1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 27 #include "dev.h" 28 #include "net-sysfs.h" 29 30 #ifdef CONFIG_SYSFS 31 static const char fmt_hex[] = "%#x\n"; 32 static const char fmt_dec[] = "%d\n"; 33 static const char fmt_ulong[] = "%lu\n"; 34 static const char fmt_u64[] = "%llu\n"; 35 36 /* Caller holds RTNL or dev_base_lock */ 37 static inline int dev_isalive(const struct net_device *dev) 38 { 39 return dev->reg_state <= NETREG_REGISTERED; 40 } 41 42 /* use same locking rules as GIF* ioctl's */ 43 static ssize_t netdev_show(const struct device *dev, 44 struct device_attribute *attr, char *buf, 45 ssize_t (*format)(const struct net_device *, char *)) 46 { 47 struct net_device *ndev = to_net_dev(dev); 48 ssize_t ret = -EINVAL; 49 50 read_lock(&dev_base_lock); 51 if (dev_isalive(ndev)) 52 ret = (*format)(ndev, buf); 53 read_unlock(&dev_base_lock); 54 55 return ret; 56 } 57 58 /* generate a show function for simple field */ 59 #define NETDEVICE_SHOW(field, format_string) \ 60 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 61 { \ 62 return sysfs_emit(buf, format_string, dev->field); \ 63 } \ 64 static ssize_t field##_show(struct device *dev, \ 65 struct device_attribute *attr, char *buf) \ 66 { \ 67 return netdev_show(dev, attr, buf, format_##field); \ 68 } \ 69 70 #define NETDEVICE_SHOW_RO(field, format_string) \ 71 NETDEVICE_SHOW(field, format_string); \ 72 static DEVICE_ATTR_RO(field) 73 74 #define NETDEVICE_SHOW_RW(field, format_string) \ 75 NETDEVICE_SHOW(field, format_string); \ 76 static DEVICE_ATTR_RW(field) 77 78 /* use same locking and permission rules as SIF* ioctl's */ 79 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 80 const char *buf, size_t len, 81 int (*set)(struct net_device *, unsigned long)) 82 { 83 struct net_device *netdev = to_net_dev(dev); 84 struct net *net = dev_net(netdev); 85 unsigned long new; 86 int ret; 87 88 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 89 return -EPERM; 90 91 ret = kstrtoul(buf, 0, &new); 92 if (ret) 93 goto err; 94 95 if (!rtnl_trylock()) 96 return restart_syscall(); 97 98 if (dev_isalive(netdev)) { 99 ret = (*set)(netdev, new); 100 if (ret == 0) 101 ret = len; 102 } 103 rtnl_unlock(); 104 err: 105 return ret; 106 } 107 108 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 109 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 110 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 111 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 112 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 113 NETDEVICE_SHOW_RO(type, fmt_dec); 114 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 115 116 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 117 char *buf) 118 { 119 struct net_device *ndev = to_net_dev(dev); 120 121 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev)); 122 } 123 static DEVICE_ATTR_RO(iflink); 124 125 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 126 { 127 return sysfs_emit(buf, fmt_dec, dev->name_assign_type); 128 } 129 130 static ssize_t name_assign_type_show(struct device *dev, 131 struct device_attribute *attr, 132 char *buf) 133 { 134 struct net_device *ndev = to_net_dev(dev); 135 ssize_t ret = -EINVAL; 136 137 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 138 ret = netdev_show(dev, attr, buf, format_name_assign_type); 139 140 return ret; 141 } 142 static DEVICE_ATTR_RO(name_assign_type); 143 144 /* use same locking rules as GIFHWADDR ioctl's */ 145 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 146 char *buf) 147 { 148 struct net_device *ndev = to_net_dev(dev); 149 ssize_t ret = -EINVAL; 150 151 read_lock(&dev_base_lock); 152 if (dev_isalive(ndev)) 153 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 154 read_unlock(&dev_base_lock); 155 return ret; 156 } 157 static DEVICE_ATTR_RO(address); 158 159 static ssize_t broadcast_show(struct device *dev, 160 struct device_attribute *attr, char *buf) 161 { 162 struct net_device *ndev = to_net_dev(dev); 163 164 if (dev_isalive(ndev)) 165 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 166 return -EINVAL; 167 } 168 static DEVICE_ATTR_RO(broadcast); 169 170 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 171 { 172 if (!netif_running(dev)) 173 return -EINVAL; 174 return dev_change_carrier(dev, (bool)new_carrier); 175 } 176 177 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 178 const char *buf, size_t len) 179 { 180 struct net_device *netdev = to_net_dev(dev); 181 182 /* The check is also done in change_carrier; this helps returning early 183 * without hitting the trylock/restart in netdev_store. 184 */ 185 if (!netdev->netdev_ops->ndo_change_carrier) 186 return -EOPNOTSUPP; 187 188 return netdev_store(dev, attr, buf, len, change_carrier); 189 } 190 191 static ssize_t carrier_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct net_device *netdev = to_net_dev(dev); 195 196 if (netif_running(netdev)) 197 return sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev)); 198 199 return -EINVAL; 200 } 201 static DEVICE_ATTR_RW(carrier); 202 203 static ssize_t speed_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct net_device *netdev = to_net_dev(dev); 207 int ret = -EINVAL; 208 209 /* The check is also done in __ethtool_get_link_ksettings; this helps 210 * returning early without hitting the trylock/restart below. 211 */ 212 if (!netdev->ethtool_ops->get_link_ksettings) 213 return ret; 214 215 if (!rtnl_trylock()) 216 return restart_syscall(); 217 218 if (netif_running(netdev) && netif_device_present(netdev)) { 219 struct ethtool_link_ksettings cmd; 220 221 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 222 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed); 223 } 224 rtnl_unlock(); 225 return ret; 226 } 227 static DEVICE_ATTR_RO(speed); 228 229 static ssize_t duplex_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231 { 232 struct net_device *netdev = to_net_dev(dev); 233 int ret = -EINVAL; 234 235 /* The check is also done in __ethtool_get_link_ksettings; this helps 236 * returning early without hitting the trylock/restart below. 237 */ 238 if (!netdev->ethtool_ops->get_link_ksettings) 239 return ret; 240 241 if (!rtnl_trylock()) 242 return restart_syscall(); 243 244 if (netif_running(netdev)) { 245 struct ethtool_link_ksettings cmd; 246 247 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 248 const char *duplex; 249 250 switch (cmd.base.duplex) { 251 case DUPLEX_HALF: 252 duplex = "half"; 253 break; 254 case DUPLEX_FULL: 255 duplex = "full"; 256 break; 257 default: 258 duplex = "unknown"; 259 break; 260 } 261 ret = sysfs_emit(buf, "%s\n", duplex); 262 } 263 } 264 rtnl_unlock(); 265 return ret; 266 } 267 static DEVICE_ATTR_RO(duplex); 268 269 static ssize_t testing_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271 { 272 struct net_device *netdev = to_net_dev(dev); 273 274 if (netif_running(netdev)) 275 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev)); 276 277 return -EINVAL; 278 } 279 static DEVICE_ATTR_RO(testing); 280 281 static ssize_t dormant_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct net_device *netdev = to_net_dev(dev); 285 286 if (netif_running(netdev)) 287 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev)); 288 289 return -EINVAL; 290 } 291 static DEVICE_ATTR_RO(dormant); 292 293 static const char *const operstates[] = { 294 "unknown", 295 "notpresent", /* currently unused */ 296 "down", 297 "lowerlayerdown", 298 "testing", 299 "dormant", 300 "up" 301 }; 302 303 static ssize_t operstate_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 const struct net_device *netdev = to_net_dev(dev); 307 unsigned char operstate; 308 309 read_lock(&dev_base_lock); 310 operstate = netdev->operstate; 311 if (!netif_running(netdev)) 312 operstate = IF_OPER_DOWN; 313 read_unlock(&dev_base_lock); 314 315 if (operstate >= ARRAY_SIZE(operstates)) 316 return -EINVAL; /* should not happen */ 317 318 return sysfs_emit(buf, "%s\n", operstates[operstate]); 319 } 320 static DEVICE_ATTR_RO(operstate); 321 322 static ssize_t carrier_changes_show(struct device *dev, 323 struct device_attribute *attr, 324 char *buf) 325 { 326 struct net_device *netdev = to_net_dev(dev); 327 328 return sysfs_emit(buf, fmt_dec, 329 atomic_read(&netdev->carrier_up_count) + 330 atomic_read(&netdev->carrier_down_count)); 331 } 332 static DEVICE_ATTR_RO(carrier_changes); 333 334 static ssize_t carrier_up_count_show(struct device *dev, 335 struct device_attribute *attr, 336 char *buf) 337 { 338 struct net_device *netdev = to_net_dev(dev); 339 340 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 341 } 342 static DEVICE_ATTR_RO(carrier_up_count); 343 344 static ssize_t carrier_down_count_show(struct device *dev, 345 struct device_attribute *attr, 346 char *buf) 347 { 348 struct net_device *netdev = to_net_dev(dev); 349 350 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 351 } 352 static DEVICE_ATTR_RO(carrier_down_count); 353 354 /* read-write attributes */ 355 356 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 357 { 358 return dev_set_mtu(dev, (int)new_mtu); 359 } 360 361 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 362 const char *buf, size_t len) 363 { 364 return netdev_store(dev, attr, buf, len, change_mtu); 365 } 366 NETDEVICE_SHOW_RW(mtu, fmt_dec); 367 368 static int change_flags(struct net_device *dev, unsigned long new_flags) 369 { 370 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 371 } 372 373 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 374 const char *buf, size_t len) 375 { 376 return netdev_store(dev, attr, buf, len, change_flags); 377 } 378 NETDEVICE_SHOW_RW(flags, fmt_hex); 379 380 static ssize_t tx_queue_len_store(struct device *dev, 381 struct device_attribute *attr, 382 const char *buf, size_t len) 383 { 384 if (!capable(CAP_NET_ADMIN)) 385 return -EPERM; 386 387 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 388 } 389 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 390 391 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 392 { 393 WRITE_ONCE(dev->gro_flush_timeout, val); 394 return 0; 395 } 396 397 static ssize_t gro_flush_timeout_store(struct device *dev, 398 struct device_attribute *attr, 399 const char *buf, size_t len) 400 { 401 if (!capable(CAP_NET_ADMIN)) 402 return -EPERM; 403 404 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 405 } 406 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 407 408 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 409 { 410 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 411 return 0; 412 } 413 414 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 415 struct device_attribute *attr, 416 const char *buf, size_t len) 417 { 418 if (!capable(CAP_NET_ADMIN)) 419 return -EPERM; 420 421 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 422 } 423 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 424 425 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 426 const char *buf, size_t len) 427 { 428 struct net_device *netdev = to_net_dev(dev); 429 struct net *net = dev_net(netdev); 430 size_t count = len; 431 ssize_t ret = 0; 432 433 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 434 return -EPERM; 435 436 /* ignore trailing newline */ 437 if (len > 0 && buf[len - 1] == '\n') 438 --count; 439 440 if (!rtnl_trylock()) 441 return restart_syscall(); 442 443 if (dev_isalive(netdev)) { 444 ret = dev_set_alias(netdev, buf, count); 445 if (ret < 0) 446 goto err; 447 ret = len; 448 netdev_state_change(netdev); 449 } 450 err: 451 rtnl_unlock(); 452 453 return ret; 454 } 455 456 static ssize_t ifalias_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 const struct net_device *netdev = to_net_dev(dev); 460 char tmp[IFALIASZ]; 461 ssize_t ret = 0; 462 463 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 464 if (ret > 0) 465 ret = sysfs_emit(buf, "%s\n", tmp); 466 return ret; 467 } 468 static DEVICE_ATTR_RW(ifalias); 469 470 static int change_group(struct net_device *dev, unsigned long new_group) 471 { 472 dev_set_group(dev, (int)new_group); 473 return 0; 474 } 475 476 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 477 const char *buf, size_t len) 478 { 479 return netdev_store(dev, attr, buf, len, change_group); 480 } 481 NETDEVICE_SHOW(group, fmt_dec); 482 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 483 484 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 485 { 486 return dev_change_proto_down(dev, (bool)proto_down); 487 } 488 489 static ssize_t proto_down_store(struct device *dev, 490 struct device_attribute *attr, 491 const char *buf, size_t len) 492 { 493 return netdev_store(dev, attr, buf, len, change_proto_down); 494 } 495 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 496 497 static ssize_t phys_port_id_show(struct device *dev, 498 struct device_attribute *attr, char *buf) 499 { 500 struct net_device *netdev = to_net_dev(dev); 501 ssize_t ret = -EINVAL; 502 503 /* The check is also done in dev_get_phys_port_id; this helps returning 504 * early without hitting the trylock/restart below. 505 */ 506 if (!netdev->netdev_ops->ndo_get_phys_port_id) 507 return -EOPNOTSUPP; 508 509 if (!rtnl_trylock()) 510 return restart_syscall(); 511 512 if (dev_isalive(netdev)) { 513 struct netdev_phys_item_id ppid; 514 515 ret = dev_get_phys_port_id(netdev, &ppid); 516 if (!ret) 517 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 518 } 519 rtnl_unlock(); 520 521 return ret; 522 } 523 static DEVICE_ATTR_RO(phys_port_id); 524 525 static ssize_t phys_port_name_show(struct device *dev, 526 struct device_attribute *attr, char *buf) 527 { 528 struct net_device *netdev = to_net_dev(dev); 529 ssize_t ret = -EINVAL; 530 531 /* The checks are also done in dev_get_phys_port_name; this helps 532 * returning early without hitting the trylock/restart below. 533 */ 534 if (!netdev->netdev_ops->ndo_get_phys_port_name && 535 !netdev->devlink_port) 536 return -EOPNOTSUPP; 537 538 if (!rtnl_trylock()) 539 return restart_syscall(); 540 541 if (dev_isalive(netdev)) { 542 char name[IFNAMSIZ]; 543 544 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 545 if (!ret) 546 ret = sysfs_emit(buf, "%s\n", name); 547 } 548 rtnl_unlock(); 549 550 return ret; 551 } 552 static DEVICE_ATTR_RO(phys_port_name); 553 554 static ssize_t phys_switch_id_show(struct device *dev, 555 struct device_attribute *attr, char *buf) 556 { 557 struct net_device *netdev = to_net_dev(dev); 558 ssize_t ret = -EINVAL; 559 560 /* The checks are also done in dev_get_phys_port_name; this helps 561 * returning early without hitting the trylock/restart below. This works 562 * because recurse is false when calling dev_get_port_parent_id. 563 */ 564 if (!netdev->netdev_ops->ndo_get_port_parent_id && 565 !netdev->devlink_port) 566 return -EOPNOTSUPP; 567 568 if (!rtnl_trylock()) 569 return restart_syscall(); 570 571 if (dev_isalive(netdev)) { 572 struct netdev_phys_item_id ppid = { }; 573 574 ret = dev_get_port_parent_id(netdev, &ppid, false); 575 if (!ret) 576 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 577 } 578 rtnl_unlock(); 579 580 return ret; 581 } 582 static DEVICE_ATTR_RO(phys_switch_id); 583 584 static ssize_t threaded_show(struct device *dev, 585 struct device_attribute *attr, char *buf) 586 { 587 struct net_device *netdev = to_net_dev(dev); 588 ssize_t ret = -EINVAL; 589 590 if (!rtnl_trylock()) 591 return restart_syscall(); 592 593 if (dev_isalive(netdev)) 594 ret = sysfs_emit(buf, fmt_dec, netdev->threaded); 595 596 rtnl_unlock(); 597 return ret; 598 } 599 600 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 601 { 602 int ret; 603 604 if (list_empty(&dev->napi_list)) 605 return -EOPNOTSUPP; 606 607 if (val != 0 && val != 1) 608 return -EOPNOTSUPP; 609 610 ret = dev_set_threaded(dev, val); 611 612 return ret; 613 } 614 615 static ssize_t threaded_store(struct device *dev, 616 struct device_attribute *attr, 617 const char *buf, size_t len) 618 { 619 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 620 } 621 static DEVICE_ATTR_RW(threaded); 622 623 static struct attribute *net_class_attrs[] __ro_after_init = { 624 &dev_attr_netdev_group.attr, 625 &dev_attr_type.attr, 626 &dev_attr_dev_id.attr, 627 &dev_attr_dev_port.attr, 628 &dev_attr_iflink.attr, 629 &dev_attr_ifindex.attr, 630 &dev_attr_name_assign_type.attr, 631 &dev_attr_addr_assign_type.attr, 632 &dev_attr_addr_len.attr, 633 &dev_attr_link_mode.attr, 634 &dev_attr_address.attr, 635 &dev_attr_broadcast.attr, 636 &dev_attr_speed.attr, 637 &dev_attr_duplex.attr, 638 &dev_attr_dormant.attr, 639 &dev_attr_testing.attr, 640 &dev_attr_operstate.attr, 641 &dev_attr_carrier_changes.attr, 642 &dev_attr_ifalias.attr, 643 &dev_attr_carrier.attr, 644 &dev_attr_mtu.attr, 645 &dev_attr_flags.attr, 646 &dev_attr_tx_queue_len.attr, 647 &dev_attr_gro_flush_timeout.attr, 648 &dev_attr_napi_defer_hard_irqs.attr, 649 &dev_attr_phys_port_id.attr, 650 &dev_attr_phys_port_name.attr, 651 &dev_attr_phys_switch_id.attr, 652 &dev_attr_proto_down.attr, 653 &dev_attr_carrier_up_count.attr, 654 &dev_attr_carrier_down_count.attr, 655 &dev_attr_threaded.attr, 656 NULL, 657 }; 658 ATTRIBUTE_GROUPS(net_class); 659 660 /* Show a given an attribute in the statistics group */ 661 static ssize_t netstat_show(const struct device *d, 662 struct device_attribute *attr, char *buf, 663 unsigned long offset) 664 { 665 struct net_device *dev = to_net_dev(d); 666 ssize_t ret = -EINVAL; 667 668 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 669 offset % sizeof(u64) != 0); 670 671 read_lock(&dev_base_lock); 672 if (dev_isalive(dev)) { 673 struct rtnl_link_stats64 temp; 674 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 675 676 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 677 } 678 read_unlock(&dev_base_lock); 679 return ret; 680 } 681 682 /* generate a read-only statistics attribute */ 683 #define NETSTAT_ENTRY(name) \ 684 static ssize_t name##_show(struct device *d, \ 685 struct device_attribute *attr, char *buf) \ 686 { \ 687 return netstat_show(d, attr, buf, \ 688 offsetof(struct rtnl_link_stats64, name)); \ 689 } \ 690 static DEVICE_ATTR_RO(name) 691 692 NETSTAT_ENTRY(rx_packets); 693 NETSTAT_ENTRY(tx_packets); 694 NETSTAT_ENTRY(rx_bytes); 695 NETSTAT_ENTRY(tx_bytes); 696 NETSTAT_ENTRY(rx_errors); 697 NETSTAT_ENTRY(tx_errors); 698 NETSTAT_ENTRY(rx_dropped); 699 NETSTAT_ENTRY(tx_dropped); 700 NETSTAT_ENTRY(multicast); 701 NETSTAT_ENTRY(collisions); 702 NETSTAT_ENTRY(rx_length_errors); 703 NETSTAT_ENTRY(rx_over_errors); 704 NETSTAT_ENTRY(rx_crc_errors); 705 NETSTAT_ENTRY(rx_frame_errors); 706 NETSTAT_ENTRY(rx_fifo_errors); 707 NETSTAT_ENTRY(rx_missed_errors); 708 NETSTAT_ENTRY(tx_aborted_errors); 709 NETSTAT_ENTRY(tx_carrier_errors); 710 NETSTAT_ENTRY(tx_fifo_errors); 711 NETSTAT_ENTRY(tx_heartbeat_errors); 712 NETSTAT_ENTRY(tx_window_errors); 713 NETSTAT_ENTRY(rx_compressed); 714 NETSTAT_ENTRY(tx_compressed); 715 NETSTAT_ENTRY(rx_nohandler); 716 717 static struct attribute *netstat_attrs[] __ro_after_init = { 718 &dev_attr_rx_packets.attr, 719 &dev_attr_tx_packets.attr, 720 &dev_attr_rx_bytes.attr, 721 &dev_attr_tx_bytes.attr, 722 &dev_attr_rx_errors.attr, 723 &dev_attr_tx_errors.attr, 724 &dev_attr_rx_dropped.attr, 725 &dev_attr_tx_dropped.attr, 726 &dev_attr_multicast.attr, 727 &dev_attr_collisions.attr, 728 &dev_attr_rx_length_errors.attr, 729 &dev_attr_rx_over_errors.attr, 730 &dev_attr_rx_crc_errors.attr, 731 &dev_attr_rx_frame_errors.attr, 732 &dev_attr_rx_fifo_errors.attr, 733 &dev_attr_rx_missed_errors.attr, 734 &dev_attr_tx_aborted_errors.attr, 735 &dev_attr_tx_carrier_errors.attr, 736 &dev_attr_tx_fifo_errors.attr, 737 &dev_attr_tx_heartbeat_errors.attr, 738 &dev_attr_tx_window_errors.attr, 739 &dev_attr_rx_compressed.attr, 740 &dev_attr_tx_compressed.attr, 741 &dev_attr_rx_nohandler.attr, 742 NULL 743 }; 744 745 static const struct attribute_group netstat_group = { 746 .name = "statistics", 747 .attrs = netstat_attrs, 748 }; 749 750 static struct attribute *wireless_attrs[] = { 751 NULL 752 }; 753 754 static const struct attribute_group wireless_group = { 755 .name = "wireless", 756 .attrs = wireless_attrs, 757 }; 758 759 static bool wireless_group_needed(struct net_device *ndev) 760 { 761 #if IS_ENABLED(CONFIG_CFG80211) 762 if (ndev->ieee80211_ptr) 763 return true; 764 #endif 765 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 766 if (ndev->wireless_handlers) 767 return true; 768 #endif 769 return false; 770 } 771 772 #else /* CONFIG_SYSFS */ 773 #define net_class_groups NULL 774 #endif /* CONFIG_SYSFS */ 775 776 #ifdef CONFIG_SYSFS 777 #define to_rx_queue_attr(_attr) \ 778 container_of(_attr, struct rx_queue_attribute, attr) 779 780 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 781 782 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 783 char *buf) 784 { 785 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 786 struct netdev_rx_queue *queue = to_rx_queue(kobj); 787 788 if (!attribute->show) 789 return -EIO; 790 791 return attribute->show(queue, buf); 792 } 793 794 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 795 const char *buf, size_t count) 796 { 797 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 798 struct netdev_rx_queue *queue = to_rx_queue(kobj); 799 800 if (!attribute->store) 801 return -EIO; 802 803 return attribute->store(queue, buf, count); 804 } 805 806 static const struct sysfs_ops rx_queue_sysfs_ops = { 807 .show = rx_queue_attr_show, 808 .store = rx_queue_attr_store, 809 }; 810 811 #ifdef CONFIG_RPS 812 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 813 { 814 struct rps_map *map; 815 cpumask_var_t mask; 816 int i, len; 817 818 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 819 return -ENOMEM; 820 821 rcu_read_lock(); 822 map = rcu_dereference(queue->rps_map); 823 if (map) 824 for (i = 0; i < map->len; i++) 825 cpumask_set_cpu(map->cpus[i], mask); 826 827 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask)); 828 rcu_read_unlock(); 829 free_cpumask_var(mask); 830 831 return len < PAGE_SIZE ? len : -EINVAL; 832 } 833 834 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue, 835 cpumask_var_t mask) 836 { 837 static DEFINE_MUTEX(rps_map_mutex); 838 struct rps_map *old_map, *map; 839 int cpu, i; 840 841 map = kzalloc(max_t(unsigned int, 842 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 843 GFP_KERNEL); 844 if (!map) 845 return -ENOMEM; 846 847 i = 0; 848 for_each_cpu_and(cpu, mask, cpu_online_mask) 849 map->cpus[i++] = cpu; 850 851 if (i) { 852 map->len = i; 853 } else { 854 kfree(map); 855 map = NULL; 856 } 857 858 mutex_lock(&rps_map_mutex); 859 old_map = rcu_dereference_protected(queue->rps_map, 860 mutex_is_locked(&rps_map_mutex)); 861 rcu_assign_pointer(queue->rps_map, map); 862 863 if (map) 864 static_branch_inc(&rps_needed); 865 if (old_map) 866 static_branch_dec(&rps_needed); 867 868 mutex_unlock(&rps_map_mutex); 869 870 if (old_map) 871 kfree_rcu(old_map, rcu); 872 return 0; 873 } 874 875 int rps_cpumask_housekeeping(struct cpumask *mask) 876 { 877 if (!cpumask_empty(mask)) { 878 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 879 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); 880 if (cpumask_empty(mask)) 881 return -EINVAL; 882 } 883 return 0; 884 } 885 886 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 887 const char *buf, size_t len) 888 { 889 cpumask_var_t mask; 890 int err; 891 892 if (!capable(CAP_NET_ADMIN)) 893 return -EPERM; 894 895 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 896 return -ENOMEM; 897 898 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 899 if (err) 900 goto out; 901 902 err = rps_cpumask_housekeeping(mask); 903 if (err) 904 goto out; 905 906 err = netdev_rx_queue_set_rps_mask(queue, mask); 907 908 out: 909 free_cpumask_var(mask); 910 return err ? : len; 911 } 912 913 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 914 char *buf) 915 { 916 struct rps_dev_flow_table *flow_table; 917 unsigned long val = 0; 918 919 rcu_read_lock(); 920 flow_table = rcu_dereference(queue->rps_flow_table); 921 if (flow_table) 922 val = (unsigned long)flow_table->mask + 1; 923 rcu_read_unlock(); 924 925 return sysfs_emit(buf, "%lu\n", val); 926 } 927 928 static void rps_dev_flow_table_release(struct rcu_head *rcu) 929 { 930 struct rps_dev_flow_table *table = container_of(rcu, 931 struct rps_dev_flow_table, rcu); 932 vfree(table); 933 } 934 935 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 936 const char *buf, size_t len) 937 { 938 unsigned long mask, count; 939 struct rps_dev_flow_table *table, *old_table; 940 static DEFINE_SPINLOCK(rps_dev_flow_lock); 941 int rc; 942 943 if (!capable(CAP_NET_ADMIN)) 944 return -EPERM; 945 946 rc = kstrtoul(buf, 0, &count); 947 if (rc < 0) 948 return rc; 949 950 if (count) { 951 mask = count - 1; 952 /* mask = roundup_pow_of_two(count) - 1; 953 * without overflows... 954 */ 955 while ((mask | (mask >> 1)) != mask) 956 mask |= (mask >> 1); 957 /* On 64 bit arches, must check mask fits in table->mask (u32), 958 * and on 32bit arches, must check 959 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 960 */ 961 #if BITS_PER_LONG > 32 962 if (mask > (unsigned long)(u32)mask) 963 return -EINVAL; 964 #else 965 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 966 / sizeof(struct rps_dev_flow)) { 967 /* Enforce a limit to prevent overflow */ 968 return -EINVAL; 969 } 970 #endif 971 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 972 if (!table) 973 return -ENOMEM; 974 975 table->mask = mask; 976 for (count = 0; count <= mask; count++) 977 table->flows[count].cpu = RPS_NO_CPU; 978 } else { 979 table = NULL; 980 } 981 982 spin_lock(&rps_dev_flow_lock); 983 old_table = rcu_dereference_protected(queue->rps_flow_table, 984 lockdep_is_held(&rps_dev_flow_lock)); 985 rcu_assign_pointer(queue->rps_flow_table, table); 986 spin_unlock(&rps_dev_flow_lock); 987 988 if (old_table) 989 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 990 991 return len; 992 } 993 994 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 995 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 996 997 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 998 = __ATTR(rps_flow_cnt, 0644, 999 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 1000 #endif /* CONFIG_RPS */ 1001 1002 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 1003 #ifdef CONFIG_RPS 1004 &rps_cpus_attribute.attr, 1005 &rps_dev_flow_table_cnt_attribute.attr, 1006 #endif 1007 NULL 1008 }; 1009 ATTRIBUTE_GROUPS(rx_queue_default); 1010 1011 static void rx_queue_release(struct kobject *kobj) 1012 { 1013 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1014 #ifdef CONFIG_RPS 1015 struct rps_map *map; 1016 struct rps_dev_flow_table *flow_table; 1017 1018 map = rcu_dereference_protected(queue->rps_map, 1); 1019 if (map) { 1020 RCU_INIT_POINTER(queue->rps_map, NULL); 1021 kfree_rcu(map, rcu); 1022 } 1023 1024 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1025 if (flow_table) { 1026 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1027 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1028 } 1029 #endif 1030 1031 memset(kobj, 0, sizeof(*kobj)); 1032 netdev_put(queue->dev, &queue->dev_tracker); 1033 } 1034 1035 static const void *rx_queue_namespace(const struct kobject *kobj) 1036 { 1037 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1038 struct device *dev = &queue->dev->dev; 1039 const void *ns = NULL; 1040 1041 if (dev->class && dev->class->ns_type) 1042 ns = dev->class->namespace(dev); 1043 1044 return ns; 1045 } 1046 1047 static void rx_queue_get_ownership(const struct kobject *kobj, 1048 kuid_t *uid, kgid_t *gid) 1049 { 1050 const struct net *net = rx_queue_namespace(kobj); 1051 1052 net_ns_get_ownership(net, uid, gid); 1053 } 1054 1055 static struct kobj_type rx_queue_ktype __ro_after_init = { 1056 .sysfs_ops = &rx_queue_sysfs_ops, 1057 .release = rx_queue_release, 1058 .default_groups = rx_queue_default_groups, 1059 .namespace = rx_queue_namespace, 1060 .get_ownership = rx_queue_get_ownership, 1061 }; 1062 1063 static int rx_queue_add_kobject(struct net_device *dev, int index) 1064 { 1065 struct netdev_rx_queue *queue = dev->_rx + index; 1066 struct kobject *kobj = &queue->kobj; 1067 int error = 0; 1068 1069 /* Kobject_put later will trigger rx_queue_release call which 1070 * decreases dev refcount: Take that reference here 1071 */ 1072 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1073 1074 kobj->kset = dev->queues_kset; 1075 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1076 "rx-%u", index); 1077 if (error) 1078 goto err; 1079 1080 if (dev->sysfs_rx_queue_group) { 1081 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1082 if (error) 1083 goto err; 1084 } 1085 1086 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL) 1087 if (!cpumask_empty(&rps_default_mask)) { 1088 error = netdev_rx_queue_set_rps_mask(queue, &rps_default_mask); 1089 if (error) 1090 goto err; 1091 } 1092 #endif 1093 kobject_uevent(kobj, KOBJ_ADD); 1094 1095 return error; 1096 1097 err: 1098 kobject_put(kobj); 1099 return error; 1100 } 1101 1102 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1103 kgid_t kgid) 1104 { 1105 struct netdev_rx_queue *queue = dev->_rx + index; 1106 struct kobject *kobj = &queue->kobj; 1107 int error; 1108 1109 error = sysfs_change_owner(kobj, kuid, kgid); 1110 if (error) 1111 return error; 1112 1113 if (dev->sysfs_rx_queue_group) 1114 error = sysfs_group_change_owner( 1115 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1116 1117 return error; 1118 } 1119 #endif /* CONFIG_SYSFS */ 1120 1121 int 1122 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1123 { 1124 #ifdef CONFIG_SYSFS 1125 int i; 1126 int error = 0; 1127 1128 #ifndef CONFIG_RPS 1129 if (!dev->sysfs_rx_queue_group) 1130 return 0; 1131 #endif 1132 for (i = old_num; i < new_num; i++) { 1133 error = rx_queue_add_kobject(dev, i); 1134 if (error) { 1135 new_num = old_num; 1136 break; 1137 } 1138 } 1139 1140 while (--i >= new_num) { 1141 struct kobject *kobj = &dev->_rx[i].kobj; 1142 1143 if (!refcount_read(&dev_net(dev)->ns.count)) 1144 kobj->uevent_suppress = 1; 1145 if (dev->sysfs_rx_queue_group) 1146 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1147 kobject_put(kobj); 1148 } 1149 1150 return error; 1151 #else 1152 return 0; 1153 #endif 1154 } 1155 1156 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1157 kuid_t kuid, kgid_t kgid) 1158 { 1159 #ifdef CONFIG_SYSFS 1160 int error = 0; 1161 int i; 1162 1163 #ifndef CONFIG_RPS 1164 if (!dev->sysfs_rx_queue_group) 1165 return 0; 1166 #endif 1167 for (i = 0; i < num; i++) { 1168 error = rx_queue_change_owner(dev, i, kuid, kgid); 1169 if (error) 1170 break; 1171 } 1172 1173 return error; 1174 #else 1175 return 0; 1176 #endif 1177 } 1178 1179 #ifdef CONFIG_SYSFS 1180 /* 1181 * netdev_queue sysfs structures and functions. 1182 */ 1183 struct netdev_queue_attribute { 1184 struct attribute attr; 1185 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1186 ssize_t (*store)(struct netdev_queue *queue, 1187 const char *buf, size_t len); 1188 }; 1189 #define to_netdev_queue_attr(_attr) \ 1190 container_of(_attr, struct netdev_queue_attribute, attr) 1191 1192 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1193 1194 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1195 struct attribute *attr, char *buf) 1196 { 1197 const struct netdev_queue_attribute *attribute 1198 = to_netdev_queue_attr(attr); 1199 struct netdev_queue *queue = to_netdev_queue(kobj); 1200 1201 if (!attribute->show) 1202 return -EIO; 1203 1204 return attribute->show(queue, buf); 1205 } 1206 1207 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1208 struct attribute *attr, 1209 const char *buf, size_t count) 1210 { 1211 const struct netdev_queue_attribute *attribute 1212 = to_netdev_queue_attr(attr); 1213 struct netdev_queue *queue = to_netdev_queue(kobj); 1214 1215 if (!attribute->store) 1216 return -EIO; 1217 1218 return attribute->store(queue, buf, count); 1219 } 1220 1221 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1222 .show = netdev_queue_attr_show, 1223 .store = netdev_queue_attr_store, 1224 }; 1225 1226 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1227 { 1228 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1229 1230 return sysfs_emit(buf, fmt_ulong, trans_timeout); 1231 } 1232 1233 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1234 { 1235 struct net_device *dev = queue->dev; 1236 unsigned int i; 1237 1238 i = queue - dev->_tx; 1239 BUG_ON(i >= dev->num_tx_queues); 1240 1241 return i; 1242 } 1243 1244 static ssize_t traffic_class_show(struct netdev_queue *queue, 1245 char *buf) 1246 { 1247 struct net_device *dev = queue->dev; 1248 int num_tc, tc; 1249 int index; 1250 1251 if (!netif_is_multiqueue(dev)) 1252 return -ENOENT; 1253 1254 if (!rtnl_trylock()) 1255 return restart_syscall(); 1256 1257 index = get_netdev_queue_index(queue); 1258 1259 /* If queue belongs to subordinate dev use its TC mapping */ 1260 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1261 1262 num_tc = dev->num_tc; 1263 tc = netdev_txq_to_tc(dev, index); 1264 1265 rtnl_unlock(); 1266 1267 if (tc < 0) 1268 return -EINVAL; 1269 1270 /* We can report the traffic class one of two ways: 1271 * Subordinate device traffic classes are reported with the traffic 1272 * class first, and then the subordinate class so for example TC0 on 1273 * subordinate device 2 will be reported as "0-2". If the queue 1274 * belongs to the root device it will be reported with just the 1275 * traffic class, so just "0" for TC 0 for example. 1276 */ 1277 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) : 1278 sysfs_emit(buf, "%d\n", tc); 1279 } 1280 1281 #ifdef CONFIG_XPS 1282 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1283 char *buf) 1284 { 1285 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate); 1286 } 1287 1288 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1289 const char *buf, size_t len) 1290 { 1291 struct net_device *dev = queue->dev; 1292 int err, index = get_netdev_queue_index(queue); 1293 u32 rate = 0; 1294 1295 if (!capable(CAP_NET_ADMIN)) 1296 return -EPERM; 1297 1298 /* The check is also done later; this helps returning early without 1299 * hitting the trylock/restart below. 1300 */ 1301 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1302 return -EOPNOTSUPP; 1303 1304 err = kstrtou32(buf, 10, &rate); 1305 if (err < 0) 1306 return err; 1307 1308 if (!rtnl_trylock()) 1309 return restart_syscall(); 1310 1311 err = -EOPNOTSUPP; 1312 if (dev->netdev_ops->ndo_set_tx_maxrate) 1313 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1314 1315 rtnl_unlock(); 1316 if (!err) { 1317 queue->tx_maxrate = rate; 1318 return len; 1319 } 1320 return err; 1321 } 1322 1323 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1324 = __ATTR_RW(tx_maxrate); 1325 #endif 1326 1327 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1328 = __ATTR_RO(tx_timeout); 1329 1330 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1331 = __ATTR_RO(traffic_class); 1332 1333 #ifdef CONFIG_BQL 1334 /* 1335 * Byte queue limits sysfs structures and functions. 1336 */ 1337 static ssize_t bql_show(char *buf, unsigned int value) 1338 { 1339 return sysfs_emit(buf, "%u\n", value); 1340 } 1341 1342 static ssize_t bql_set(const char *buf, const size_t count, 1343 unsigned int *pvalue) 1344 { 1345 unsigned int value; 1346 int err; 1347 1348 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1349 value = DQL_MAX_LIMIT; 1350 } else { 1351 err = kstrtouint(buf, 10, &value); 1352 if (err < 0) 1353 return err; 1354 if (value > DQL_MAX_LIMIT) 1355 return -EINVAL; 1356 } 1357 1358 *pvalue = value; 1359 1360 return count; 1361 } 1362 1363 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1364 char *buf) 1365 { 1366 struct dql *dql = &queue->dql; 1367 1368 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1369 } 1370 1371 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1372 const char *buf, size_t len) 1373 { 1374 struct dql *dql = &queue->dql; 1375 unsigned int value; 1376 int err; 1377 1378 err = kstrtouint(buf, 10, &value); 1379 if (err < 0) 1380 return err; 1381 1382 dql->slack_hold_time = msecs_to_jiffies(value); 1383 1384 return len; 1385 } 1386 1387 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1388 = __ATTR(hold_time, 0644, 1389 bql_show_hold_time, bql_set_hold_time); 1390 1391 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1392 char *buf) 1393 { 1394 struct dql *dql = &queue->dql; 1395 1396 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed); 1397 } 1398 1399 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1400 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1401 1402 #define BQL_ATTR(NAME, FIELD) \ 1403 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1404 char *buf) \ 1405 { \ 1406 return bql_show(buf, queue->dql.FIELD); \ 1407 } \ 1408 \ 1409 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1410 const char *buf, size_t len) \ 1411 { \ 1412 return bql_set(buf, len, &queue->dql.FIELD); \ 1413 } \ 1414 \ 1415 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1416 = __ATTR(NAME, 0644, \ 1417 bql_show_ ## NAME, bql_set_ ## NAME) 1418 1419 BQL_ATTR(limit, limit); 1420 BQL_ATTR(limit_max, max_limit); 1421 BQL_ATTR(limit_min, min_limit); 1422 1423 static struct attribute *dql_attrs[] __ro_after_init = { 1424 &bql_limit_attribute.attr, 1425 &bql_limit_max_attribute.attr, 1426 &bql_limit_min_attribute.attr, 1427 &bql_hold_time_attribute.attr, 1428 &bql_inflight_attribute.attr, 1429 NULL 1430 }; 1431 1432 static const struct attribute_group dql_group = { 1433 .name = "byte_queue_limits", 1434 .attrs = dql_attrs, 1435 }; 1436 #endif /* CONFIG_BQL */ 1437 1438 #ifdef CONFIG_XPS 1439 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1440 int tc, char *buf, enum xps_map_type type) 1441 { 1442 struct xps_dev_maps *dev_maps; 1443 unsigned long *mask; 1444 unsigned int nr_ids; 1445 int j, len; 1446 1447 rcu_read_lock(); 1448 dev_maps = rcu_dereference(dev->xps_maps[type]); 1449 1450 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1451 * when dev_maps hasn't been allocated yet, to be backward compatible. 1452 */ 1453 nr_ids = dev_maps ? dev_maps->nr_ids : 1454 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1455 1456 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1457 if (!mask) { 1458 rcu_read_unlock(); 1459 return -ENOMEM; 1460 } 1461 1462 if (!dev_maps || tc >= dev_maps->num_tc) 1463 goto out_no_maps; 1464 1465 for (j = 0; j < nr_ids; j++) { 1466 int i, tci = j * dev_maps->num_tc + tc; 1467 struct xps_map *map; 1468 1469 map = rcu_dereference(dev_maps->attr_map[tci]); 1470 if (!map) 1471 continue; 1472 1473 for (i = map->len; i--;) { 1474 if (map->queues[i] == index) { 1475 __set_bit(j, mask); 1476 break; 1477 } 1478 } 1479 } 1480 out_no_maps: 1481 rcu_read_unlock(); 1482 1483 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1484 bitmap_free(mask); 1485 1486 return len < PAGE_SIZE ? len : -EINVAL; 1487 } 1488 1489 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1490 { 1491 struct net_device *dev = queue->dev; 1492 unsigned int index; 1493 int len, tc; 1494 1495 if (!netif_is_multiqueue(dev)) 1496 return -ENOENT; 1497 1498 index = get_netdev_queue_index(queue); 1499 1500 if (!rtnl_trylock()) 1501 return restart_syscall(); 1502 1503 /* If queue belongs to subordinate dev use its map */ 1504 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1505 1506 tc = netdev_txq_to_tc(dev, index); 1507 if (tc < 0) { 1508 rtnl_unlock(); 1509 return -EINVAL; 1510 } 1511 1512 /* Make sure the subordinate device can't be freed */ 1513 get_device(&dev->dev); 1514 rtnl_unlock(); 1515 1516 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1517 1518 put_device(&dev->dev); 1519 return len; 1520 } 1521 1522 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1523 const char *buf, size_t len) 1524 { 1525 struct net_device *dev = queue->dev; 1526 unsigned int index; 1527 cpumask_var_t mask; 1528 int err; 1529 1530 if (!netif_is_multiqueue(dev)) 1531 return -ENOENT; 1532 1533 if (!capable(CAP_NET_ADMIN)) 1534 return -EPERM; 1535 1536 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1537 return -ENOMEM; 1538 1539 index = get_netdev_queue_index(queue); 1540 1541 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1542 if (err) { 1543 free_cpumask_var(mask); 1544 return err; 1545 } 1546 1547 if (!rtnl_trylock()) { 1548 free_cpumask_var(mask); 1549 return restart_syscall(); 1550 } 1551 1552 err = netif_set_xps_queue(dev, mask, index); 1553 rtnl_unlock(); 1554 1555 free_cpumask_var(mask); 1556 1557 return err ? : len; 1558 } 1559 1560 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1561 = __ATTR_RW(xps_cpus); 1562 1563 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1564 { 1565 struct net_device *dev = queue->dev; 1566 unsigned int index; 1567 int tc; 1568 1569 index = get_netdev_queue_index(queue); 1570 1571 if (!rtnl_trylock()) 1572 return restart_syscall(); 1573 1574 tc = netdev_txq_to_tc(dev, index); 1575 rtnl_unlock(); 1576 if (tc < 0) 1577 return -EINVAL; 1578 1579 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1580 } 1581 1582 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1583 size_t len) 1584 { 1585 struct net_device *dev = queue->dev; 1586 struct net *net = dev_net(dev); 1587 unsigned long *mask; 1588 unsigned int index; 1589 int err; 1590 1591 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1592 return -EPERM; 1593 1594 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1595 if (!mask) 1596 return -ENOMEM; 1597 1598 index = get_netdev_queue_index(queue); 1599 1600 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1601 if (err) { 1602 bitmap_free(mask); 1603 return err; 1604 } 1605 1606 if (!rtnl_trylock()) { 1607 bitmap_free(mask); 1608 return restart_syscall(); 1609 } 1610 1611 cpus_read_lock(); 1612 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1613 cpus_read_unlock(); 1614 1615 rtnl_unlock(); 1616 1617 bitmap_free(mask); 1618 return err ? : len; 1619 } 1620 1621 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1622 = __ATTR_RW(xps_rxqs); 1623 #endif /* CONFIG_XPS */ 1624 1625 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1626 &queue_trans_timeout.attr, 1627 &queue_traffic_class.attr, 1628 #ifdef CONFIG_XPS 1629 &xps_cpus_attribute.attr, 1630 &xps_rxqs_attribute.attr, 1631 &queue_tx_maxrate.attr, 1632 #endif 1633 NULL 1634 }; 1635 ATTRIBUTE_GROUPS(netdev_queue_default); 1636 1637 static void netdev_queue_release(struct kobject *kobj) 1638 { 1639 struct netdev_queue *queue = to_netdev_queue(kobj); 1640 1641 memset(kobj, 0, sizeof(*kobj)); 1642 netdev_put(queue->dev, &queue->dev_tracker); 1643 } 1644 1645 static const void *netdev_queue_namespace(const struct kobject *kobj) 1646 { 1647 struct netdev_queue *queue = to_netdev_queue(kobj); 1648 struct device *dev = &queue->dev->dev; 1649 const void *ns = NULL; 1650 1651 if (dev->class && dev->class->ns_type) 1652 ns = dev->class->namespace(dev); 1653 1654 return ns; 1655 } 1656 1657 static void netdev_queue_get_ownership(const struct kobject *kobj, 1658 kuid_t *uid, kgid_t *gid) 1659 { 1660 const struct net *net = netdev_queue_namespace(kobj); 1661 1662 net_ns_get_ownership(net, uid, gid); 1663 } 1664 1665 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1666 .sysfs_ops = &netdev_queue_sysfs_ops, 1667 .release = netdev_queue_release, 1668 .default_groups = netdev_queue_default_groups, 1669 .namespace = netdev_queue_namespace, 1670 .get_ownership = netdev_queue_get_ownership, 1671 }; 1672 1673 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1674 { 1675 struct netdev_queue *queue = dev->_tx + index; 1676 struct kobject *kobj = &queue->kobj; 1677 int error = 0; 1678 1679 /* Kobject_put later will trigger netdev_queue_release call 1680 * which decreases dev refcount: Take that reference here 1681 */ 1682 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1683 1684 kobj->kset = dev->queues_kset; 1685 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1686 "tx-%u", index); 1687 if (error) 1688 goto err; 1689 1690 #ifdef CONFIG_BQL 1691 error = sysfs_create_group(kobj, &dql_group); 1692 if (error) 1693 goto err; 1694 #endif 1695 1696 kobject_uevent(kobj, KOBJ_ADD); 1697 return 0; 1698 1699 err: 1700 kobject_put(kobj); 1701 return error; 1702 } 1703 1704 static int tx_queue_change_owner(struct net_device *ndev, int index, 1705 kuid_t kuid, kgid_t kgid) 1706 { 1707 struct netdev_queue *queue = ndev->_tx + index; 1708 struct kobject *kobj = &queue->kobj; 1709 int error; 1710 1711 error = sysfs_change_owner(kobj, kuid, kgid); 1712 if (error) 1713 return error; 1714 1715 #ifdef CONFIG_BQL 1716 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1717 #endif 1718 return error; 1719 } 1720 #endif /* CONFIG_SYSFS */ 1721 1722 int 1723 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1724 { 1725 #ifdef CONFIG_SYSFS 1726 int i; 1727 int error = 0; 1728 1729 /* Tx queue kobjects are allowed to be updated when a device is being 1730 * unregistered, but solely to remove queues from qdiscs. Any path 1731 * adding queues should be fixed. 1732 */ 1733 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 1734 "New queues can't be registered after device unregistration."); 1735 1736 for (i = old_num; i < new_num; i++) { 1737 error = netdev_queue_add_kobject(dev, i); 1738 if (error) { 1739 new_num = old_num; 1740 break; 1741 } 1742 } 1743 1744 while (--i >= new_num) { 1745 struct netdev_queue *queue = dev->_tx + i; 1746 1747 if (!refcount_read(&dev_net(dev)->ns.count)) 1748 queue->kobj.uevent_suppress = 1; 1749 #ifdef CONFIG_BQL 1750 sysfs_remove_group(&queue->kobj, &dql_group); 1751 #endif 1752 kobject_put(&queue->kobj); 1753 } 1754 1755 return error; 1756 #else 1757 return 0; 1758 #endif /* CONFIG_SYSFS */ 1759 } 1760 1761 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1762 kuid_t kuid, kgid_t kgid) 1763 { 1764 #ifdef CONFIG_SYSFS 1765 int error = 0; 1766 int i; 1767 1768 for (i = 0; i < num; i++) { 1769 error = tx_queue_change_owner(dev, i, kuid, kgid); 1770 if (error) 1771 break; 1772 } 1773 1774 return error; 1775 #else 1776 return 0; 1777 #endif /* CONFIG_SYSFS */ 1778 } 1779 1780 static int register_queue_kobjects(struct net_device *dev) 1781 { 1782 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1783 1784 #ifdef CONFIG_SYSFS 1785 dev->queues_kset = kset_create_and_add("queues", 1786 NULL, &dev->dev.kobj); 1787 if (!dev->queues_kset) 1788 return -ENOMEM; 1789 real_rx = dev->real_num_rx_queues; 1790 #endif 1791 real_tx = dev->real_num_tx_queues; 1792 1793 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1794 if (error) 1795 goto error; 1796 rxq = real_rx; 1797 1798 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1799 if (error) 1800 goto error; 1801 txq = real_tx; 1802 1803 return 0; 1804 1805 error: 1806 netdev_queue_update_kobjects(dev, txq, 0); 1807 net_rx_queue_update_kobjects(dev, rxq, 0); 1808 #ifdef CONFIG_SYSFS 1809 kset_unregister(dev->queues_kset); 1810 #endif 1811 return error; 1812 } 1813 1814 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1815 { 1816 int error = 0, real_rx = 0, real_tx = 0; 1817 1818 #ifdef CONFIG_SYSFS 1819 if (ndev->queues_kset) { 1820 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1821 if (error) 1822 return error; 1823 } 1824 real_rx = ndev->real_num_rx_queues; 1825 #endif 1826 real_tx = ndev->real_num_tx_queues; 1827 1828 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1829 if (error) 1830 return error; 1831 1832 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1833 if (error) 1834 return error; 1835 1836 return 0; 1837 } 1838 1839 static void remove_queue_kobjects(struct net_device *dev) 1840 { 1841 int real_rx = 0, real_tx = 0; 1842 1843 #ifdef CONFIG_SYSFS 1844 real_rx = dev->real_num_rx_queues; 1845 #endif 1846 real_tx = dev->real_num_tx_queues; 1847 1848 net_rx_queue_update_kobjects(dev, real_rx, 0); 1849 netdev_queue_update_kobjects(dev, real_tx, 0); 1850 1851 dev->real_num_rx_queues = 0; 1852 dev->real_num_tx_queues = 0; 1853 #ifdef CONFIG_SYSFS 1854 kset_unregister(dev->queues_kset); 1855 #endif 1856 } 1857 1858 static bool net_current_may_mount(void) 1859 { 1860 struct net *net = current->nsproxy->net_ns; 1861 1862 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1863 } 1864 1865 static void *net_grab_current_ns(void) 1866 { 1867 struct net *ns = current->nsproxy->net_ns; 1868 #ifdef CONFIG_NET_NS 1869 if (ns) 1870 refcount_inc(&ns->passive); 1871 #endif 1872 return ns; 1873 } 1874 1875 static const void *net_initial_ns(void) 1876 { 1877 return &init_net; 1878 } 1879 1880 static const void *net_netlink_ns(struct sock *sk) 1881 { 1882 return sock_net(sk); 1883 } 1884 1885 const struct kobj_ns_type_operations net_ns_type_operations = { 1886 .type = KOBJ_NS_TYPE_NET, 1887 .current_may_mount = net_current_may_mount, 1888 .grab_current_ns = net_grab_current_ns, 1889 .netlink_ns = net_netlink_ns, 1890 .initial_ns = net_initial_ns, 1891 .drop_ns = net_drop_ns, 1892 }; 1893 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1894 1895 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env) 1896 { 1897 const struct net_device *dev = to_net_dev(d); 1898 int retval; 1899 1900 /* pass interface to uevent. */ 1901 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1902 if (retval) 1903 goto exit; 1904 1905 /* pass ifindex to uevent. 1906 * ifindex is useful as it won't change (interface name may change) 1907 * and is what RtNetlink uses natively. 1908 */ 1909 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1910 1911 exit: 1912 return retval; 1913 } 1914 1915 /* 1916 * netdev_release -- destroy and free a dead device. 1917 * Called when last reference to device kobject is gone. 1918 */ 1919 static void netdev_release(struct device *d) 1920 { 1921 struct net_device *dev = to_net_dev(d); 1922 1923 BUG_ON(dev->reg_state != NETREG_RELEASED); 1924 1925 /* no need to wait for rcu grace period: 1926 * device is dead and about to be freed. 1927 */ 1928 kfree(rcu_access_pointer(dev->ifalias)); 1929 netdev_freemem(dev); 1930 } 1931 1932 static const void *net_namespace(const struct device *d) 1933 { 1934 const struct net_device *dev = to_net_dev(d); 1935 1936 return dev_net(dev); 1937 } 1938 1939 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid) 1940 { 1941 const struct net_device *dev = to_net_dev(d); 1942 const struct net *net = dev_net(dev); 1943 1944 net_ns_get_ownership(net, uid, gid); 1945 } 1946 1947 static struct class net_class __ro_after_init = { 1948 .name = "net", 1949 .dev_release = netdev_release, 1950 .dev_groups = net_class_groups, 1951 .dev_uevent = netdev_uevent, 1952 .ns_type = &net_ns_type_operations, 1953 .namespace = net_namespace, 1954 .get_ownership = net_get_ownership, 1955 }; 1956 1957 #ifdef CONFIG_OF 1958 static int of_dev_node_match(struct device *dev, const void *data) 1959 { 1960 for (; dev; dev = dev->parent) { 1961 if (dev->of_node == data) 1962 return 1; 1963 } 1964 1965 return 0; 1966 } 1967 1968 /* 1969 * of_find_net_device_by_node - lookup the net device for the device node 1970 * @np: OF device node 1971 * 1972 * Looks up the net_device structure corresponding with the device node. 1973 * If successful, returns a pointer to the net_device with the embedded 1974 * struct device refcount incremented by one, or NULL on failure. The 1975 * refcount must be dropped when done with the net_device. 1976 */ 1977 struct net_device *of_find_net_device_by_node(struct device_node *np) 1978 { 1979 struct device *dev; 1980 1981 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1982 if (!dev) 1983 return NULL; 1984 1985 return to_net_dev(dev); 1986 } 1987 EXPORT_SYMBOL(of_find_net_device_by_node); 1988 #endif 1989 1990 /* Delete sysfs entries but hold kobject reference until after all 1991 * netdev references are gone. 1992 */ 1993 void netdev_unregister_kobject(struct net_device *ndev) 1994 { 1995 struct device *dev = &ndev->dev; 1996 1997 if (!refcount_read(&dev_net(ndev)->ns.count)) 1998 dev_set_uevent_suppress(dev, 1); 1999 2000 kobject_get(&dev->kobj); 2001 2002 remove_queue_kobjects(ndev); 2003 2004 pm_runtime_set_memalloc_noio(dev, false); 2005 2006 device_del(dev); 2007 } 2008 2009 /* Create sysfs entries for network device. */ 2010 int netdev_register_kobject(struct net_device *ndev) 2011 { 2012 struct device *dev = &ndev->dev; 2013 const struct attribute_group **groups = ndev->sysfs_groups; 2014 int error = 0; 2015 2016 device_initialize(dev); 2017 dev->class = &net_class; 2018 dev->platform_data = ndev; 2019 dev->groups = groups; 2020 2021 dev_set_name(dev, "%s", ndev->name); 2022 2023 #ifdef CONFIG_SYSFS 2024 /* Allow for a device specific group */ 2025 if (*groups) 2026 groups++; 2027 2028 *groups++ = &netstat_group; 2029 2030 if (wireless_group_needed(ndev)) 2031 *groups++ = &wireless_group; 2032 #endif /* CONFIG_SYSFS */ 2033 2034 error = device_add(dev); 2035 if (error) 2036 return error; 2037 2038 error = register_queue_kobjects(ndev); 2039 if (error) { 2040 device_del(dev); 2041 return error; 2042 } 2043 2044 pm_runtime_set_memalloc_noio(dev, true); 2045 2046 return error; 2047 } 2048 2049 /* Change owner for sysfs entries when moving network devices across network 2050 * namespaces owned by different user namespaces. 2051 */ 2052 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2053 const struct net *net_new) 2054 { 2055 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2056 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2057 struct device *dev = &ndev->dev; 2058 int error; 2059 2060 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2061 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2062 2063 /* The network namespace was changed but the owning user namespace is 2064 * identical so there's no need to change the owner of sysfs entries. 2065 */ 2066 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2067 return 0; 2068 2069 error = device_change_owner(dev, new_uid, new_gid); 2070 if (error) 2071 return error; 2072 2073 error = queue_change_owner(ndev, new_uid, new_gid); 2074 if (error) 2075 return error; 2076 2077 return 0; 2078 } 2079 2080 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2081 const void *ns) 2082 { 2083 return class_create_file_ns(&net_class, class_attr, ns); 2084 } 2085 EXPORT_SYMBOL(netdev_class_create_file_ns); 2086 2087 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2088 const void *ns) 2089 { 2090 class_remove_file_ns(&net_class, class_attr, ns); 2091 } 2092 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2093 2094 int __init netdev_kobject_init(void) 2095 { 2096 kobj_ns_type_register(&net_ns_type_operations); 2097 return class_register(&net_class); 2098 } 2099