xref: /openbmc/linux/net/core/net-sysfs.c (revision 5388b581)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/nsproxy.h>
15 #include <net/sock.h>
16 #include <net/net_namespace.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 #include <linux/jiffies.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/cpu.h>
25 
26 #include "net-sysfs.h"
27 
28 #ifdef CONFIG_SYSFS
29 static const char fmt_hex[] = "%#x\n";
30 static const char fmt_dec[] = "%d\n";
31 static const char fmt_ulong[] = "%lu\n";
32 static const char fmt_u64[] = "%llu\n";
33 
34 static inline int dev_isalive(const struct net_device *dev)
35 {
36 	return dev->reg_state <= NETREG_REGISTERED;
37 }
38 
39 /* use same locking rules as GIF* ioctl's */
40 static ssize_t netdev_show(const struct device *dev,
41 			   struct device_attribute *attr, char *buf,
42 			   ssize_t (*format)(const struct net_device *, char *))
43 {
44 	struct net_device *ndev = to_net_dev(dev);
45 	ssize_t ret = -EINVAL;
46 
47 	read_lock(&dev_base_lock);
48 	if (dev_isalive(ndev))
49 		ret = (*format)(ndev, buf);
50 	read_unlock(&dev_base_lock);
51 
52 	return ret;
53 }
54 
55 /* generate a show function for simple field */
56 #define NETDEVICE_SHOW(field, format_string)				\
57 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
58 {									\
59 	return sprintf(buf, format_string, dev->field);			\
60 }									\
61 static ssize_t field##_show(struct device *dev,				\
62 			    struct device_attribute *attr, char *buf)	\
63 {									\
64 	return netdev_show(dev, attr, buf, format_##field);		\
65 }									\
66 
67 #define NETDEVICE_SHOW_RO(field, format_string)				\
68 NETDEVICE_SHOW(field, format_string);					\
69 static DEVICE_ATTR_RO(field)
70 
71 #define NETDEVICE_SHOW_RW(field, format_string)				\
72 NETDEVICE_SHOW(field, format_string);					\
73 static DEVICE_ATTR_RW(field)
74 
75 /* use same locking and permission rules as SIF* ioctl's */
76 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
77 			    const char *buf, size_t len,
78 			    int (*set)(struct net_device *, unsigned long))
79 {
80 	struct net_device *netdev = to_net_dev(dev);
81 	struct net *net = dev_net(netdev);
82 	unsigned long new;
83 	int ret = -EINVAL;
84 
85 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
86 		return -EPERM;
87 
88 	ret = kstrtoul(buf, 0, &new);
89 	if (ret)
90 		goto err;
91 
92 	if (!rtnl_trylock())
93 		return restart_syscall();
94 
95 	if (dev_isalive(netdev)) {
96 		ret = (*set)(netdev, new);
97 		if (ret == 0)
98 			ret = len;
99 	}
100 	rtnl_unlock();
101  err:
102 	return ret;
103 }
104 
105 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
106 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
107 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
108 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
109 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
110 NETDEVICE_SHOW_RO(type, fmt_dec);
111 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
112 
113 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
114 			   char *buf)
115 {
116 	struct net_device *ndev = to_net_dev(dev);
117 
118 	return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
119 }
120 static DEVICE_ATTR_RO(iflink);
121 
122 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
123 {
124 	return sprintf(buf, fmt_dec, dev->name_assign_type);
125 }
126 
127 static ssize_t name_assign_type_show(struct device *dev,
128 				     struct device_attribute *attr,
129 				     char *buf)
130 {
131 	struct net_device *ndev = to_net_dev(dev);
132 	ssize_t ret = -EINVAL;
133 
134 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
135 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
136 
137 	return ret;
138 }
139 static DEVICE_ATTR_RO(name_assign_type);
140 
141 /* use same locking rules as GIFHWADDR ioctl's */
142 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
143 			    char *buf)
144 {
145 	struct net_device *ndev = to_net_dev(dev);
146 	ssize_t ret = -EINVAL;
147 
148 	read_lock(&dev_base_lock);
149 	if (dev_isalive(ndev))
150 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
151 	read_unlock(&dev_base_lock);
152 	return ret;
153 }
154 static DEVICE_ATTR_RO(address);
155 
156 static ssize_t broadcast_show(struct device *dev,
157 			      struct device_attribute *attr, char *buf)
158 {
159 	struct net_device *ndev = to_net_dev(dev);
160 
161 	if (dev_isalive(ndev))
162 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
163 	return -EINVAL;
164 }
165 static DEVICE_ATTR_RO(broadcast);
166 
167 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
168 {
169 	if (!netif_running(dev))
170 		return -EINVAL;
171 	return dev_change_carrier(dev, (bool)new_carrier);
172 }
173 
174 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
175 			     const char *buf, size_t len)
176 {
177 	return netdev_store(dev, attr, buf, len, change_carrier);
178 }
179 
180 static ssize_t carrier_show(struct device *dev,
181 			    struct device_attribute *attr, char *buf)
182 {
183 	struct net_device *netdev = to_net_dev(dev);
184 
185 	if (netif_running(netdev))
186 		return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
187 
188 	return -EINVAL;
189 }
190 static DEVICE_ATTR_RW(carrier);
191 
192 static ssize_t speed_show(struct device *dev,
193 			  struct device_attribute *attr, char *buf)
194 {
195 	struct net_device *netdev = to_net_dev(dev);
196 	int ret = -EINVAL;
197 
198 	if (!rtnl_trylock())
199 		return restart_syscall();
200 
201 	if (netif_running(netdev)) {
202 		struct ethtool_link_ksettings cmd;
203 
204 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
205 			ret = sprintf(buf, fmt_dec, cmd.base.speed);
206 	}
207 	rtnl_unlock();
208 	return ret;
209 }
210 static DEVICE_ATTR_RO(speed);
211 
212 static ssize_t duplex_show(struct device *dev,
213 			   struct device_attribute *attr, char *buf)
214 {
215 	struct net_device *netdev = to_net_dev(dev);
216 	int ret = -EINVAL;
217 
218 	if (!rtnl_trylock())
219 		return restart_syscall();
220 
221 	if (netif_running(netdev)) {
222 		struct ethtool_link_ksettings cmd;
223 
224 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
225 			const char *duplex;
226 
227 			switch (cmd.base.duplex) {
228 			case DUPLEX_HALF:
229 				duplex = "half";
230 				break;
231 			case DUPLEX_FULL:
232 				duplex = "full";
233 				break;
234 			default:
235 				duplex = "unknown";
236 				break;
237 			}
238 			ret = sprintf(buf, "%s\n", duplex);
239 		}
240 	}
241 	rtnl_unlock();
242 	return ret;
243 }
244 static DEVICE_ATTR_RO(duplex);
245 
246 static ssize_t dormant_show(struct device *dev,
247 			    struct device_attribute *attr, char *buf)
248 {
249 	struct net_device *netdev = to_net_dev(dev);
250 
251 	if (netif_running(netdev))
252 		return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
253 
254 	return -EINVAL;
255 }
256 static DEVICE_ATTR_RO(dormant);
257 
258 static const char *const operstates[] = {
259 	"unknown",
260 	"notpresent", /* currently unused */
261 	"down",
262 	"lowerlayerdown",
263 	"testing", /* currently unused */
264 	"dormant",
265 	"up"
266 };
267 
268 static ssize_t operstate_show(struct device *dev,
269 			      struct device_attribute *attr, char *buf)
270 {
271 	const struct net_device *netdev = to_net_dev(dev);
272 	unsigned char operstate;
273 
274 	read_lock(&dev_base_lock);
275 	operstate = netdev->operstate;
276 	if (!netif_running(netdev))
277 		operstate = IF_OPER_DOWN;
278 	read_unlock(&dev_base_lock);
279 
280 	if (operstate >= ARRAY_SIZE(operstates))
281 		return -EINVAL; /* should not happen */
282 
283 	return sprintf(buf, "%s\n", operstates[operstate]);
284 }
285 static DEVICE_ATTR_RO(operstate);
286 
287 static ssize_t carrier_changes_show(struct device *dev,
288 				    struct device_attribute *attr,
289 				    char *buf)
290 {
291 	struct net_device *netdev = to_net_dev(dev);
292 
293 	return sprintf(buf, fmt_dec,
294 		       atomic_read(&netdev->carrier_up_count) +
295 		       atomic_read(&netdev->carrier_down_count));
296 }
297 static DEVICE_ATTR_RO(carrier_changes);
298 
299 static ssize_t carrier_up_count_show(struct device *dev,
300 				     struct device_attribute *attr,
301 				     char *buf)
302 {
303 	struct net_device *netdev = to_net_dev(dev);
304 
305 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
306 }
307 static DEVICE_ATTR_RO(carrier_up_count);
308 
309 static ssize_t carrier_down_count_show(struct device *dev,
310 				       struct device_attribute *attr,
311 				       char *buf)
312 {
313 	struct net_device *netdev = to_net_dev(dev);
314 
315 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
316 }
317 static DEVICE_ATTR_RO(carrier_down_count);
318 
319 /* read-write attributes */
320 
321 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
322 {
323 	return dev_set_mtu(dev, (int)new_mtu);
324 }
325 
326 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
327 			 const char *buf, size_t len)
328 {
329 	return netdev_store(dev, attr, buf, len, change_mtu);
330 }
331 NETDEVICE_SHOW_RW(mtu, fmt_dec);
332 
333 static int change_flags(struct net_device *dev, unsigned long new_flags)
334 {
335 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
336 }
337 
338 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
339 			   const char *buf, size_t len)
340 {
341 	return netdev_store(dev, attr, buf, len, change_flags);
342 }
343 NETDEVICE_SHOW_RW(flags, fmt_hex);
344 
345 static ssize_t tx_queue_len_store(struct device *dev,
346 				  struct device_attribute *attr,
347 				  const char *buf, size_t len)
348 {
349 	if (!capable(CAP_NET_ADMIN))
350 		return -EPERM;
351 
352 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
353 }
354 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
355 
356 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
357 {
358 	dev->gro_flush_timeout = val;
359 	return 0;
360 }
361 
362 static ssize_t gro_flush_timeout_store(struct device *dev,
363 				       struct device_attribute *attr,
364 				       const char *buf, size_t len)
365 {
366 	if (!capable(CAP_NET_ADMIN))
367 		return -EPERM;
368 
369 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
370 }
371 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
372 
373 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
374 			     const char *buf, size_t len)
375 {
376 	struct net_device *netdev = to_net_dev(dev);
377 	struct net *net = dev_net(netdev);
378 	size_t count = len;
379 	ssize_t ret = 0;
380 
381 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
382 		return -EPERM;
383 
384 	/* ignore trailing newline */
385 	if (len >  0 && buf[len - 1] == '\n')
386 		--count;
387 
388 	if (!rtnl_trylock())
389 		return restart_syscall();
390 
391 	if (dev_isalive(netdev)) {
392 		ret = dev_set_alias(netdev, buf, count);
393 		if (ret < 0)
394 			goto err;
395 		ret = len;
396 		netdev_state_change(netdev);
397 	}
398 err:
399 	rtnl_unlock();
400 
401 	return ret;
402 }
403 
404 static ssize_t ifalias_show(struct device *dev,
405 			    struct device_attribute *attr, char *buf)
406 {
407 	const struct net_device *netdev = to_net_dev(dev);
408 	char tmp[IFALIASZ];
409 	ssize_t ret = 0;
410 
411 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
412 	if (ret > 0)
413 		ret = sprintf(buf, "%s\n", tmp);
414 	return ret;
415 }
416 static DEVICE_ATTR_RW(ifalias);
417 
418 static int change_group(struct net_device *dev, unsigned long new_group)
419 {
420 	dev_set_group(dev, (int)new_group);
421 	return 0;
422 }
423 
424 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
425 			   const char *buf, size_t len)
426 {
427 	return netdev_store(dev, attr, buf, len, change_group);
428 }
429 NETDEVICE_SHOW(group, fmt_dec);
430 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
431 
432 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
433 {
434 	return dev_change_proto_down(dev, (bool)proto_down);
435 }
436 
437 static ssize_t proto_down_store(struct device *dev,
438 				struct device_attribute *attr,
439 				const char *buf, size_t len)
440 {
441 	return netdev_store(dev, attr, buf, len, change_proto_down);
442 }
443 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
444 
445 static ssize_t phys_port_id_show(struct device *dev,
446 				 struct device_attribute *attr, char *buf)
447 {
448 	struct net_device *netdev = to_net_dev(dev);
449 	ssize_t ret = -EINVAL;
450 
451 	if (!rtnl_trylock())
452 		return restart_syscall();
453 
454 	if (dev_isalive(netdev)) {
455 		struct netdev_phys_item_id ppid;
456 
457 		ret = dev_get_phys_port_id(netdev, &ppid);
458 		if (!ret)
459 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
460 	}
461 	rtnl_unlock();
462 
463 	return ret;
464 }
465 static DEVICE_ATTR_RO(phys_port_id);
466 
467 static ssize_t phys_port_name_show(struct device *dev,
468 				   struct device_attribute *attr, char *buf)
469 {
470 	struct net_device *netdev = to_net_dev(dev);
471 	ssize_t ret = -EINVAL;
472 
473 	if (!rtnl_trylock())
474 		return restart_syscall();
475 
476 	if (dev_isalive(netdev)) {
477 		char name[IFNAMSIZ];
478 
479 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
480 		if (!ret)
481 			ret = sprintf(buf, "%s\n", name);
482 	}
483 	rtnl_unlock();
484 
485 	return ret;
486 }
487 static DEVICE_ATTR_RO(phys_port_name);
488 
489 static ssize_t phys_switch_id_show(struct device *dev,
490 				   struct device_attribute *attr, char *buf)
491 {
492 	struct net_device *netdev = to_net_dev(dev);
493 	ssize_t ret = -EINVAL;
494 
495 	if (!rtnl_trylock())
496 		return restart_syscall();
497 
498 	if (dev_isalive(netdev)) {
499 		struct netdev_phys_item_id ppid = { };
500 
501 		ret = dev_get_port_parent_id(netdev, &ppid, false);
502 		if (!ret)
503 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
504 	}
505 	rtnl_unlock();
506 
507 	return ret;
508 }
509 static DEVICE_ATTR_RO(phys_switch_id);
510 
511 static struct attribute *net_class_attrs[] __ro_after_init = {
512 	&dev_attr_netdev_group.attr,
513 	&dev_attr_type.attr,
514 	&dev_attr_dev_id.attr,
515 	&dev_attr_dev_port.attr,
516 	&dev_attr_iflink.attr,
517 	&dev_attr_ifindex.attr,
518 	&dev_attr_name_assign_type.attr,
519 	&dev_attr_addr_assign_type.attr,
520 	&dev_attr_addr_len.attr,
521 	&dev_attr_link_mode.attr,
522 	&dev_attr_address.attr,
523 	&dev_attr_broadcast.attr,
524 	&dev_attr_speed.attr,
525 	&dev_attr_duplex.attr,
526 	&dev_attr_dormant.attr,
527 	&dev_attr_operstate.attr,
528 	&dev_attr_carrier_changes.attr,
529 	&dev_attr_ifalias.attr,
530 	&dev_attr_carrier.attr,
531 	&dev_attr_mtu.attr,
532 	&dev_attr_flags.attr,
533 	&dev_attr_tx_queue_len.attr,
534 	&dev_attr_gro_flush_timeout.attr,
535 	&dev_attr_phys_port_id.attr,
536 	&dev_attr_phys_port_name.attr,
537 	&dev_attr_phys_switch_id.attr,
538 	&dev_attr_proto_down.attr,
539 	&dev_attr_carrier_up_count.attr,
540 	&dev_attr_carrier_down_count.attr,
541 	NULL,
542 };
543 ATTRIBUTE_GROUPS(net_class);
544 
545 /* Show a given an attribute in the statistics group */
546 static ssize_t netstat_show(const struct device *d,
547 			    struct device_attribute *attr, char *buf,
548 			    unsigned long offset)
549 {
550 	struct net_device *dev = to_net_dev(d);
551 	ssize_t ret = -EINVAL;
552 
553 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
554 		offset % sizeof(u64) != 0);
555 
556 	read_lock(&dev_base_lock);
557 	if (dev_isalive(dev)) {
558 		struct rtnl_link_stats64 temp;
559 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
560 
561 		ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
562 	}
563 	read_unlock(&dev_base_lock);
564 	return ret;
565 }
566 
567 /* generate a read-only statistics attribute */
568 #define NETSTAT_ENTRY(name)						\
569 static ssize_t name##_show(struct device *d,				\
570 			   struct device_attribute *attr, char *buf)	\
571 {									\
572 	return netstat_show(d, attr, buf,				\
573 			    offsetof(struct rtnl_link_stats64, name));	\
574 }									\
575 static DEVICE_ATTR_RO(name)
576 
577 NETSTAT_ENTRY(rx_packets);
578 NETSTAT_ENTRY(tx_packets);
579 NETSTAT_ENTRY(rx_bytes);
580 NETSTAT_ENTRY(tx_bytes);
581 NETSTAT_ENTRY(rx_errors);
582 NETSTAT_ENTRY(tx_errors);
583 NETSTAT_ENTRY(rx_dropped);
584 NETSTAT_ENTRY(tx_dropped);
585 NETSTAT_ENTRY(multicast);
586 NETSTAT_ENTRY(collisions);
587 NETSTAT_ENTRY(rx_length_errors);
588 NETSTAT_ENTRY(rx_over_errors);
589 NETSTAT_ENTRY(rx_crc_errors);
590 NETSTAT_ENTRY(rx_frame_errors);
591 NETSTAT_ENTRY(rx_fifo_errors);
592 NETSTAT_ENTRY(rx_missed_errors);
593 NETSTAT_ENTRY(tx_aborted_errors);
594 NETSTAT_ENTRY(tx_carrier_errors);
595 NETSTAT_ENTRY(tx_fifo_errors);
596 NETSTAT_ENTRY(tx_heartbeat_errors);
597 NETSTAT_ENTRY(tx_window_errors);
598 NETSTAT_ENTRY(rx_compressed);
599 NETSTAT_ENTRY(tx_compressed);
600 NETSTAT_ENTRY(rx_nohandler);
601 
602 static struct attribute *netstat_attrs[] __ro_after_init = {
603 	&dev_attr_rx_packets.attr,
604 	&dev_attr_tx_packets.attr,
605 	&dev_attr_rx_bytes.attr,
606 	&dev_attr_tx_bytes.attr,
607 	&dev_attr_rx_errors.attr,
608 	&dev_attr_tx_errors.attr,
609 	&dev_attr_rx_dropped.attr,
610 	&dev_attr_tx_dropped.attr,
611 	&dev_attr_multicast.attr,
612 	&dev_attr_collisions.attr,
613 	&dev_attr_rx_length_errors.attr,
614 	&dev_attr_rx_over_errors.attr,
615 	&dev_attr_rx_crc_errors.attr,
616 	&dev_attr_rx_frame_errors.attr,
617 	&dev_attr_rx_fifo_errors.attr,
618 	&dev_attr_rx_missed_errors.attr,
619 	&dev_attr_tx_aborted_errors.attr,
620 	&dev_attr_tx_carrier_errors.attr,
621 	&dev_attr_tx_fifo_errors.attr,
622 	&dev_attr_tx_heartbeat_errors.attr,
623 	&dev_attr_tx_window_errors.attr,
624 	&dev_attr_rx_compressed.attr,
625 	&dev_attr_tx_compressed.attr,
626 	&dev_attr_rx_nohandler.attr,
627 	NULL
628 };
629 
630 static const struct attribute_group netstat_group = {
631 	.name  = "statistics",
632 	.attrs  = netstat_attrs,
633 };
634 
635 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
636 static struct attribute *wireless_attrs[] = {
637 	NULL
638 };
639 
640 static const struct attribute_group wireless_group = {
641 	.name = "wireless",
642 	.attrs = wireless_attrs,
643 };
644 #endif
645 
646 #else /* CONFIG_SYSFS */
647 #define net_class_groups	NULL
648 #endif /* CONFIG_SYSFS */
649 
650 #ifdef CONFIG_SYSFS
651 #define to_rx_queue_attr(_attr) \
652 	container_of(_attr, struct rx_queue_attribute, attr)
653 
654 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
655 
656 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
657 				  char *buf)
658 {
659 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
660 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
661 
662 	if (!attribute->show)
663 		return -EIO;
664 
665 	return attribute->show(queue, buf);
666 }
667 
668 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
669 				   const char *buf, size_t count)
670 {
671 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
672 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
673 
674 	if (!attribute->store)
675 		return -EIO;
676 
677 	return attribute->store(queue, buf, count);
678 }
679 
680 static const struct sysfs_ops rx_queue_sysfs_ops = {
681 	.show = rx_queue_attr_show,
682 	.store = rx_queue_attr_store,
683 };
684 
685 #ifdef CONFIG_RPS
686 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
687 {
688 	struct rps_map *map;
689 	cpumask_var_t mask;
690 	int i, len;
691 
692 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
693 		return -ENOMEM;
694 
695 	rcu_read_lock();
696 	map = rcu_dereference(queue->rps_map);
697 	if (map)
698 		for (i = 0; i < map->len; i++)
699 			cpumask_set_cpu(map->cpus[i], mask);
700 
701 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
702 	rcu_read_unlock();
703 	free_cpumask_var(mask);
704 
705 	return len < PAGE_SIZE ? len : -EINVAL;
706 }
707 
708 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
709 			     const char *buf, size_t len)
710 {
711 	struct rps_map *old_map, *map;
712 	cpumask_var_t mask;
713 	int err, cpu, i;
714 	static DEFINE_MUTEX(rps_map_mutex);
715 
716 	if (!capable(CAP_NET_ADMIN))
717 		return -EPERM;
718 
719 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
720 		return -ENOMEM;
721 
722 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
723 	if (err) {
724 		free_cpumask_var(mask);
725 		return err;
726 	}
727 
728 	map = kzalloc(max_t(unsigned int,
729 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
730 		      GFP_KERNEL);
731 	if (!map) {
732 		free_cpumask_var(mask);
733 		return -ENOMEM;
734 	}
735 
736 	i = 0;
737 	for_each_cpu_and(cpu, mask, cpu_online_mask)
738 		map->cpus[i++] = cpu;
739 
740 	if (i) {
741 		map->len = i;
742 	} else {
743 		kfree(map);
744 		map = NULL;
745 	}
746 
747 	mutex_lock(&rps_map_mutex);
748 	old_map = rcu_dereference_protected(queue->rps_map,
749 					    mutex_is_locked(&rps_map_mutex));
750 	rcu_assign_pointer(queue->rps_map, map);
751 
752 	if (map)
753 		static_branch_inc(&rps_needed);
754 	if (old_map)
755 		static_branch_dec(&rps_needed);
756 
757 	mutex_unlock(&rps_map_mutex);
758 
759 	if (old_map)
760 		kfree_rcu(old_map, rcu);
761 
762 	free_cpumask_var(mask);
763 	return len;
764 }
765 
766 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
767 					   char *buf)
768 {
769 	struct rps_dev_flow_table *flow_table;
770 	unsigned long val = 0;
771 
772 	rcu_read_lock();
773 	flow_table = rcu_dereference(queue->rps_flow_table);
774 	if (flow_table)
775 		val = (unsigned long)flow_table->mask + 1;
776 	rcu_read_unlock();
777 
778 	return sprintf(buf, "%lu\n", val);
779 }
780 
781 static void rps_dev_flow_table_release(struct rcu_head *rcu)
782 {
783 	struct rps_dev_flow_table *table = container_of(rcu,
784 	    struct rps_dev_flow_table, rcu);
785 	vfree(table);
786 }
787 
788 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
789 					    const char *buf, size_t len)
790 {
791 	unsigned long mask, count;
792 	struct rps_dev_flow_table *table, *old_table;
793 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
794 	int rc;
795 
796 	if (!capable(CAP_NET_ADMIN))
797 		return -EPERM;
798 
799 	rc = kstrtoul(buf, 0, &count);
800 	if (rc < 0)
801 		return rc;
802 
803 	if (count) {
804 		mask = count - 1;
805 		/* mask = roundup_pow_of_two(count) - 1;
806 		 * without overflows...
807 		 */
808 		while ((mask | (mask >> 1)) != mask)
809 			mask |= (mask >> 1);
810 		/* On 64 bit arches, must check mask fits in table->mask (u32),
811 		 * and on 32bit arches, must check
812 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
813 		 */
814 #if BITS_PER_LONG > 32
815 		if (mask > (unsigned long)(u32)mask)
816 			return -EINVAL;
817 #else
818 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
819 				/ sizeof(struct rps_dev_flow)) {
820 			/* Enforce a limit to prevent overflow */
821 			return -EINVAL;
822 		}
823 #endif
824 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
825 		if (!table)
826 			return -ENOMEM;
827 
828 		table->mask = mask;
829 		for (count = 0; count <= mask; count++)
830 			table->flows[count].cpu = RPS_NO_CPU;
831 	} else {
832 		table = NULL;
833 	}
834 
835 	spin_lock(&rps_dev_flow_lock);
836 	old_table = rcu_dereference_protected(queue->rps_flow_table,
837 					      lockdep_is_held(&rps_dev_flow_lock));
838 	rcu_assign_pointer(queue->rps_flow_table, table);
839 	spin_unlock(&rps_dev_flow_lock);
840 
841 	if (old_table)
842 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
843 
844 	return len;
845 }
846 
847 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
848 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
849 
850 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
851 	= __ATTR(rps_flow_cnt, 0644,
852 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
853 #endif /* CONFIG_RPS */
854 
855 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
856 #ifdef CONFIG_RPS
857 	&rps_cpus_attribute.attr,
858 	&rps_dev_flow_table_cnt_attribute.attr,
859 #endif
860 	NULL
861 };
862 ATTRIBUTE_GROUPS(rx_queue_default);
863 
864 static void rx_queue_release(struct kobject *kobj)
865 {
866 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
867 #ifdef CONFIG_RPS
868 	struct rps_map *map;
869 	struct rps_dev_flow_table *flow_table;
870 
871 	map = rcu_dereference_protected(queue->rps_map, 1);
872 	if (map) {
873 		RCU_INIT_POINTER(queue->rps_map, NULL);
874 		kfree_rcu(map, rcu);
875 	}
876 
877 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
878 	if (flow_table) {
879 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
880 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
881 	}
882 #endif
883 
884 	memset(kobj, 0, sizeof(*kobj));
885 	dev_put(queue->dev);
886 }
887 
888 static const void *rx_queue_namespace(struct kobject *kobj)
889 {
890 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
891 	struct device *dev = &queue->dev->dev;
892 	const void *ns = NULL;
893 
894 	if (dev->class && dev->class->ns_type)
895 		ns = dev->class->namespace(dev);
896 
897 	return ns;
898 }
899 
900 static void rx_queue_get_ownership(struct kobject *kobj,
901 				   kuid_t *uid, kgid_t *gid)
902 {
903 	const struct net *net = rx_queue_namespace(kobj);
904 
905 	net_ns_get_ownership(net, uid, gid);
906 }
907 
908 static struct kobj_type rx_queue_ktype __ro_after_init = {
909 	.sysfs_ops = &rx_queue_sysfs_ops,
910 	.release = rx_queue_release,
911 	.default_groups = rx_queue_default_groups,
912 	.namespace = rx_queue_namespace,
913 	.get_ownership = rx_queue_get_ownership,
914 };
915 
916 static int rx_queue_add_kobject(struct net_device *dev, int index)
917 {
918 	struct netdev_rx_queue *queue = dev->_rx + index;
919 	struct kobject *kobj = &queue->kobj;
920 	int error = 0;
921 
922 	/* Kobject_put later will trigger rx_queue_release call which
923 	 * decreases dev refcount: Take that reference here
924 	 */
925 	dev_hold(queue->dev);
926 
927 	kobj->kset = dev->queues_kset;
928 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
929 				     "rx-%u", index);
930 	if (error)
931 		goto err;
932 
933 	if (dev->sysfs_rx_queue_group) {
934 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
935 		if (error)
936 			goto err;
937 	}
938 
939 	kobject_uevent(kobj, KOBJ_ADD);
940 
941 	return error;
942 
943 err:
944 	kobject_put(kobj);
945 	return error;
946 }
947 #endif /* CONFIG_SYSFS */
948 
949 int
950 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
951 {
952 #ifdef CONFIG_SYSFS
953 	int i;
954 	int error = 0;
955 
956 #ifndef CONFIG_RPS
957 	if (!dev->sysfs_rx_queue_group)
958 		return 0;
959 #endif
960 	for (i = old_num; i < new_num; i++) {
961 		error = rx_queue_add_kobject(dev, i);
962 		if (error) {
963 			new_num = old_num;
964 			break;
965 		}
966 	}
967 
968 	while (--i >= new_num) {
969 		struct kobject *kobj = &dev->_rx[i].kobj;
970 
971 		if (!refcount_read(&dev_net(dev)->count))
972 			kobj->uevent_suppress = 1;
973 		if (dev->sysfs_rx_queue_group)
974 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
975 		kobject_put(kobj);
976 	}
977 
978 	return error;
979 #else
980 	return 0;
981 #endif
982 }
983 
984 #ifdef CONFIG_SYSFS
985 /*
986  * netdev_queue sysfs structures and functions.
987  */
988 struct netdev_queue_attribute {
989 	struct attribute attr;
990 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
991 	ssize_t (*store)(struct netdev_queue *queue,
992 			 const char *buf, size_t len);
993 };
994 #define to_netdev_queue_attr(_attr) \
995 	container_of(_attr, struct netdev_queue_attribute, attr)
996 
997 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
998 
999 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1000 				      struct attribute *attr, char *buf)
1001 {
1002 	const struct netdev_queue_attribute *attribute
1003 		= to_netdev_queue_attr(attr);
1004 	struct netdev_queue *queue = to_netdev_queue(kobj);
1005 
1006 	if (!attribute->show)
1007 		return -EIO;
1008 
1009 	return attribute->show(queue, buf);
1010 }
1011 
1012 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1013 				       struct attribute *attr,
1014 				       const char *buf, size_t count)
1015 {
1016 	const struct netdev_queue_attribute *attribute
1017 		= to_netdev_queue_attr(attr);
1018 	struct netdev_queue *queue = to_netdev_queue(kobj);
1019 
1020 	if (!attribute->store)
1021 		return -EIO;
1022 
1023 	return attribute->store(queue, buf, count);
1024 }
1025 
1026 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1027 	.show = netdev_queue_attr_show,
1028 	.store = netdev_queue_attr_store,
1029 };
1030 
1031 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1032 {
1033 	unsigned long trans_timeout;
1034 
1035 	spin_lock_irq(&queue->_xmit_lock);
1036 	trans_timeout = queue->trans_timeout;
1037 	spin_unlock_irq(&queue->_xmit_lock);
1038 
1039 	return sprintf(buf, "%lu", trans_timeout);
1040 }
1041 
1042 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1043 {
1044 	struct net_device *dev = queue->dev;
1045 	unsigned int i;
1046 
1047 	i = queue - dev->_tx;
1048 	BUG_ON(i >= dev->num_tx_queues);
1049 
1050 	return i;
1051 }
1052 
1053 static ssize_t traffic_class_show(struct netdev_queue *queue,
1054 				  char *buf)
1055 {
1056 	struct net_device *dev = queue->dev;
1057 	int index;
1058 	int tc;
1059 
1060 	if (!netif_is_multiqueue(dev))
1061 		return -ENOENT;
1062 
1063 	index = get_netdev_queue_index(queue);
1064 
1065 	/* If queue belongs to subordinate dev use its TC mapping */
1066 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1067 
1068 	tc = netdev_txq_to_tc(dev, index);
1069 	if (tc < 0)
1070 		return -EINVAL;
1071 
1072 	/* We can report the traffic class one of two ways:
1073 	 * Subordinate device traffic classes are reported with the traffic
1074 	 * class first, and then the subordinate class so for example TC0 on
1075 	 * subordinate device 2 will be reported as "0-2". If the queue
1076 	 * belongs to the root device it will be reported with just the
1077 	 * traffic class, so just "0" for TC 0 for example.
1078 	 */
1079 	return dev->num_tc < 0 ? sprintf(buf, "%u%d\n", tc, dev->num_tc) :
1080 				 sprintf(buf, "%u\n", tc);
1081 }
1082 
1083 #ifdef CONFIG_XPS
1084 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1085 			       char *buf)
1086 {
1087 	return sprintf(buf, "%lu\n", queue->tx_maxrate);
1088 }
1089 
1090 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1091 				const char *buf, size_t len)
1092 {
1093 	struct net_device *dev = queue->dev;
1094 	int err, index = get_netdev_queue_index(queue);
1095 	u32 rate = 0;
1096 
1097 	if (!capable(CAP_NET_ADMIN))
1098 		return -EPERM;
1099 
1100 	err = kstrtou32(buf, 10, &rate);
1101 	if (err < 0)
1102 		return err;
1103 
1104 	if (!rtnl_trylock())
1105 		return restart_syscall();
1106 
1107 	err = -EOPNOTSUPP;
1108 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1109 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1110 
1111 	rtnl_unlock();
1112 	if (!err) {
1113 		queue->tx_maxrate = rate;
1114 		return len;
1115 	}
1116 	return err;
1117 }
1118 
1119 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1120 	= __ATTR_RW(tx_maxrate);
1121 #endif
1122 
1123 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1124 	= __ATTR_RO(tx_timeout);
1125 
1126 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1127 	= __ATTR_RO(traffic_class);
1128 
1129 #ifdef CONFIG_BQL
1130 /*
1131  * Byte queue limits sysfs structures and functions.
1132  */
1133 static ssize_t bql_show(char *buf, unsigned int value)
1134 {
1135 	return sprintf(buf, "%u\n", value);
1136 }
1137 
1138 static ssize_t bql_set(const char *buf, const size_t count,
1139 		       unsigned int *pvalue)
1140 {
1141 	unsigned int value;
1142 	int err;
1143 
1144 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1145 		value = DQL_MAX_LIMIT;
1146 	} else {
1147 		err = kstrtouint(buf, 10, &value);
1148 		if (err < 0)
1149 			return err;
1150 		if (value > DQL_MAX_LIMIT)
1151 			return -EINVAL;
1152 	}
1153 
1154 	*pvalue = value;
1155 
1156 	return count;
1157 }
1158 
1159 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1160 				  char *buf)
1161 {
1162 	struct dql *dql = &queue->dql;
1163 
1164 	return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1165 }
1166 
1167 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1168 				 const char *buf, size_t len)
1169 {
1170 	struct dql *dql = &queue->dql;
1171 	unsigned int value;
1172 	int err;
1173 
1174 	err = kstrtouint(buf, 10, &value);
1175 	if (err < 0)
1176 		return err;
1177 
1178 	dql->slack_hold_time = msecs_to_jiffies(value);
1179 
1180 	return len;
1181 }
1182 
1183 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1184 	= __ATTR(hold_time, 0644,
1185 		 bql_show_hold_time, bql_set_hold_time);
1186 
1187 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1188 				 char *buf)
1189 {
1190 	struct dql *dql = &queue->dql;
1191 
1192 	return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1193 }
1194 
1195 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1196 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1197 
1198 #define BQL_ATTR(NAME, FIELD)						\
1199 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1200 				 char *buf)				\
1201 {									\
1202 	return bql_show(buf, queue->dql.FIELD);				\
1203 }									\
1204 									\
1205 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1206 				const char *buf, size_t len)		\
1207 {									\
1208 	return bql_set(buf, len, &queue->dql.FIELD);			\
1209 }									\
1210 									\
1211 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1212 	= __ATTR(NAME, 0644,				\
1213 		 bql_show_ ## NAME, bql_set_ ## NAME)
1214 
1215 BQL_ATTR(limit, limit);
1216 BQL_ATTR(limit_max, max_limit);
1217 BQL_ATTR(limit_min, min_limit);
1218 
1219 static struct attribute *dql_attrs[] __ro_after_init = {
1220 	&bql_limit_attribute.attr,
1221 	&bql_limit_max_attribute.attr,
1222 	&bql_limit_min_attribute.attr,
1223 	&bql_hold_time_attribute.attr,
1224 	&bql_inflight_attribute.attr,
1225 	NULL
1226 };
1227 
1228 static const struct attribute_group dql_group = {
1229 	.name  = "byte_queue_limits",
1230 	.attrs  = dql_attrs,
1231 };
1232 #endif /* CONFIG_BQL */
1233 
1234 #ifdef CONFIG_XPS
1235 static ssize_t xps_cpus_show(struct netdev_queue *queue,
1236 			     char *buf)
1237 {
1238 	struct net_device *dev = queue->dev;
1239 	int cpu, len, num_tc = 1, tc = 0;
1240 	struct xps_dev_maps *dev_maps;
1241 	cpumask_var_t mask;
1242 	unsigned long index;
1243 
1244 	if (!netif_is_multiqueue(dev))
1245 		return -ENOENT;
1246 
1247 	index = get_netdev_queue_index(queue);
1248 
1249 	if (dev->num_tc) {
1250 		/* Do not allow XPS on subordinate device directly */
1251 		num_tc = dev->num_tc;
1252 		if (num_tc < 0)
1253 			return -EINVAL;
1254 
1255 		/* If queue belongs to subordinate dev use its map */
1256 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1257 
1258 		tc = netdev_txq_to_tc(dev, index);
1259 		if (tc < 0)
1260 			return -EINVAL;
1261 	}
1262 
1263 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
1264 		return -ENOMEM;
1265 
1266 	rcu_read_lock();
1267 	dev_maps = rcu_dereference(dev->xps_cpus_map);
1268 	if (dev_maps) {
1269 		for_each_possible_cpu(cpu) {
1270 			int i, tci = cpu * num_tc + tc;
1271 			struct xps_map *map;
1272 
1273 			map = rcu_dereference(dev_maps->attr_map[tci]);
1274 			if (!map)
1275 				continue;
1276 
1277 			for (i = map->len; i--;) {
1278 				if (map->queues[i] == index) {
1279 					cpumask_set_cpu(cpu, mask);
1280 					break;
1281 				}
1282 			}
1283 		}
1284 	}
1285 	rcu_read_unlock();
1286 
1287 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
1288 	free_cpumask_var(mask);
1289 	return len < PAGE_SIZE ? len : -EINVAL;
1290 }
1291 
1292 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1293 			      const char *buf, size_t len)
1294 {
1295 	struct net_device *dev = queue->dev;
1296 	unsigned long index;
1297 	cpumask_var_t mask;
1298 	int err;
1299 
1300 	if (!netif_is_multiqueue(dev))
1301 		return -ENOENT;
1302 
1303 	if (!capable(CAP_NET_ADMIN))
1304 		return -EPERM;
1305 
1306 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1307 		return -ENOMEM;
1308 
1309 	index = get_netdev_queue_index(queue);
1310 
1311 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1312 	if (err) {
1313 		free_cpumask_var(mask);
1314 		return err;
1315 	}
1316 
1317 	err = netif_set_xps_queue(dev, mask, index);
1318 
1319 	free_cpumask_var(mask);
1320 
1321 	return err ? : len;
1322 }
1323 
1324 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1325 	= __ATTR_RW(xps_cpus);
1326 
1327 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1328 {
1329 	struct net_device *dev = queue->dev;
1330 	struct xps_dev_maps *dev_maps;
1331 	unsigned long *mask, index;
1332 	int j, len, num_tc = 1, tc = 0;
1333 
1334 	index = get_netdev_queue_index(queue);
1335 
1336 	if (dev->num_tc) {
1337 		num_tc = dev->num_tc;
1338 		tc = netdev_txq_to_tc(dev, index);
1339 		if (tc < 0)
1340 			return -EINVAL;
1341 	}
1342 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1343 	if (!mask)
1344 		return -ENOMEM;
1345 
1346 	rcu_read_lock();
1347 	dev_maps = rcu_dereference(dev->xps_rxqs_map);
1348 	if (!dev_maps)
1349 		goto out_no_maps;
1350 
1351 	for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues),
1352 	     j < dev->num_rx_queues;) {
1353 		int i, tci = j * num_tc + tc;
1354 		struct xps_map *map;
1355 
1356 		map = rcu_dereference(dev_maps->attr_map[tci]);
1357 		if (!map)
1358 			continue;
1359 
1360 		for (i = map->len; i--;) {
1361 			if (map->queues[i] == index) {
1362 				set_bit(j, mask);
1363 				break;
1364 			}
1365 		}
1366 	}
1367 out_no_maps:
1368 	rcu_read_unlock();
1369 
1370 	len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues);
1371 	bitmap_free(mask);
1372 
1373 	return len < PAGE_SIZE ? len : -EINVAL;
1374 }
1375 
1376 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1377 			      size_t len)
1378 {
1379 	struct net_device *dev = queue->dev;
1380 	struct net *net = dev_net(dev);
1381 	unsigned long *mask, index;
1382 	int err;
1383 
1384 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1385 		return -EPERM;
1386 
1387 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1388 	if (!mask)
1389 		return -ENOMEM;
1390 
1391 	index = get_netdev_queue_index(queue);
1392 
1393 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1394 	if (err) {
1395 		bitmap_free(mask);
1396 		return err;
1397 	}
1398 
1399 	cpus_read_lock();
1400 	err = __netif_set_xps_queue(dev, mask, index, true);
1401 	cpus_read_unlock();
1402 
1403 	bitmap_free(mask);
1404 	return err ? : len;
1405 }
1406 
1407 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1408 	= __ATTR_RW(xps_rxqs);
1409 #endif /* CONFIG_XPS */
1410 
1411 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1412 	&queue_trans_timeout.attr,
1413 	&queue_traffic_class.attr,
1414 #ifdef CONFIG_XPS
1415 	&xps_cpus_attribute.attr,
1416 	&xps_rxqs_attribute.attr,
1417 	&queue_tx_maxrate.attr,
1418 #endif
1419 	NULL
1420 };
1421 ATTRIBUTE_GROUPS(netdev_queue_default);
1422 
1423 static void netdev_queue_release(struct kobject *kobj)
1424 {
1425 	struct netdev_queue *queue = to_netdev_queue(kobj);
1426 
1427 	memset(kobj, 0, sizeof(*kobj));
1428 	dev_put(queue->dev);
1429 }
1430 
1431 static const void *netdev_queue_namespace(struct kobject *kobj)
1432 {
1433 	struct netdev_queue *queue = to_netdev_queue(kobj);
1434 	struct device *dev = &queue->dev->dev;
1435 	const void *ns = NULL;
1436 
1437 	if (dev->class && dev->class->ns_type)
1438 		ns = dev->class->namespace(dev);
1439 
1440 	return ns;
1441 }
1442 
1443 static void netdev_queue_get_ownership(struct kobject *kobj,
1444 				       kuid_t *uid, kgid_t *gid)
1445 {
1446 	const struct net *net = netdev_queue_namespace(kobj);
1447 
1448 	net_ns_get_ownership(net, uid, gid);
1449 }
1450 
1451 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1452 	.sysfs_ops = &netdev_queue_sysfs_ops,
1453 	.release = netdev_queue_release,
1454 	.default_groups = netdev_queue_default_groups,
1455 	.namespace = netdev_queue_namespace,
1456 	.get_ownership = netdev_queue_get_ownership,
1457 };
1458 
1459 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1460 {
1461 	struct netdev_queue *queue = dev->_tx + index;
1462 	struct kobject *kobj = &queue->kobj;
1463 	int error = 0;
1464 
1465 	/* Kobject_put later will trigger netdev_queue_release call
1466 	 * which decreases dev refcount: Take that reference here
1467 	 */
1468 	dev_hold(queue->dev);
1469 
1470 	kobj->kset = dev->queues_kset;
1471 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1472 				     "tx-%u", index);
1473 	if (error)
1474 		goto err;
1475 
1476 #ifdef CONFIG_BQL
1477 	error = sysfs_create_group(kobj, &dql_group);
1478 	if (error)
1479 		goto err;
1480 #endif
1481 
1482 	kobject_uevent(kobj, KOBJ_ADD);
1483 	return 0;
1484 
1485 err:
1486 	kobject_put(kobj);
1487 	return error;
1488 }
1489 #endif /* CONFIG_SYSFS */
1490 
1491 int
1492 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1493 {
1494 #ifdef CONFIG_SYSFS
1495 	int i;
1496 	int error = 0;
1497 
1498 	for (i = old_num; i < new_num; i++) {
1499 		error = netdev_queue_add_kobject(dev, i);
1500 		if (error) {
1501 			new_num = old_num;
1502 			break;
1503 		}
1504 	}
1505 
1506 	while (--i >= new_num) {
1507 		struct netdev_queue *queue = dev->_tx + i;
1508 
1509 		if (!refcount_read(&dev_net(dev)->count))
1510 			queue->kobj.uevent_suppress = 1;
1511 #ifdef CONFIG_BQL
1512 		sysfs_remove_group(&queue->kobj, &dql_group);
1513 #endif
1514 		kobject_put(&queue->kobj);
1515 	}
1516 
1517 	return error;
1518 #else
1519 	return 0;
1520 #endif /* CONFIG_SYSFS */
1521 }
1522 
1523 static int register_queue_kobjects(struct net_device *dev)
1524 {
1525 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1526 
1527 #ifdef CONFIG_SYSFS
1528 	dev->queues_kset = kset_create_and_add("queues",
1529 					       NULL, &dev->dev.kobj);
1530 	if (!dev->queues_kset)
1531 		return -ENOMEM;
1532 	real_rx = dev->real_num_rx_queues;
1533 #endif
1534 	real_tx = dev->real_num_tx_queues;
1535 
1536 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1537 	if (error)
1538 		goto error;
1539 	rxq = real_rx;
1540 
1541 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1542 	if (error)
1543 		goto error;
1544 	txq = real_tx;
1545 
1546 	return 0;
1547 
1548 error:
1549 	netdev_queue_update_kobjects(dev, txq, 0);
1550 	net_rx_queue_update_kobjects(dev, rxq, 0);
1551 #ifdef CONFIG_SYSFS
1552 	kset_unregister(dev->queues_kset);
1553 #endif
1554 	return error;
1555 }
1556 
1557 static void remove_queue_kobjects(struct net_device *dev)
1558 {
1559 	int real_rx = 0, real_tx = 0;
1560 
1561 #ifdef CONFIG_SYSFS
1562 	real_rx = dev->real_num_rx_queues;
1563 #endif
1564 	real_tx = dev->real_num_tx_queues;
1565 
1566 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1567 	netdev_queue_update_kobjects(dev, real_tx, 0);
1568 #ifdef CONFIG_SYSFS
1569 	kset_unregister(dev->queues_kset);
1570 #endif
1571 }
1572 
1573 static bool net_current_may_mount(void)
1574 {
1575 	struct net *net = current->nsproxy->net_ns;
1576 
1577 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1578 }
1579 
1580 static void *net_grab_current_ns(void)
1581 {
1582 	struct net *ns = current->nsproxy->net_ns;
1583 #ifdef CONFIG_NET_NS
1584 	if (ns)
1585 		refcount_inc(&ns->passive);
1586 #endif
1587 	return ns;
1588 }
1589 
1590 static const void *net_initial_ns(void)
1591 {
1592 	return &init_net;
1593 }
1594 
1595 static const void *net_netlink_ns(struct sock *sk)
1596 {
1597 	return sock_net(sk);
1598 }
1599 
1600 const struct kobj_ns_type_operations net_ns_type_operations = {
1601 	.type = KOBJ_NS_TYPE_NET,
1602 	.current_may_mount = net_current_may_mount,
1603 	.grab_current_ns = net_grab_current_ns,
1604 	.netlink_ns = net_netlink_ns,
1605 	.initial_ns = net_initial_ns,
1606 	.drop_ns = net_drop_ns,
1607 };
1608 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1609 
1610 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1611 {
1612 	struct net_device *dev = to_net_dev(d);
1613 	int retval;
1614 
1615 	/* pass interface to uevent. */
1616 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1617 	if (retval)
1618 		goto exit;
1619 
1620 	/* pass ifindex to uevent.
1621 	 * ifindex is useful as it won't change (interface name may change)
1622 	 * and is what RtNetlink uses natively.
1623 	 */
1624 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1625 
1626 exit:
1627 	return retval;
1628 }
1629 
1630 /*
1631  *	netdev_release -- destroy and free a dead device.
1632  *	Called when last reference to device kobject is gone.
1633  */
1634 static void netdev_release(struct device *d)
1635 {
1636 	struct net_device *dev = to_net_dev(d);
1637 
1638 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1639 
1640 	/* no need to wait for rcu grace period:
1641 	 * device is dead and about to be freed.
1642 	 */
1643 	kfree(rcu_access_pointer(dev->ifalias));
1644 	netdev_freemem(dev);
1645 }
1646 
1647 static const void *net_namespace(struct device *d)
1648 {
1649 	struct net_device *dev = to_net_dev(d);
1650 
1651 	return dev_net(dev);
1652 }
1653 
1654 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1655 {
1656 	struct net_device *dev = to_net_dev(d);
1657 	const struct net *net = dev_net(dev);
1658 
1659 	net_ns_get_ownership(net, uid, gid);
1660 }
1661 
1662 static struct class net_class __ro_after_init = {
1663 	.name = "net",
1664 	.dev_release = netdev_release,
1665 	.dev_groups = net_class_groups,
1666 	.dev_uevent = netdev_uevent,
1667 	.ns_type = &net_ns_type_operations,
1668 	.namespace = net_namespace,
1669 	.get_ownership = net_get_ownership,
1670 };
1671 
1672 #ifdef CONFIG_OF_NET
1673 static int of_dev_node_match(struct device *dev, const void *data)
1674 {
1675 	int ret = 0;
1676 
1677 	if (dev->parent)
1678 		ret = dev->parent->of_node == data;
1679 
1680 	return ret == 0 ? dev->of_node == data : ret;
1681 }
1682 
1683 /*
1684  * of_find_net_device_by_node - lookup the net device for the device node
1685  * @np: OF device node
1686  *
1687  * Looks up the net_device structure corresponding with the device node.
1688  * If successful, returns a pointer to the net_device with the embedded
1689  * struct device refcount incremented by one, or NULL on failure. The
1690  * refcount must be dropped when done with the net_device.
1691  */
1692 struct net_device *of_find_net_device_by_node(struct device_node *np)
1693 {
1694 	struct device *dev;
1695 
1696 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1697 	if (!dev)
1698 		return NULL;
1699 
1700 	return to_net_dev(dev);
1701 }
1702 EXPORT_SYMBOL(of_find_net_device_by_node);
1703 #endif
1704 
1705 /* Delete sysfs entries but hold kobject reference until after all
1706  * netdev references are gone.
1707  */
1708 void netdev_unregister_kobject(struct net_device *ndev)
1709 {
1710 	struct device *dev = &ndev->dev;
1711 
1712 	if (!refcount_read(&dev_net(ndev)->count))
1713 		dev_set_uevent_suppress(dev, 1);
1714 
1715 	kobject_get(&dev->kobj);
1716 
1717 	remove_queue_kobjects(ndev);
1718 
1719 	pm_runtime_set_memalloc_noio(dev, false);
1720 
1721 	device_del(dev);
1722 }
1723 
1724 /* Create sysfs entries for network device. */
1725 int netdev_register_kobject(struct net_device *ndev)
1726 {
1727 	struct device *dev = &ndev->dev;
1728 	const struct attribute_group **groups = ndev->sysfs_groups;
1729 	int error = 0;
1730 
1731 	device_initialize(dev);
1732 	dev->class = &net_class;
1733 	dev->platform_data = ndev;
1734 	dev->groups = groups;
1735 
1736 	dev_set_name(dev, "%s", ndev->name);
1737 
1738 #ifdef CONFIG_SYSFS
1739 	/* Allow for a device specific group */
1740 	if (*groups)
1741 		groups++;
1742 
1743 	*groups++ = &netstat_group;
1744 
1745 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1746 	if (ndev->ieee80211_ptr)
1747 		*groups++ = &wireless_group;
1748 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
1749 	else if (ndev->wireless_handlers)
1750 		*groups++ = &wireless_group;
1751 #endif
1752 #endif
1753 #endif /* CONFIG_SYSFS */
1754 
1755 	error = device_add(dev);
1756 	if (error)
1757 		return error;
1758 
1759 	error = register_queue_kobjects(ndev);
1760 	if (error) {
1761 		device_del(dev);
1762 		return error;
1763 	}
1764 
1765 	pm_runtime_set_memalloc_noio(dev, true);
1766 
1767 	return error;
1768 }
1769 
1770 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
1771 				const void *ns)
1772 {
1773 	return class_create_file_ns(&net_class, class_attr, ns);
1774 }
1775 EXPORT_SYMBOL(netdev_class_create_file_ns);
1776 
1777 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
1778 				 const void *ns)
1779 {
1780 	class_remove_file_ns(&net_class, class_attr, ns);
1781 }
1782 EXPORT_SYMBOL(netdev_class_remove_file_ns);
1783 
1784 int __init netdev_kobject_init(void)
1785 {
1786 	kobj_ns_type_register(&net_ns_type_operations);
1787 	return class_register(&net_class);
1788 }
1789