (flow_table) { 910 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 911 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 912 } 913 #endif 914 915 memset(kobj, 0, sizeof(*kobj)); 916 dev_put(queue->dev); 917 } 918 919 static const void *rx_queue_namespace(struct kobject *kobj) 920 { 921 struct netdev_rx_queue *queue = to_rx_queue(kobj); 922 struct device *dev = &queue->dev->dev; 923 const void *ns = NULL; 924 925 if (dev->class && dev->class->ns_type) 926 ns = dev->class->namespace(dev); 927 928 return ns; 929 } 930 931 static void rx_queue_get_ownership(struct kobject *kobj, 932 kuid_t *uid, kgid_t *gid) 933 { 934 const struct net *net = rx_queue_namespace(kobj); 935 936 net_ns_get_ownership(net, uid, gid); 937 } 938 939 static struct kobj_type rx_queue_ktype __ro_after_init = { 940 .sysfs_ops = &rx_queue_sysfs_ops, 941 .release = rx_queue_release, 942 .default_groups = rx_queue_default_groups, 943 .namespace = rx_queue_namespace, 944 .get_ownership = rx_queue_get_ownership, 945 }; 946 947 static int rx_queue_add_kobject(struct net_device *dev, int index) 948 { 949 struct netdev_rx_queue *queue = dev->_rx + index; 950 struct kobject *kobj = &queue->kobj; 951 int error = 0; 952 953 /* Kobject_put later will trigger rx_queue_release call which 954 * decreases dev refcount: Take that reference here 955 */ 956 dev_hold(queue->dev); 957 958 kobj->kset = dev->queues_kset; 959 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 960 "rx-%u", index); 961 if (error) 962 goto err; 963 964 if (dev->sysfs_rx_queue_group) { 965 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 966 if (error) 967 goto err; 968 } 969 970 kobject_uevent(kobj, KOBJ_ADD); 971 972 return error; 973 974 err: 975 kobject_put(kobj); 976 return error; 977 } 978 979 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 980 kgid_t kgid) 981 { 982 struct netdev_rx_queue *queue = dev->_rx + index; 983 struct kobject *kobj = &queue->kobj; 984 int error; 985 986 error = sysfs_change_owner(kobj, kuid, kgid); 987 if (error) 988 return error; 989 990 if (dev->sysfs_rx_queue_group) 991 error = sysfs_group_change_owner( 992 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 993 994 return error; 995 } 996 #endif /* CONFIG_SYSFS */ 997 998 int 999 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1000 { 1001 #ifdef CONFIG_SYSFS 1002 int i; 1003 int error = 0; 1004 1005 #ifndef CONFIG_RPS 1006 if (!dev->sysfs_rx_queue_group) 1007 return 0; 1008 #endif 1009 for (i = old_num; i < new_num; i++) { 1010 error = rx_queue_add_kobject(dev, i); 1011 if (error) { 1012 new_num = old_num; 1013 break; 1014 } 1015 } 1016 1017 while (--i >= new_num) { 1018 struct kobject *kobj = &dev->_rx[i].kobj; 1019 1020 if (!refcount_read(&dev_net(dev)->count)) 1021 kobj->uevent_suppress = 1; 1022 if (dev->sysfs_rx_queue_group) 1023 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1024 kobject_put(kobj); 1025 } 1026 1027 return error; 1028 #else 1029 return 0; 1030 #endif 1031 } 1032 1033 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1034 kuid_t kuid, kgid_t kgid) 1035 { 1036 #ifdef CONFIG_SYSFS 1037 int error = 0; 1038 int i; 1039 1040 #ifndef CONFIG_RPS 1041 if (!dev->sysfs_rx_queue_group) 1042 return 0; 1043 #endif 1044 for (i = 0; i < num; i++) { 1045 error = rx_queue_change_owner(dev, i, kuid, kgid); 1046 if (error) 1047 break; 1048 } 1049 1050 return error; 1051 #else 1052 return 0; 1053 #endif 1054 } 1055 1056 #ifdef CONFIG_SYSFS 1057 /* 1058 * netdev_queue sysfs structures and functions. 1059 */ 1060 struct netdev_queue_attribute { 1061 struct attribute attr; 1062 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1063 ssize_t (*store)(struct netdev_queue *queue, 1064 const char *buf, size_t len); 1065 }; 1066 #define to_netdev_queue_attr(_attr) \ 1067 container_of(_attr, struct netdev_queue_attribute, attr) 1068 1069 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1070 1071 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1072 struct attribute *attr, char *buf) 1073 { 1074 const struct netdev_queue_attribute *attribute 1075 = to_netdev_queue_attr(attr); 1076 struct netdev_queue *queue = to_netdev_queue(kobj); 1077 1078 if (!attribute->show) 1079 return -EIO; 1080 1081 return attribute->show(queue, buf); 1082 } 1083 1084 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1085 struct attribute *attr, 1086 const char *buf, size_t count) 1087 { 1088 const struct netdev_queue_attribute *attribute 1089 = to_netdev_queue_attr(attr); 1090 struct netdev_queue *queue = to_netdev_queue(kobj); 1091 1092 if (!attribute->store) 1093 return -EIO; 1094 1095 return attribute->store(queue, buf, count); 1096 } 1097 1098 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1099 .show = netdev_queue_attr_show, 1100 .store = netdev_queue_attr_store, 1101 }; 1102 1103 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1104 { 1105 unsigned long trans_timeout; 1106 1107 spin_lock_irq(&queue->_xmit_lock); 1108 trans_timeout = queue->trans_timeout; 1109 spin_unlock_irq(&queue->_xmit_lock); 1110 1111 return sprintf(buf, fmt_ulong, trans_timeout); 1112 } 1113 1114 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1115 { 1116 struct net_device *dev = queue->dev; 1117 unsigned int i; 1118 1119 i = queue - dev->_tx; 1120 BUG_ON(i >= dev->num_tx_queues); 1121 1122 return i; 1123 } 1124 1125 static ssize_t traffic_class_show(struct netdev_queue *queue, 1126 char *buf) 1127 { 1128 struct net_device *dev = queue->dev; 1129 int index; 1130 int tc; 1131 1132 if (!netif_is_multiqueue(dev)) 1133 return -ENOENT; 1134 1135 index = get_netdev_queue_index(queue); 1136 1137 /* If queue belongs to subordinate dev use its TC mapping */ 1138 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1139 1140 tc = netdev_txq_to_tc(dev, index); 1141 if (tc < 0) 1142 return -EINVAL; 1143 1144 /* We can report the traffic class one of two ways: 1145 * Subordinate device traffic classes are reported with the traffic 1146 * class first, and then the subordinate class so for example TC0 on 1147 * subordinate device 2 will be reported as "0-2". If the queue 1148 * belongs to the root device it will be reported with just the 1149 * traffic class, so just "0" for TC 0 for example. 1150 */ 1151 return dev->num_tc < 0 ? sprintf(buf, "%u%d\n", tc, dev->num_tc) : 1152 sprintf(buf, "%u\n", tc); 1153 } 1154 1155 #ifdef CONFIG_XPS 1156 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1157 char *buf) 1158 { 1159 return sprintf(buf, "%lu\n", queue->tx_maxrate); 1160 } 1161 1162 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1163 const char *buf, size_t len) 1164 { 1165 struct net_device *dev = queue->dev; 1166 int err, index = get_netdev_queue_index(queue); 1167 u32 rate = 0; 1168 1169 if (!capable(CAP_NET_ADMIN)) 1170 return -EPERM; 1171 1172 err = kstrtou32(buf, 10, &rate); 1173 if (err < 0) 1174 return err; 1175 1176 if (!rtnl_trylock()) 1177 return restart_syscall(); 1178 1179 err = -EOPNOTSUPP; 1180 if (dev->netdev_ops->ndo_set_tx_maxrate) 1181 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1182 1183 rtnl_unlock(); 1184 if (!err) { 1185 queue->tx_maxrate = rate; 1186 return len; 1187 } 1188 return err; 1189 } 1190 1191 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1192 = __ATTR_RW(tx_maxrate); 1193 #endif 1194 1195 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1196 = __ATTR_RO(tx_timeout); 1197 1198 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1199 = __ATTR_RO(traffic_class); 1200 1201 #ifdef CONFIG_BQL 1202 /* 1203 * Byte queue limits sysfs structures and functions. 1204 */ 1205 static ssize_t bql_show(char *buf, unsigned int value) 1206 { 1207 return sprintf(buf, "%u\n", value); 1208 } 1209 1210 static ssize_t bql_set(const char *buf, const size_t count, 1211 unsigned int *pvalue) 1212 { 1213 unsigned int value; 1214 int err; 1215 1216 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1217 value = DQL_MAX_LIMIT; 1218 } else { 1219 err = kstrtouint(buf, 10, &value); 1220 if (err < 0) 1221 return err; 1222 if (value > DQL_MAX_LIMIT) 1223 return -EINVAL; 1224 } 1225 1226 *pvalue = value; 1227 1228 return count; 1229 } 1230 1231 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1232 char *buf) 1233 { 1234 struct dql *dql = &queue->dql; 1235 1236 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1237 } 1238 1239 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1240 const char *buf, size_t len) 1241 { 1242 struct dql *dql = &queue->dql; 1243 unsigned int value; 1244 int err; 1245 1246 err = kstrtouint(buf, 10, &value); 1247 if (err < 0) 1248 return err; 1249 1250 dql->slack_hold_time = msecs_to_jiffies(value); 1251 1252 return len; 1253 } 1254 1255 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1256 = __ATTR(hold_time, 0644, 1257 bql_show_hold_time, bql_set_hold_time); 1258 1259 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1260 char *buf) 1261 { 1262 struct dql *dql = &queue->dql; 1263 1264 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); 1265 } 1266 1267 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1268 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1269 1270 #define BQL_ATTR(NAME, FIELD) \ 1271 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1272 char *buf) \ 1273 { \ 1274 return bql_show(buf, queue->dql.FIELD); \ 1275 } \ 1276 \ 1277 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1278 const char *buf, size_t len) \ 1279 { \ 1280 return bql_set(buf, len, &queue->dql.FIELD); \ 1281 } \ 1282 \ 1283 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1284 = __ATTR(NAME, 0644, \ 1285 bql_show_ ## NAME, bql_set_ ## NAME) 1286 1287 BQL_ATTR(limit, limit); 1288 BQL_ATTR(limit_max, max_limit); 1289 BQL_ATTR(limit_min, min_limit); 1290 1291 static struct attribute *dql_attrs[] __ro_after_init = { 1292 &bql_limit_attribute.attr, 1293 &bql_limit_max_attribute.attr, 1294 &bql_limit_min_attribute.attr, 1295 &bql_hold_time_attribute.attr, 1296 &bql_inflight_attribute.attr, 1297 NULL 1298 }; 1299 1300 static const struct attribute_group dql_group = { 1301 .name = "byte_queue_limits", 1302 .attrs = dql_attrs, 1303 }; 1304 #endif /* CONFIG_BQL */ 1305 1306 #ifdef CONFIG_XPS 1307 static ssize_t xps_cpus_show(struct netdev_queue *queue, 1308 char *buf) 1309 { 1310 struct net_device *dev = queue->dev; 1311 int cpu, len, num_tc = 1, tc = 0; 1312 struct xps_dev_maps *dev_maps; 1313 cpumask_var_t mask; 1314 unsigned long index; 1315 1316 if (!netif_is_multiqueue(dev)) 1317 return -ENOENT; 1318 1319 index = get_netdev_queue_index(queue); 1320 1321 if (dev->num_tc) { 1322 /* Do not allow XPS on subordinate device directly */ 1323 num_tc = dev->num_tc; 1324 if (num_tc < 0) 1325 return -EINVAL; 1326 1327 /* If queue belongs to subordinate dev use its map */ 1328 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1329 1330 tc = netdev_txq_to_tc(dev, index); 1331 if (tc < 0) 1332 return -EINVAL; 1333 } 1334 1335 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 1336 return -ENOMEM; 1337 1338 rcu_read_lock(); 1339 dev_maps = rcu_dereference(dev->xps_cpus_map); 1340 if (dev_maps) { 1341 for_each_possible_cpu(cpu) { 1342 int i, tci = cpu * num_tc + tc; 1343 struct xps_map *map; 1344 1345 map = rcu_dereference(dev_maps->attr_map[tci]); 1346 if (!map) 1347 continue; 1348 1349 for (i = map->len; i--;) { 1350 if (map->queues[i] == index) { 1351 cpumask_set_cpu(cpu, mask); 1352 break; 1353 } 1354 } 1355 } 1356 } 1357 rcu_read_unlock(); 1358 1359 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 1360 free_cpumask_var(mask); 1361 return len < PAGE_SIZE ? len : -EINVAL; 1362 } 1363 1364 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1365 const char *buf, size_t len) 1366 { 1367 struct net_device *dev = queue->dev; 1368 unsigned long index; 1369 cpumask_var_t mask; 1370 int err; 1371 1372 if (!netif_is_multiqueue(dev)) 1373 return -ENOENT; 1374 1375 if (!capable(CAP_NET_ADMIN)) 1376 return -EPERM; 1377 1378 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1379 return -ENOMEM; 1380 1381 index = get_netdev_queue_index(queue); 1382 1383 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1384 if (err) { 1385 free_cpumask_var(mask); 1386 return err; 1387 } 1388 1389 err = netif_set_xps_queue(dev, mask, index); 1390 1391 free_cpumask_var(mask); 1392 1393 return err ? : len; 1394 } 1395 1396 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1397 = __ATTR_RW(xps_cpus); 1398 1399 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1400 { 1401 struct net_device *dev = queue->dev; 1402 struct xps_dev_maps *dev_maps; 1403 unsigned long *mask, index; 1404 int j, len, num_tc = 1, tc = 0; 1405 1406 index = get_netdev_queue_index(queue); 1407 1408 if (dev->num_tc) { 1409 num_tc = dev->num_tc; 1410 tc = netdev_txq_to_tc(dev, index); 1411 if (tc < 0) 1412 return -EINVAL; 1413 } 1414 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1415 if (!mask) 1416 return -ENOMEM; 1417 1418 rcu_read_lock(); 1419 dev_maps = rcu_dereference(dev->xps_rxqs_map); 1420 if (!dev_maps) 1421 goto out_no_maps; 1422 1423 for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues), 1424 j < dev->num_rx_queues;) { 1425 int i, tci = j * num_tc + tc; 1426 struct xps_map *map; 1427 1428 map = rcu_dereference(dev_maps->attr_map[tci]); 1429 if (!map) 1430 continue; 1431 1432 for (i = map->len; i--;) { 1433 if (map->queues[i] == index) { 1434 set_bit(j, mask); 1435 break; 1436 } 1437 } 1438 } 1439 out_no_maps: 1440 rcu_read_unlock(); 1441 1442 len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues); 1443 bitmap_free(mask); 1444 1445 return len < PAGE_SIZE ? len : -EINVAL; 1446 } 1447 1448 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1449 size_t len) 1450 { 1451 struct net_device *dev = queue->dev; 1452 struct net *net = dev_net(dev); 1453 unsigned long *mask, index; 1454 int err; 1455 1456 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1457 return -EPERM; 1458 1459 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1460 if (!mask) 1461 return -ENOMEM; 1462 1463 index = get_netdev_queue_index(queue); 1464 1465 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1466 if (err) { 1467 bitmap_free(mask); 1468 return err; 1469 } 1470 1471 cpus_read_lock(); 1472 err = __netif_set_xps_queue(dev, mask, index, true); 1473 cpus_read_unlock(); 1474 1475 bitmap_free(mask); 1476 return err ? : len; 1477 } 1478 1479 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1480 = __ATTR_RW(xps_rxqs); 1481 #endif /* CONFIG_XPS */ 1482 1483 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1484 &queue_trans_timeout.attr, 1485 &queue_traffic_class.attr, 1486 #ifdef CONFIG_XPS 1487 &xps_cpus_attribute.attr, 1488 &xps_rxqs_attribute.attr, 1489 &queue_tx_maxrate.attr, 1490 #endif 1491 NULL 1492 }; 1493 ATTRIBUTE_GROUPS(netdev_queue_default); 1494 1495 static void netdev_queue_release(struct kobject *kobj) 1496 { 1497 struct netdev_queue *queue = to_netdev_queue(kobj); 1498 1499 memset(kobj, 0, sizeof(*kobj)); 1500 dev_put(queue->dev); 1501 } 1502 1503 static const void *netdev_queue_namespace(struct kobject *kobj) 1504 { 1505 struct netdev_queue *queue = to_netdev_queue(kobj); 1506 struct device *dev = &queue->dev->dev; 1507 const void *ns = NULL; 1508 1509 if (dev->class && dev->class->ns_type) 1510 ns = dev->class->namespace(dev); 1511 1512 return ns; 1513 } 1514 1515 static void netdev_queue_get_ownership(struct kobject *kobj, 1516 kuid_t *uid, kgid_t *gid) 1517 { 1518 const struct net *net = netdev_queue_namespace(kobj); 1519 1520 net_ns_get_ownership(net, uid, gid); 1521 } 1522 1523 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1524 .sysfs_ops = &netdev_queue_sysfs_ops, 1525 .release = netdev_queue_release, 1526 .default_groups = netdev_queue_default_groups, 1527 .namespace = netdev_queue_namespace, 1528 .get_ownership = netdev_queue_get_ownership, 1529 }; 1530 1531 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1532 { 1533 struct netdev_queue *queue = dev->_tx + index; 1534 struct kobject *kobj = &queue->kobj; 1535 int error = 0; 1536 1537 /* Kobject_put later will trigger netdev_queue_release call 1538 * which decreases dev refcount: Take that reference here 1539 */ 1540 dev_hold(queue->dev); 1541 1542 kobj->kset = dev->queues_kset; 1543 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1544 "tx-%u", index); 1545 if (error) 1546 goto err; 1547 1548 #ifdef CONFIG_BQL 1549 error = sysfs_create_group(kobj, &dql_group); 1550 if (error) 1551 goto err; 1552 #endif 1553 1554 kobject_uevent(kobj, KOBJ_ADD); 1555 return 0; 1556 1557 err: 1558 kobject_put(kobj); 1559 return error; 1560 } 1561 1562 static int tx_queue_change_owner(struct net_device *ndev, int index, 1563 kuid_t kuid, kgid_t kgid) 1564 { 1565 struct netdev_queue *queue = ndev->_tx + index; 1566 struct kobject *kobj = &queue->kobj; 1567 int error; 1568 1569 error = sysfs_change_owner(kobj, kuid, kgid); 1570 if (error) 1571 return error; 1572 1573 #ifdef CONFIG_BQL 1574 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1575 #endif 1576 return error; 1577 } 1578 #endif /* CONFIG_SYSFS */ 1579 1580 int 1581 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1582 { 1583 #ifdef CONFIG_SYSFS 1584 int i; 1585 int error = 0; 1586 1587 for (i = old_num; i < new_num; i++) { 1588 error = netdev_queue_add_kobject(dev, i); 1589 if (error) { 1590 new_num = old_num; 1591 break; 1592 } 1593 } 1594 1595 while (--i >= new_num) { 1596 struct netdev_queue *queue = dev->_tx + i; 1597 1598 if (!refcount_read(&dev_net(dev)->count)) 1599 queue->kobj.uevent_suppress = 1; 1600 #ifdef CONFIG_BQL 1601 sysfs_remove_group(&queue->kobj, &dql_group); 1602 #endif 1603 kobject_put(&queue->kobj); 1604 } 1605 1606 return error; 1607 #else 1608 return 0; 1609 #endif /* CONFIG_SYSFS */ 1610 } 1611 1612 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1613 kuid_t kuid, kgid_t kgid) 1614 { 1615 #ifdef CONFIG_SYSFS 1616 int error = 0; 1617 int i; 1618 1619 for (i = 0; i < num; i++) { 1620 error = tx_queue_change_owner(dev, i, kuid, kgid); 1621 if (error) 1622 break; 1623 } 1624 1625 return error; 1626 #else 1627 return 0; 1628 #endif /* CONFIG_SYSFS */ 1629 } 1630 1631 static int register_queue_kobjects(struct net_device *dev) 1632 { 1633 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1634 1635 #ifdef CONFIG_SYSFS 1636 dev->queues_kset = kset_create_and_add("queues", 1637 NULL, &dev->dev.kobj); 1638 if (!dev->queues_kset) 1639 return -ENOMEM; 1640 real_rx = dev->real_num_rx_queues; 1641 #endif 1642 real_tx = dev->real_num_tx_queues; 1643 1644 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1645 if (error) 1646 goto error; 1647 rxq = real_rx; 1648 1649 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1650 if (error) 1651 goto error; 1652 txq = real_tx; 1653 1654 return 0; 1655 1656 error: 1657 netdev_queue_update_kobjects(dev, txq, 0); 1658 net_rx_queue_update_kobjects(dev, rxq, 0); 1659 #ifdef CONFIG_SYSFS 1660 kset_unregister(dev->queues_kset); 1661 #endif 1662 return error; 1663 } 1664 1665 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1666 { 1667 int error = 0, real_rx = 0, real_tx = 0; 1668 1669 #ifdef CONFIG_SYSFS 1670 if (ndev->queues_kset) { 1671 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1672 if (error) 1673 return error; 1674 } 1675 real_rx = ndev->real_num_rx_queues; 1676 #endif 1677 real_tx = ndev->real_num_tx_queues; 1678 1679 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1680 if (error) 1681 return error; 1682 1683 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1684 if (error) 1685 return error; 1686 1687 return 0; 1688 } 1689 1690 static void remove_queue_kobjects(struct net_device *dev) 1691 { 1692 int real_rx = 0, real_tx = 0; 1693 1694 #ifdef CONFIG_SYSFS 1695 real_rx = dev->real_num_rx_queues; 1696 #endif 1697 real_tx = dev->real_num_tx_queues; 1698 1699 net_rx_queue_update_kobjects(dev, real_rx, 0); 1700 netdev_queue_update_kobjects(dev, real_tx, 0); 1701 #ifdef CONFIG_SYSFS 1702 kset_unregister(dev->queues_kset); 1703 #endif 1704 } 1705 1706 static bool net_current_may_mount(void) 1707 { 1708 struct net *net = current->nsproxy->net_ns; 1709 1710 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1711 } 1712 1713 static void *net_grab_current_ns(void) 1714 { 1715 struct net *ns = current->nsproxy->net_ns; 1716 #ifdef CONFIG_NET_NS 1717 if (ns) 1718 refcount_inc(&ns->passive); 1719 #endif 1720 return ns; 1721 } 1722 1723 static const void *net_initial_ns(void) 1724 { 1725 return &init_net; 1726 } 1727 1728 static const void *net_netlink_ns(struct sock *sk) 1729 { 1730 return sock_net(sk); 1731 } 1732 1733 const struct kobj_ns_type_operations net_ns_type_operations = { 1734 .type = KOBJ_NS_TYPE_NET, 1735 .current_may_mount = net_current_may_mount, 1736 .grab_current_ns = net_grab_current_ns, 1737 .netlink_ns = net_netlink_ns, 1738 .initial_ns = net_initial_ns, 1739 .drop_ns = net_drop_ns, 1740 }; 1741 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1742 1743 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 1744 { 1745 struct net_device *dev = to_net_dev(d); 1746 int retval; 1747 1748 /* pass interface to uevent. */ 1749 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1750 if (retval) 1751 goto exit; 1752 1753 /* pass ifindex to uevent. 1754 * ifindex is useful as it won't change (interface name may change) 1755 * and is what RtNetlink uses natively. 1756 */ 1757 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1758 1759 exit: 1760 return retval; 1761 } 1762 1763 /* 1764 * netdev_release -- destroy and free a dead device. 1765 * Called when last reference to device kobject is gone. 1766 */ 1767 static void netdev_release(struct device *d) 1768 { 1769 struct net_device *dev = to_net_dev(d); 1770 1771 BUG_ON(dev->reg_state != NETREG_RELEASED); 1772 1773 /* no need to wait for rcu grace period: 1774 * device is dead and about to be freed. 1775 */ 1776 kfree(rcu_access_pointer(dev->ifalias)); 1777 netdev_freemem(dev); 1778 } 1779 1780 static const void *net_namespace(struct device *d) 1781 { 1782 struct net_device *dev = to_net_dev(d); 1783 1784 return dev_net(dev); 1785 } 1786 1787 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) 1788 { 1789 struct net_device *dev = to_net_dev(d); 1790 const struct net *net = dev_net(dev); 1791 1792 net_ns_get_ownership(net, uid, gid); 1793 } 1794 1795 static struct class net_class __ro_after_init = { 1796 .name = "net", 1797 .dev_release = netdev_release, 1798 .dev_groups = net_class_groups, 1799 .dev_uevent = netdev_uevent, 1800 .ns_type = &net_ns_type_operations, 1801 .namespace = net_namespace, 1802 .get_ownership = net_get_ownership, 1803 }; 1804 1805 #ifdef CONFIG_OF_NET 1806 static int of_dev_node_match(struct device *dev, const void *data) 1807 { 1808 for (; dev; dev = dev->parent) { 1809 if (dev->of_node == data) 1810 return 1; 1811 } 1812 1813 return 0; 1814 } 1815 1816 /* 1817 * of_find_net_device_by_node - lookup the net device for the device node 1818 * @np: OF device node 1819 * 1820 * Looks up the net_device structure corresponding with the device node. 1821 * If successful, returns a pointer to the net_device with the embedded 1822 * struct device refcount incremented by one, or NULL on failure. The 1823 * refcount must be dropped when done with the net_device. 1824 */ 1825 struct net_device *of_find_net_device_by_node(struct device_node *np) 1826 { 1827 struct device *dev; 1828 1829 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1830 if (!dev) 1831 return NULL; 1832 1833 return to_net_dev(dev); 1834 } 1835 EXPORT_SYMBOL(of_find_net_device_by_node); 1836 #endif 1837 1838 /* Delete sysfs entries but hold kobject reference until after all 1839 * netdev references are gone. 1840 */ 1841 void netdev_unregister_kobject(struct net_device *ndev) 1842 { 1843 struct device *dev = &ndev->dev; 1844 1845 if (!refcount_read(&dev_net(ndev)->count)) 1846 dev_set_uevent_suppress(dev, 1); 1847 1848 kobject_get(&dev->kobj); 1849 1850 remove_queue_kobjects(ndev); 1851 1852 pm_runtime_set_memalloc_noio(dev, false); 1853 1854 device_del(dev); 1855 } 1856 1857 /* Create sysfs entries for network device. */ 1858 int netdev_register_kobject(struct net_device *ndev) 1859 { 1860 struct device *dev = &ndev->dev; 1861 const struct attribute_group **groups = ndev->sysfs_groups; 1862 int error = 0; 1863 1864 device_initialize(dev); 1865 dev->class = &net_class; 1866 dev->platform_data = ndev; 1867 dev->groups = groups; 1868 1869 dev_set_name(dev, "%s", ndev->name); 1870 1871 #ifdef CONFIG_SYSFS 1872 /* Allow for a device specific group */ 1873 if (*groups) 1874 groups++; 1875 1876 *groups++ = &netstat_group; 1877 1878 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 1879 if (ndev->ieee80211_ptr) 1880 *groups++ = &wireless_group; 1881 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 1882 else if (ndev->wireless_handlers) 1883 *groups++ = &wireless_group; 1884 #endif 1885 #endif 1886 #endif /* CONFIG_SYSFS */ 1887 1888 error = device_add(dev); 1889 if (error) 1890 return error; 1891 1892 error = register_queue_kobjects(ndev); 1893 if (error) { 1894 device_del(dev); 1895 return error; 1896 } 1897 1898 pm_runtime_set_memalloc_noio(dev, true); 1899 1900 return error; 1901 } 1902 1903 /* Change owner for sysfs entries when moving network devices across network 1904 * namespaces owned by different user namespaces. 1905 */ 1906 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 1907 const struct net *net_new) 1908 { 1909 struct device *dev = &ndev->dev; 1910 kuid_t old_uid, new_uid; 1911 kgid_t old_gid, new_gid; 1912 int error; 1913 1914 net_ns_get_ownership(net_old, &old_uid, &old_gid); 1915 net_ns_get_ownership(net_new, &new_uid, &new_gid); 1916 1917 /* The network namespace was changed but the owning user namespace is 1918 * identical so there's no need to change the owner of sysfs entries. 1919 */ 1920 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 1921 return 0; 1922 1923 error = device_change_owner(dev, new_uid, new_gid); 1924 if (error) 1925 return error; 1926 1927 error = queue_change_owner(ndev, new_uid, new_gid); 1928 if (error) 1929 return error; 1930 1931 return 0; 1932 } 1933 1934 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 1935 const void *ns) 1936 { 1937 return class_create_file_ns(&net_class, class_attr, ns); 1938 } 1939 EXPORT_SYMBOL(netdev_class_create_file_ns); 1940 1941 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 1942 const void *ns) 1943 { 1944 class_remove_file_ns(&net_class, class_attr, ns); 1945 } 1946 EXPORT_SYMBOL(netdev_class_remove_file_ns); 1947 1948 int __init netdev_kobject_init(void) 1949 { 1950 kobj_ns_type_register(&net_ns_type_operations); 1951 return class_register(&net_class); 1952 } 1953