1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 27 #include "net-sysfs.h" 28 29 #ifdef CONFIG_SYSFS 30 static const char fmt_hex[] = "%#x\n"; 31 static const char fmt_dec[] = "%d\n"; 32 static const char fmt_ulong[] = "%lu\n"; 33 static const char fmt_u64[] = "%llu\n"; 34 35 static inline int dev_isalive(const struct net_device *dev) 36 { 37 return dev->reg_state <= NETREG_REGISTERED; 38 } 39 40 /* use same locking rules as GIF* ioctl's */ 41 static ssize_t netdev_show(const struct device *dev, 42 struct device_attribute *attr, char *buf, 43 ssize_t (*format)(const struct net_device *, char *)) 44 { 45 struct net_device *ndev = to_net_dev(dev); 46 ssize_t ret = -EINVAL; 47 48 read_lock(&dev_base_lock); 49 if (dev_isalive(ndev)) 50 ret = (*format)(ndev, buf); 51 read_unlock(&dev_base_lock); 52 53 return ret; 54 } 55 56 /* generate a show function for simple field */ 57 #define NETDEVICE_SHOW(field, format_string) \ 58 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 59 { \ 60 return sprintf(buf, format_string, dev->field); \ 61 } \ 62 static ssize_t field##_show(struct device *dev, \ 63 struct device_attribute *attr, char *buf) \ 64 { \ 65 return netdev_show(dev, attr, buf, format_##field); \ 66 } \ 67 68 #define NETDEVICE_SHOW_RO(field, format_string) \ 69 NETDEVICE_SHOW(field, format_string); \ 70 static DEVICE_ATTR_RO(field) 71 72 #define NETDEVICE_SHOW_RW(field, format_string) \ 73 NETDEVICE_SHOW(field, format_string); \ 74 static DEVICE_ATTR_RW(field) 75 76 /* use same locking and permission rules as SIF* ioctl's */ 77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 78 const char *buf, size_t len, 79 int (*set)(struct net_device *, unsigned long)) 80 { 81 struct net_device *netdev = to_net_dev(dev); 82 struct net *net = dev_net(netdev); 83 unsigned long new; 84 int ret; 85 86 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 87 return -EPERM; 88 89 ret = kstrtoul(buf, 0, &new); 90 if (ret) 91 goto err; 92 93 if (!rtnl_trylock()) 94 return restart_syscall(); 95 96 if (dev_isalive(netdev)) { 97 ret = (*set)(netdev, new); 98 if (ret == 0) 99 ret = len; 100 } 101 rtnl_unlock(); 102 err: 103 return ret; 104 } 105 106 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 107 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 109 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 110 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 111 NETDEVICE_SHOW_RO(type, fmt_dec); 112 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 113 114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 115 char *buf) 116 { 117 struct net_device *ndev = to_net_dev(dev); 118 119 return sprintf(buf, fmt_dec, dev_get_iflink(ndev)); 120 } 121 static DEVICE_ATTR_RO(iflink); 122 123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 124 { 125 return sprintf(buf, fmt_dec, dev->name_assign_type); 126 } 127 128 static ssize_t name_assign_type_show(struct device *dev, 129 struct device_attribute *attr, 130 char *buf) 131 { 132 struct net_device *ndev = to_net_dev(dev); 133 ssize_t ret = -EINVAL; 134 135 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 136 ret = netdev_show(dev, attr, buf, format_name_assign_type); 137 138 return ret; 139 } 140 static DEVICE_ATTR_RO(name_assign_type); 141 142 /* use same locking rules as GIFHWADDR ioctl's */ 143 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 144 char *buf) 145 { 146 struct net_device *ndev = to_net_dev(dev); 147 ssize_t ret = -EINVAL; 148 149 read_lock(&dev_base_lock); 150 if (dev_isalive(ndev)) 151 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 152 read_unlock(&dev_base_lock); 153 return ret; 154 } 155 static DEVICE_ATTR_RO(address); 156 157 static ssize_t broadcast_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct net_device *ndev = to_net_dev(dev); 161 162 if (dev_isalive(ndev)) 163 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 164 return -EINVAL; 165 } 166 static DEVICE_ATTR_RO(broadcast); 167 168 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 169 { 170 if (!netif_running(dev)) 171 return -EINVAL; 172 return dev_change_carrier(dev, (bool)new_carrier); 173 } 174 175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 176 const char *buf, size_t len) 177 { 178 return netdev_store(dev, attr, buf, len, change_carrier); 179 } 180 181 static ssize_t carrier_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct net_device *netdev = to_net_dev(dev); 185 186 if (netif_running(netdev)) 187 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); 188 189 return -EINVAL; 190 } 191 static DEVICE_ATTR_RW(carrier); 192 193 static ssize_t speed_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct net_device *netdev = to_net_dev(dev); 197 int ret = -EINVAL; 198 199 if (!rtnl_trylock()) 200 return restart_syscall(); 201 202 if (netif_running(netdev)) { 203 struct ethtool_link_ksettings cmd; 204 205 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 206 ret = sprintf(buf, fmt_dec, cmd.base.speed); 207 } 208 rtnl_unlock(); 209 return ret; 210 } 211 static DEVICE_ATTR_RO(speed); 212 213 static ssize_t duplex_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct net_device *netdev = to_net_dev(dev); 217 int ret = -EINVAL; 218 219 if (!rtnl_trylock()) 220 return restart_syscall(); 221 222 if (netif_running(netdev)) { 223 struct ethtool_link_ksettings cmd; 224 225 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 226 const char *duplex; 227 228 switch (cmd.base.duplex) { 229 case DUPLEX_HALF: 230 duplex = "half"; 231 break; 232 case DUPLEX_FULL: 233 duplex = "full"; 234 break; 235 default: 236 duplex = "unknown"; 237 break; 238 } 239 ret = sprintf(buf, "%s\n", duplex); 240 } 241 } 242 rtnl_unlock(); 243 return ret; 244 } 245 static DEVICE_ATTR_RO(duplex); 246 247 static ssize_t testing_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct net_device *netdev = to_net_dev(dev); 251 252 if (netif_running(netdev)) 253 return sprintf(buf, fmt_dec, !!netif_testing(netdev)); 254 255 return -EINVAL; 256 } 257 static DEVICE_ATTR_RO(testing); 258 259 static ssize_t dormant_show(struct device *dev, 260 struct device_attribute *attr, char *buf) 261 { 262 struct net_device *netdev = to_net_dev(dev); 263 264 if (netif_running(netdev)) 265 return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); 266 267 return -EINVAL; 268 } 269 static DEVICE_ATTR_RO(dormant); 270 271 static const char *const operstates[] = { 272 "unknown", 273 "notpresent", /* currently unused */ 274 "down", 275 "lowerlayerdown", 276 "testing", 277 "dormant", 278 "up" 279 }; 280 281 static ssize_t operstate_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 const struct net_device *netdev = to_net_dev(dev); 285 unsigned char operstate; 286 287 read_lock(&dev_base_lock); 288 operstate = netdev->operstate; 289 if (!netif_running(netdev)) 290 operstate = IF_OPER_DOWN; 291 read_unlock(&dev_base_lock); 292 293 if (operstate >= ARRAY_SIZE(operstates)) 294 return -EINVAL; /* should not happen */ 295 296 return sprintf(buf, "%s\n", operstates[operstate]); 297 } 298 static DEVICE_ATTR_RO(operstate); 299 300 static ssize_t carrier_changes_show(struct device *dev, 301 struct device_attribute *attr, 302 char *buf) 303 { 304 struct net_device *netdev = to_net_dev(dev); 305 306 return sprintf(buf, fmt_dec, 307 atomic_read(&netdev->carrier_up_count) + 308 atomic_read(&netdev->carrier_down_count)); 309 } 310 static DEVICE_ATTR_RO(carrier_changes); 311 312 static ssize_t carrier_up_count_show(struct device *dev, 313 struct device_attribute *attr, 314 char *buf) 315 { 316 struct net_device *netdev = to_net_dev(dev); 317 318 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 319 } 320 static DEVICE_ATTR_RO(carrier_up_count); 321 322 static ssize_t carrier_down_count_show(struct device *dev, 323 struct device_attribute *attr, 324 char *buf) 325 { 326 struct net_device *netdev = to_net_dev(dev); 327 328 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 329 } 330 static DEVICE_ATTR_RO(carrier_down_count); 331 332 /* read-write attributes */ 333 334 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 335 { 336 return dev_set_mtu(dev, (int)new_mtu); 337 } 338 339 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 340 const char *buf, size_t len) 341 { 342 return netdev_store(dev, attr, buf, len, change_mtu); 343 } 344 NETDEVICE_SHOW_RW(mtu, fmt_dec); 345 346 static int change_flags(struct net_device *dev, unsigned long new_flags) 347 { 348 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 349 } 350 351 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 352 const char *buf, size_t len) 353 { 354 return netdev_store(dev, attr, buf, len, change_flags); 355 } 356 NETDEVICE_SHOW_RW(flags, fmt_hex); 357 358 static ssize_t tx_queue_len_store(struct device *dev, 359 struct device_attribute *attr, 360 const char *buf, size_t len) 361 { 362 if (!capable(CAP_NET_ADMIN)) 363 return -EPERM; 364 365 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 366 } 367 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 368 369 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 370 { 371 WRITE_ONCE(dev->gro_flush_timeout, val); 372 return 0; 373 } 374 375 static ssize_t gro_flush_timeout_store(struct device *dev, 376 struct device_attribute *attr, 377 const char *buf, size_t len) 378 { 379 if (!capable(CAP_NET_ADMIN)) 380 return -EPERM; 381 382 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 383 } 384 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 385 386 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 387 { 388 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 389 return 0; 390 } 391 392 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 393 struct device_attribute *attr, 394 const char *buf, size_t len) 395 { 396 if (!capable(CAP_NET_ADMIN)) 397 return -EPERM; 398 399 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 400 } 401 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 402 403 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 404 const char *buf, size_t len) 405 { 406 struct net_device *netdev = to_net_dev(dev); 407 struct net *net = dev_net(netdev); 408 size_t count = len; 409 ssize_t ret = 0; 410 411 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 412 return -EPERM; 413 414 /* ignore trailing newline */ 415 if (len > 0 && buf[len - 1] == '\n') 416 --count; 417 418 if (!rtnl_trylock()) 419 return restart_syscall(); 420 421 if (dev_isalive(netdev)) { 422 ret = dev_set_alias(netdev, buf, count); 423 if (ret < 0) 424 goto err; 425 ret = len; 426 netdev_state_change(netdev); 427 } 428 err: 429 rtnl_unlock(); 430 431 return ret; 432 } 433 434 static ssize_t ifalias_show(struct device *dev, 435 struct device_attribute *attr, char *buf) 436 { 437 const struct net_device *netdev = to_net_dev(dev); 438 char tmp[IFALIASZ]; 439 ssize_t ret = 0; 440 441 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 442 if (ret > 0) 443 ret = sprintf(buf, "%s\n", tmp); 444 return ret; 445 } 446 static DEVICE_ATTR_RW(ifalias); 447 448 static int change_group(struct net_device *dev, unsigned long new_group) 449 { 450 dev_set_group(dev, (int)new_group); 451 return 0; 452 } 453 454 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 455 const char *buf, size_t len) 456 { 457 return netdev_store(dev, attr, buf, len, change_group); 458 } 459 NETDEVICE_SHOW(group, fmt_dec); 460 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 461 462 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 463 { 464 return dev_change_proto_down(dev, (bool)proto_down); 465 } 466 467 static ssize_t proto_down_store(struct device *dev, 468 struct device_attribute *attr, 469 const char *buf, size_t len) 470 { 471 return netdev_store(dev, attr, buf, len, change_proto_down); 472 } 473 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 474 475 static ssize_t phys_port_id_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct net_device *netdev = to_net_dev(dev); 479 ssize_t ret = -EINVAL; 480 481 if (!rtnl_trylock()) 482 return restart_syscall(); 483 484 if (dev_isalive(netdev)) { 485 struct netdev_phys_item_id ppid; 486 487 ret = dev_get_phys_port_id(netdev, &ppid); 488 if (!ret) 489 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 490 } 491 rtnl_unlock(); 492 493 return ret; 494 } 495 static DEVICE_ATTR_RO(phys_port_id); 496 497 static ssize_t phys_port_name_show(struct device *dev, 498 struct device_attribute *attr, char *buf) 499 { 500 struct net_device *netdev = to_net_dev(dev); 501 ssize_t ret = -EINVAL; 502 503 if (!rtnl_trylock()) 504 return restart_syscall(); 505 506 if (dev_isalive(netdev)) { 507 char name[IFNAMSIZ]; 508 509 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 510 if (!ret) 511 ret = sprintf(buf, "%s\n", name); 512 } 513 rtnl_unlock(); 514 515 return ret; 516 } 517 static DEVICE_ATTR_RO(phys_port_name); 518 519 static ssize_t phys_switch_id_show(struct device *dev, 520 struct device_attribute *attr, char *buf) 521 { 522 struct net_device *netdev = to_net_dev(dev); 523 ssize_t ret = -EINVAL; 524 525 if (!rtnl_trylock()) 526 return restart_syscall(); 527 528 if (dev_isalive(netdev)) { 529 struct netdev_phys_item_id ppid = { }; 530 531 ret = dev_get_port_parent_id(netdev, &ppid, false); 532 if (!ret) 533 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 534 } 535 rtnl_unlock(); 536 537 return ret; 538 } 539 static DEVICE_ATTR_RO(phys_switch_id); 540 541 static struct attribute *net_class_attrs[] __ro_after_init = { 542 &dev_attr_netdev_group.attr, 543 &dev_attr_type.attr, 544 &dev_attr_dev_id.attr, 545 &dev_attr_dev_port.attr, 546 &dev_attr_iflink.attr, 547 &dev_attr_ifindex.attr, 548 &dev_attr_name_assign_type.attr, 549 &dev_attr_addr_assign_type.attr, 550 &dev_attr_addr_len.attr, 551 &dev_attr_link_mode.attr, 552 &dev_attr_address.attr, 553 &dev_attr_broadcast.attr, 554 &dev_attr_speed.attr, 555 &dev_attr_duplex.attr, 556 &dev_attr_dormant.attr, 557 &dev_attr_testing.attr, 558 &dev_attr_operstate.attr, 559 &dev_attr_carrier_changes.attr, 560 &dev_attr_ifalias.attr, 561 &dev_attr_carrier.attr, 562 &dev_attr_mtu.attr, 563 &dev_attr_flags.attr, 564 &dev_attr_tx_queue_len.attr, 565 &dev_attr_gro_flush_timeout.attr, 566 &dev_attr_napi_defer_hard_irqs.attr, 567 &dev_attr_phys_port_id.attr, 568 &dev_attr_phys_port_name.attr, 569 &dev_attr_phys_switch_id.attr, 570 &dev_attr_proto_down.attr, 571 &dev_attr_carrier_up_count.attr, 572 &dev_attr_carrier_down_count.attr, 573 NULL, 574 }; 575 ATTRIBUTE_GROUPS(net_class); 576 577 /* Show a given an attribute in the statistics group */ 578 static ssize_t netstat_show(const struct device *d, 579 struct device_attribute *attr, char *buf, 580 unsigned long offset) 581 { 582 struct net_device *dev = to_net_dev(d); 583 ssize_t ret = -EINVAL; 584 585 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 586 offset % sizeof(u64) != 0); 587 588 read_lock(&dev_base_lock); 589 if (dev_isalive(dev)) { 590 struct rtnl_link_stats64 temp; 591 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 592 593 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 594 } 595 read_unlock(&dev_base_lock); 596 return ret; 597 } 598 599 /* generate a read-only statistics attribute */ 600 #define NETSTAT_ENTRY(name) \ 601 static ssize_t name##_show(struct device *d, \ 602 struct device_attribute *attr, char *buf) \ 603 { \ 604 return netstat_show(d, attr, buf, \ 605 offsetof(struct rtnl_link_stats64, name)); \ 606 } \ 607 static DEVICE_ATTR_RO(name) 608 609 NETSTAT_ENTRY(rx_packets); 610 NETSTAT_ENTRY(tx_packets); 611 NETSTAT_ENTRY(rx_bytes); 612 NETSTAT_ENTRY(tx_bytes); 613 NETSTAT_ENTRY(rx_errors); 614 NETSTAT_ENTRY(tx_errors); 615 NETSTAT_ENTRY(rx_dropped); 616 NETSTAT_ENTRY(tx_dropped); 617 NETSTAT_ENTRY(multicast); 618 NETSTAT_ENTRY(collisions); 619 NETSTAT_ENTRY(rx_length_errors); 620 NETSTAT_ENTRY(rx_over_errors); 621 NETSTAT_ENTRY(rx_crc_errors); 622 NETSTAT_ENTRY(rx_frame_errors); 623 NETSTAT_ENTRY(rx_fifo_errors); 624 NETSTAT_ENTRY(rx_missed_errors); 625 NETSTAT_ENTRY(tx_aborted_errors); 626 NETSTAT_ENTRY(tx_carrier_errors); 627 NETSTAT_ENTRY(tx_fifo_errors); 628 NETSTAT_ENTRY(tx_heartbeat_errors); 629 NETSTAT_ENTRY(tx_window_errors); 630 NETSTAT_ENTRY(rx_compressed); 631 NETSTAT_ENTRY(tx_compressed); 632 NETSTAT_ENTRY(rx_nohandler); 633 634 static struct attribute *netstat_attrs[] __ro_after_init = { 635 &dev_attr_rx_packets.attr, 636 &dev_attr_tx_packets.attr, 637 &dev_attr_rx_bytes.attr, 638 &dev_attr_tx_bytes.attr, 639 &dev_attr_rx_errors.attr, 640 &dev_attr_tx_errors.attr, 641 &dev_attr_rx_dropped.attr, 642 &dev_attr_tx_dropped.attr, 643 &dev_attr_multicast.attr, 644 &dev_attr_collisions.attr, 645 &dev_attr_rx_length_errors.attr, 646 &dev_attr_rx_over_errors.attr, 647 &dev_attr_rx_crc_errors.attr, 648 &dev_attr_rx_frame_errors.attr, 649 &dev_attr_rx_fifo_errors.attr, 650 &dev_attr_rx_missed_errors.attr, 651 &dev_attr_tx_aborted_errors.attr, 652 &dev_attr_tx_carrier_errors.attr, 653 &dev_attr_tx_fifo_errors.attr, 654 &dev_attr_tx_heartbeat_errors.attr, 655 &dev_attr_tx_window_errors.attr, 656 &dev_attr_rx_compressed.attr, 657 &dev_attr_tx_compressed.attr, 658 &dev_attr_rx_nohandler.attr, 659 NULL 660 }; 661 662 static const struct attribute_group netstat_group = { 663 .name = "statistics", 664 .attrs = netstat_attrs, 665 }; 666 667 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 668 static struct attribute *wireless_attrs[] = { 669 NULL 670 }; 671 672 static const struct attribute_group wireless_group = { 673 .name = "wireless", 674 .attrs = wireless_attrs, 675 }; 676 #endif 677 678 #else /* CONFIG_SYSFS */ 679 #define net_class_groups NULL 680 #endif /* CONFIG_SYSFS */ 681 682 #ifdef CONFIG_SYSFS 683 #define to_rx_queue_attr(_attr) \ 684 container_of(_attr, struct rx_queue_attribute, attr) 685 686 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 687 688 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 689 char *buf) 690 { 691 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 692 struct netdev_rx_queue *queue = to_rx_queue(kobj); 693 694 if (!attribute->show) 695 return -EIO; 696 697 return attribute->show(queue, buf); 698 } 699 700 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 701 const char *buf, size_t count) 702 { 703 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 704 struct netdev_rx_queue *queue = to_rx_queue(kobj); 705 706 if (!attribute->store) 707 return -EIO; 708 709 return attribute->store(queue, buf, count); 710 } 711 712 static const struct sysfs_ops rx_queue_sysfs_ops = { 713 .show = rx_queue_attr_show, 714 .store = rx_queue_attr_store, 715 }; 716 717 #ifdef CONFIG_RPS 718 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 719 { 720 struct rps_map *map; 721 cpumask_var_t mask; 722 int i, len; 723 724 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 725 return -ENOMEM; 726 727 rcu_read_lock(); 728 map = rcu_dereference(queue->rps_map); 729 if (map) 730 for (i = 0; i < map->len; i++) 731 cpumask_set_cpu(map->cpus[i], mask); 732 733 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 734 rcu_read_unlock(); 735 free_cpumask_var(mask); 736 737 return len < PAGE_SIZE ? len : -EINVAL; 738 } 739 740 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 741 const char *buf, size_t len) 742 { 743 struct rps_map *old_map, *map; 744 cpumask_var_t mask; 745 int err, cpu, i, hk_flags; 746 static DEFINE_MUTEX(rps_map_mutex); 747 748 if (!capable(CAP_NET_ADMIN)) 749 return -EPERM; 750 751 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 752 return -ENOMEM; 753 754 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 755 if (err) { 756 free_cpumask_var(mask); 757 return err; 758 } 759 760 hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 761 cpumask_and(mask, mask, housekeeping_cpumask(hk_flags)); 762 if (cpumask_empty(mask)) { 763 free_cpumask_var(mask); 764 return -EINVAL; 765 } 766 767 map = kzalloc(max_t(unsigned int, 768 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 769 GFP_KERNEL); 770 if (!map) { 771 free_cpumask_var(mask); 772 return -ENOMEM; 773 } 774 775 i = 0; 776 for_each_cpu_and(cpu, mask, cpu_online_mask) 777 map->cpus[i++] = cpu; 778 779 if (i) { 780 map->len = i; 781 } else { 782 kfree(map); 783 map = NULL; 784 } 785 786 mutex_lock(&rps_map_mutex); 787 old_map = rcu_dereference_protected(queue->rps_map, 788 mutex_is_locked(&rps_map_mutex)); 789 rcu_assign_pointer(queue->rps_map, map); 790 791 if (map) 792 static_branch_inc(&rps_needed); 793 if (old_map) 794 static_branch_dec(&rps_needed); 795 796 mutex_unlock(&rps_map_mutex); 797 798 if (old_map) 799 kfree_rcu(old_map, rcu); 800 801 free_cpumask_var(mask); 802 return len; 803 } 804 805 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 806 char *buf) 807 { 808 struct rps_dev_flow_table *flow_table; 809 unsigned long val = 0; 810 811 rcu_read_lock(); 812 flow_table = rcu_dereference(queue->rps_flow_table); 813 if (flow_table) 814 val = (unsigned long)flow_table->mask + 1; 815 rcu_read_unlock(); 816 817 return sprintf(buf, "%lu\n", val); 818 } 819 820 static void rps_dev_flow_table_release(struct rcu_head *rcu) 821 { 822 struct rps_dev_flow_table *table = container_of(rcu, 823 struct rps_dev_flow_table, rcu); 824 vfree(table); 825 } 826 827 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 828 const char *buf, size_t len) 829 { 830 unsigned long mask, count; 831 struct rps_dev_flow_table *table, *old_table; 832 static DEFINE_SPINLOCK(rps_dev_flow_lock); 833 int rc; 834 835 if (!capable(CAP_NET_ADMIN)) 836 return -EPERM; 837 838 rc = kstrtoul(buf, 0, &count); 839 if (rc < 0) 840 return rc; 841 842 if (count) { 843 mask = count - 1; 844 /* mask = roundup_pow_of_two(count) - 1; 845 * without overflows... 846 */ 847 while ((mask | (mask >> 1)) != mask) 848 mask |= (mask >> 1); 849 /* On 64 bit arches, must check mask fits in table->mask (u32), 850 * and on 32bit arches, must check 851 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 852 */ 853 #if BITS_PER_LONG > 32 854 if (mask > (unsigned long)(u32)mask) 855 return -EINVAL; 856 #else 857 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 858 / sizeof(struct rps_dev_flow)) { 859 /* Enforce a limit to prevent overflow */ 860 return -EINVAL; 861 } 862 #endif 863 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 864 if (!table) 865 return -ENOMEM; 866 867 table->mask = mask; 868 for (count = 0; count <= mask; count++) 869 table->flows[count].cpu = RPS_NO_CPU; 870 } else { 871 table = NULL; 872 } 873 874 spin_lock(&rps_dev_flow_lock); 875 old_table = rcu_dereference_protected(queue->rps_flow_table, 876 lockdep_is_held(&rps_dev_flow_lock)); 877 rcu_assign_pointer(queue->rps_flow_table, table); 878 spin_unlock(&rps_dev_flow_lock); 879 880 if (old_table) 881 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 882 883 return len; 884 } 885 886 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 887 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 888 889 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 890 = __ATTR(rps_flow_cnt, 0644, 891 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 892 #endif /* CONFIG_RPS */ 893 894 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 895 #ifdef CONFIG_RPS 896 &rps_cpus_attribute.attr, 897 &rps_dev_flow_table_cnt_attribute.attr, 898 #endif 899 NULL 900 }; 901 ATTRIBUTE_GROUPS(rx_queue_default); 902 903 static void rx_queue_release(struct kobject *kobj) 904 { 905 struct netdev_rx_queue *queue = to_rx_queue(kobj); 906 #ifdef CONFIG_RPS 907 struct rps_map *map; 908 struct rps_dev_flow_table *flow_table; 909 910 map = rcu_dereference_protected(queue->rps_map, 1); 911 if (map) { 912 RCU_INIT_POINTER(queue->rps_map, NULL); 913 kfree_rcu(map, rcu); 914 } 915 916 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 917 if (flow_table) { 918 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 919 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 920 } 921 #endif 922 923 memset(kobj, 0, sizeof(*kobj)); 924 dev_put(queue->dev); 925 } 926 927 static const void *rx_queue_namespace(struct kobject *kobj) 928 { 929 struct netdev_rx_queue *queue = to_rx_queue(kobj); 930 struct device *dev = &queue->dev->dev; 931 const void *ns = NULL; 932 933 if (dev->class && dev->class->ns_type) 934 ns = dev->class->namespace(dev); 935 936 return ns; 937 } 938 939 static void rx_queue_get_ownership(struct kobject *kobj, 940 kuid_t *uid, kgid_t *gid) 941 { 942 const struct net *net = rx_queue_namespace(kobj); 943 944 net_ns_get_ownership(net, uid, gid); 945 } 946 947 static struct kobj_type rx_queue_ktype __ro_after_init = { 948 .sysfs_ops = &rx_queue_sysfs_ops, 949 .release = rx_queue_release, 950 .default_groups = rx_queue_default_groups, 951 .namespace = rx_queue_namespace, 952 .get_ownership = rx_queue_get_ownership, 953 }; 954 955 static int rx_queue_add_kobject(struct net_device *dev, int index) 956 { 957 struct netdev_rx_queue *queue = dev->_rx + index; 958 struct kobject *kobj = &queue->kobj; 959 int error = 0; 960 961 /* Kobject_put later will trigger rx_queue_release call which 962 * decreases dev refcount: Take that reference here 963 */ 964 dev_hold(queue->dev); 965 966 kobj->kset = dev->queues_kset; 967 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 968 "rx-%u", index); 969 if (error) 970 goto err; 971 972 if (dev->sysfs_rx_queue_group) { 973 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 974 if (error) 975 goto err; 976 } 977 978 kobject_uevent(kobj, KOBJ_ADD); 979 980 return error; 981 982 err: 983 kobject_put(kobj); 984 return error; 985 } 986 987 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 988 kgid_t kgid) 989 { 990 struct netdev_rx_queue *queue = dev->_rx + index; 991 struct kobject *kobj = &queue->kobj; 992 int error; 993 994 error = sysfs_change_owner(kobj, kuid, kgid); 995 if (error) 996 return error; 997 998 if (dev->sysfs_rx_queue_group) 999 error = sysfs_group_change_owner( 1000 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1001 1002 return error; 1003 } 1004 #endif /* CONFIG_SYSFS */ 1005 1006 int 1007 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1008 { 1009 #ifdef CONFIG_SYSFS 1010 int i; 1011 int error = 0; 1012 1013 #ifndef CONFIG_RPS 1014 if (!dev->sysfs_rx_queue_group) 1015 return 0; 1016 #endif 1017 for (i = old_num; i < new_num; i++) { 1018 error = rx_queue_add_kobject(dev, i); 1019 if (error) { 1020 new_num = old_num; 1021 break; 1022 } 1023 } 1024 1025 while (--i >= new_num) { 1026 struct kobject *kobj = &dev->_rx[i].kobj; 1027 1028 if (!refcount_read(&dev_net(dev)->count)) 1029 kobj->uevent_suppress = 1; 1030 if (dev->sysfs_rx_queue_group) 1031 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1032 kobject_put(kobj); 1033 } 1034 1035 return error; 1036 #else 1037 return 0; 1038 #endif 1039 } 1040 1041 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1042 kuid_t kuid, kgid_t kgid) 1043 { 1044 #ifdef CONFIG_SYSFS 1045 int error = 0; 1046 int i; 1047 1048 #ifndef CONFIG_RPS 1049 if (!dev->sysfs_rx_queue_group) 1050 return 0; 1051 #endif 1052 for (i = 0; i < num; i++) { 1053 error = rx_queue_change_owner(dev, i, kuid, kgid); 1054 if (error) 1055 break; 1056 } 1057 1058 return error; 1059 #else 1060 return 0; 1061 #endif 1062 } 1063 1064 #ifdef CONFIG_SYSFS 1065 /* 1066 * netdev_queue sysfs structures and functions. 1067 */ 1068 struct netdev_queue_attribute { 1069 struct attribute attr; 1070 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1071 ssize_t (*store)(struct netdev_queue *queue, 1072 const char *buf, size_t len); 1073 }; 1074 #define to_netdev_queue_attr(_attr) \ 1075 container_of(_attr, struct netdev_queue_attribute, attr) 1076 1077 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1078 1079 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1080 struct attribute *attr, char *buf) 1081 { 1082 const struct netdev_queue_attribute *attribute 1083 = to_netdev_queue_attr(attr); 1084 struct netdev_queue *queue = to_netdev_queue(kobj); 1085 1086 if (!attribute->show) 1087 return -EIO; 1088 1089 return attribute->show(queue, buf); 1090 } 1091 1092 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1093 struct attribute *attr, 1094 const char *buf, size_t count) 1095 { 1096 const struct netdev_queue_attribute *attribute 1097 = to_netdev_queue_attr(attr); 1098 struct netdev_queue *queue = to_netdev_queue(kobj); 1099 1100 if (!attribute->store) 1101 return -EIO; 1102 1103 return attribute->store(queue, buf, count); 1104 } 1105 1106 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1107 .show = netdev_queue_attr_show, 1108 .store = netdev_queue_attr_store, 1109 }; 1110 1111 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1112 { 1113 unsigned long trans_timeout; 1114 1115 spin_lock_irq(&queue->_xmit_lock); 1116 trans_timeout = queue->trans_timeout; 1117 spin_unlock_irq(&queue->_xmit_lock); 1118 1119 return sprintf(buf, fmt_ulong, trans_timeout); 1120 } 1121 1122 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1123 { 1124 struct net_device *dev = queue->dev; 1125 unsigned int i; 1126 1127 i = queue - dev->_tx; 1128 BUG_ON(i >= dev->num_tx_queues); 1129 1130 return i; 1131 } 1132 1133 static ssize_t traffic_class_show(struct netdev_queue *queue, 1134 char *buf) 1135 { 1136 struct net_device *dev = queue->dev; 1137 int index; 1138 int tc; 1139 1140 if (!netif_is_multiqueue(dev)) 1141 return -ENOENT; 1142 1143 index = get_netdev_queue_index(queue); 1144 1145 /* If queue belongs to subordinate dev use its TC mapping */ 1146 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1147 1148 tc = netdev_txq_to_tc(dev, index); 1149 if (tc < 0) 1150 return -EINVAL; 1151 1152 /* We can report the traffic class one of two ways: 1153 * Subordinate device traffic classes are reported with the traffic 1154 * class first, and then the subordinate class so for example TC0 on 1155 * subordinate device 2 will be reported as "0-2". If the queue 1156 * belongs to the root device it will be reported with just the 1157 * traffic class, so just "0" for TC 0 for example. 1158 */ 1159 return dev->num_tc < 0 ? sprintf(buf, "%u%d\n", tc, dev->num_tc) : 1160 sprintf(buf, "%u\n", tc); 1161 } 1162 1163 #ifdef CONFIG_XPS 1164 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1165 char *buf) 1166 { 1167 return sprintf(buf, "%lu\n", queue->tx_maxrate); 1168 } 1169 1170 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1171 const char *buf, size_t len) 1172 { 1173 struct net_device *dev = queue->dev; 1174 int err, index = get_netdev_queue_index(queue); 1175 u32 rate = 0; 1176 1177 if (!capable(CAP_NET_ADMIN)) 1178 return -EPERM; 1179 1180 err = kstrtou32(buf, 10, &rate); 1181 if (err < 0) 1182 return err; 1183 1184 if (!rtnl_trylock()) 1185 return restart_syscall(); 1186 1187 err = -EOPNOTSUPP; 1188 if (dev->netdev_ops->ndo_set_tx_maxrate) 1189 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1190 1191 rtnl_unlock(); 1192 if (!err) { 1193 queue->tx_maxrate = rate; 1194 return len; 1195 } 1196 return err; 1197 } 1198 1199 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1200 = __ATTR_RW(tx_maxrate); 1201 #endif 1202 1203 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1204 = __ATTR_RO(tx_timeout); 1205 1206 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1207 = __ATTR_RO(traffic_class); 1208 1209 #ifdef CONFIG_BQL 1210 /* 1211 * Byte queue limits sysfs structures and functions. 1212 */ 1213 static ssize_t bql_show(char *buf, unsigned int value) 1214 { 1215 return sprintf(buf, "%u\n", value); 1216 } 1217 1218 static ssize_t bql_set(const char *buf, const size_t count, 1219 unsigned int *pvalue) 1220 { 1221 unsigned int value; 1222 int err; 1223 1224 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1225 value = DQL_MAX_LIMIT; 1226 } else { 1227 err = kstrtouint(buf, 10, &value); 1228 if (err < 0) 1229 return err; 1230 if (value > DQL_MAX_LIMIT) 1231 return -EINVAL; 1232 } 1233 1234 *pvalue = value; 1235 1236 return count; 1237 } 1238 1239 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1240 char *buf) 1241 { 1242 struct dql *dql = &queue->dql; 1243 1244 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1245 } 1246 1247 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1248 const char *buf, size_t len) 1249 { 1250 struct dql *dql = &queue->dql; 1251 unsigned int value; 1252 int err; 1253 1254 err = kstrtouint(buf, 10, &value); 1255 if (err < 0) 1256 return err; 1257 1258 dql->slack_hold_time = msecs_to_jiffies(value); 1259 1260 return len; 1261 } 1262 1263 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1264 = __ATTR(hold_time, 0644, 1265 bql_show_hold_time, bql_set_hold_time); 1266 1267 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1268 char *buf) 1269 { 1270 struct dql *dql = &queue->dql; 1271 1272 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); 1273 } 1274 1275 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1276 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1277 1278 #define BQL_ATTR(NAME, FIELD) \ 1279 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1280 char *buf) \ 1281 { \ 1282 return bql_show(buf, queue->dql.FIELD); \ 1283 } \ 1284 \ 1285 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1286 const char *buf, size_t len) \ 1287 { \ 1288 return bql_set(buf, len, &queue->dql.FIELD); \ 1289 } \ 1290 \ 1291 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1292 = __ATTR(NAME, 0644, \ 1293 bql_show_ ## NAME, bql_set_ ## NAME) 1294 1295 BQL_ATTR(limit, limit); 1296 BQL_ATTR(limit_max, max_limit); 1297 BQL_ATTR(limit_min, min_limit); 1298 1299 static struct attribute *dql_attrs[] __ro_after_init = { 1300 &bql_limit_attribute.attr, 1301 &bql_limit_max_attribute.attr, 1302 &bql_limit_min_attribute.attr, 1303 &bql_hold_time_attribute.attr, 1304 &bql_inflight_attribute.attr, 1305 NULL 1306 }; 1307 1308 static const struct attribute_group dql_group = { 1309 .name = "byte_queue_limits", 1310 .attrs = dql_attrs, 1311 }; 1312 #endif /* CONFIG_BQL */ 1313 1314 #ifdef CONFIG_XPS 1315 static ssize_t xps_cpus_show(struct netdev_queue *queue, 1316 char *buf) 1317 { 1318 struct net_device *dev = queue->dev; 1319 int cpu, len, num_tc = 1, tc = 0; 1320 struct xps_dev_maps *dev_maps; 1321 cpumask_var_t mask; 1322 unsigned long index; 1323 1324 if (!netif_is_multiqueue(dev)) 1325 return -ENOENT; 1326 1327 index = get_netdev_queue_index(queue); 1328 1329 if (dev->num_tc) { 1330 /* Do not allow XPS on subordinate device directly */ 1331 num_tc = dev->num_tc; 1332 if (num_tc < 0) 1333 return -EINVAL; 1334 1335 /* If queue belongs to subordinate dev use its map */ 1336 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1337 1338 tc = netdev_txq_to_tc(dev, index); 1339 if (tc < 0) 1340 return -EINVAL; 1341 } 1342 1343 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 1344 return -ENOMEM; 1345 1346 rcu_read_lock(); 1347 dev_maps = rcu_dereference(dev->xps_cpus_map); 1348 if (dev_maps) { 1349 for_each_possible_cpu(cpu) { 1350 int i, tci = cpu * num_tc + tc; 1351 struct xps_map *map; 1352 1353 map = rcu_dereference(dev_maps->attr_map[tci]); 1354 if (!map) 1355 continue; 1356 1357 for (i = map->len; i--;) { 1358 if (map->queues[i] == index) { 1359 cpumask_set_cpu(cpu, mask); 1360 break; 1361 } 1362 } 1363 } 1364 } 1365 rcu_read_unlock(); 1366 1367 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 1368 free_cpumask_var(mask); 1369 return len < PAGE_SIZE ? len : -EINVAL; 1370 } 1371 1372 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1373 const char *buf, size_t len) 1374 { 1375 struct net_device *dev = queue->dev; 1376 unsigned long index; 1377 cpumask_var_t mask; 1378 int err; 1379 1380 if (!netif_is_multiqueue(dev)) 1381 return -ENOENT; 1382 1383 if (!capable(CAP_NET_ADMIN)) 1384 return -EPERM; 1385 1386 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1387 return -ENOMEM; 1388 1389 index = get_netdev_queue_index(queue); 1390 1391 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1392 if (err) { 1393 free_cpumask_var(mask); 1394 return err; 1395 } 1396 1397 err = netif_set_xps_queue(dev, mask, index); 1398 1399 free_cpumask_var(mask); 1400 1401 return err ? : len; 1402 } 1403 1404 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1405 = __ATTR_RW(xps_cpus); 1406 1407 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1408 { 1409 struct net_device *dev = queue->dev; 1410 struct xps_dev_maps *dev_maps; 1411 unsigned long *mask, index; 1412 int j, len, num_tc = 1, tc = 0; 1413 1414 index = get_netdev_queue_index(queue); 1415 1416 if (dev->num_tc) { 1417 num_tc = dev->num_tc; 1418 tc = netdev_txq_to_tc(dev, index); 1419 if (tc < 0) 1420 return -EINVAL; 1421 } 1422 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1423 if (!mask) 1424 return -ENOMEM; 1425 1426 rcu_read_lock(); 1427 dev_maps = rcu_dereference(dev->xps_rxqs_map); 1428 if (!dev_maps) 1429 goto out_no_maps; 1430 1431 for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues), 1432 j < dev->num_rx_queues;) { 1433 int i, tci = j * num_tc + tc; 1434 struct xps_map *map; 1435 1436 map = rcu_dereference(dev_maps->attr_map[tci]); 1437 if (!map) 1438 continue; 1439 1440 for (i = map->len; i--;) { 1441 if (map->queues[i] == index) { 1442 set_bit(j, mask); 1443 break; 1444 } 1445 } 1446 } 1447 out_no_maps: 1448 rcu_read_unlock(); 1449 1450 len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues); 1451 bitmap_free(mask); 1452 1453 return len < PAGE_SIZE ? len : -EINVAL; 1454 } 1455 1456 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1457 size_t len) 1458 { 1459 struct net_device *dev = queue->dev; 1460 struct net *net = dev_net(dev); 1461 unsigned long *mask, index; 1462 int err; 1463 1464 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1465 return -EPERM; 1466 1467 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1468 if (!mask) 1469 return -ENOMEM; 1470 1471 index = get_netdev_queue_index(queue); 1472 1473 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1474 if (err) { 1475 bitmap_free(mask); 1476 return err; 1477 } 1478 1479 cpus_read_lock(); 1480 err = __netif_set_xps_queue(dev, mask, index, true); 1481 cpus_read_unlock(); 1482 1483 bitmap_free(mask); 1484 return err ? : len; 1485 } 1486 1487 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1488 = __ATTR_RW(xps_rxqs); 1489 #endif /* CONFIG_XPS */ 1490 1491 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1492 &queue_trans_timeout.attr, 1493 &queue_traffic_class.attr, 1494 #ifdef CONFIG_XPS 1495 &xps_cpus_attribute.attr, 1496 &xps_rxqs_attribute.attr, 1497 &queue_tx_maxrate.attr, 1498 #endif 1499 NULL 1500 }; 1501 ATTRIBUTE_GROUPS(netdev_queue_default); 1502 1503 static void netdev_queue_release(struct kobject *kobj) 1504 { 1505 struct netdev_queue *queue = to_netdev_queue(kobj); 1506 1507 memset(kobj, 0, sizeof(*kobj)); 1508 dev_put(queue->dev); 1509 } 1510 1511 static const void *netdev_queue_namespace(struct kobject *kobj) 1512 { 1513 struct netdev_queue *queue = to_netdev_queue(kobj); 1514 struct device *dev = &queue->dev->dev; 1515 const void *ns = NULL; 1516 1517 if (dev->class && dev->class->ns_type) 1518 ns = dev->class->namespace(dev); 1519 1520 return ns; 1521 } 1522 1523 static void netdev_queue_get_ownership(struct kobject *kobj, 1524 kuid_t *uid, kgid_t *gid) 1525 { 1526 const struct net *net = netdev_queue_namespace(kobj); 1527 1528 net_ns_get_ownership(net, uid, gid); 1529 } 1530 1531 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1532 .sysfs_ops = &netdev_queue_sysfs_ops, 1533 .release = netdev_queue_release, 1534 .default_groups = netdev_queue_default_groups, 1535 .namespace = netdev_queue_namespace, 1536 .get_ownership = netdev_queue_get_ownership, 1537 }; 1538 1539 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1540 { 1541 struct netdev_queue *queue = dev->_tx + index; 1542 struct kobject *kobj = &queue->kobj; 1543 int error = 0; 1544 1545 /* Kobject_put later will trigger netdev_queue_release call 1546 * which decreases dev refcount: Take that reference here 1547 */ 1548 dev_hold(queue->dev); 1549 1550 kobj->kset = dev->queues_kset; 1551 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1552 "tx-%u", index); 1553 if (error) 1554 goto err; 1555 1556 #ifdef CONFIG_BQL 1557 error = sysfs_create_group(kobj, &dql_group); 1558 if (error) 1559 goto err; 1560 #endif 1561 1562 kobject_uevent(kobj, KOBJ_ADD); 1563 return 0; 1564 1565 err: 1566 kobject_put(kobj); 1567 return error; 1568 } 1569 1570 static int tx_queue_change_owner(struct net_device *ndev, int index, 1571 kuid_t kuid, kgid_t kgid) 1572 { 1573 struct netdev_queue *queue = ndev->_tx + index; 1574 struct kobject *kobj = &queue->kobj; 1575 int error; 1576 1577 error = sysfs_change_owner(kobj, kuid, kgid); 1578 if (error) 1579 return error; 1580 1581 #ifdef CONFIG_BQL 1582 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1583 #endif 1584 return error; 1585 } 1586 #endif /* CONFIG_SYSFS */ 1587 1588 int 1589 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1590 { 1591 #ifdef CONFIG_SYSFS 1592 int i; 1593 int error = 0; 1594 1595 for (i = old_num; i < new_num; i++) { 1596 error = netdev_queue_add_kobject(dev, i); 1597 if (error) { 1598 new_num = old_num; 1599 break; 1600 } 1601 } 1602 1603 while (--i >= new_num) { 1604 struct netdev_queue *queue = dev->_tx + i; 1605 1606 if (!refcount_read(&dev_net(dev)->count)) 1607 queue->kobj.uevent_suppress = 1; 1608 #ifdef CONFIG_BQL 1609 sysfs_remove_group(&queue->kobj, &dql_group); 1610 #endif 1611 kobject_put(&queue->kobj); 1612 } 1613 1614 return error; 1615 #else 1616 return 0; 1617 #endif /* CONFIG_SYSFS */ 1618 } 1619 1620 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1621 kuid_t kuid, kgid_t kgid) 1622 { 1623 #ifdef CONFIG_SYSFS 1624 int error = 0; 1625 int i; 1626 1627 for (i = 0; i < num; i++) { 1628 error = tx_queue_change_owner(dev, i, kuid, kgid); 1629 if (error) 1630 break; 1631 } 1632 1633 return error; 1634 #else 1635 return 0; 1636 #endif /* CONFIG_SYSFS */ 1637 } 1638 1639 static int register_queue_kobjects(struct net_device *dev) 1640 { 1641 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1642 1643 #ifdef CONFIG_SYSFS 1644 dev->queues_kset = kset_create_and_add("queues", 1645 NULL, &dev->dev.kobj); 1646 if (!dev->queues_kset) 1647 return -ENOMEM; 1648 real_rx = dev->real_num_rx_queues; 1649 #endif 1650 real_tx = dev->real_num_tx_queues; 1651 1652 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1653 if (error) 1654 goto error; 1655 rxq = real_rx; 1656 1657 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1658 if (error) 1659 goto error; 1660 txq = real_tx; 1661 1662 return 0; 1663 1664 error: 1665 netdev_queue_update_kobjects(dev, txq, 0); 1666 net_rx_queue_update_kobjects(dev, rxq, 0); 1667 #ifdef CONFIG_SYSFS 1668 kset_unregister(dev->queues_kset); 1669 #endif 1670 return error; 1671 } 1672 1673 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1674 { 1675 int error = 0, real_rx = 0, real_tx = 0; 1676 1677 #ifdef CONFIG_SYSFS 1678 if (ndev->queues_kset) { 1679 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1680 if (error) 1681 return error; 1682 } 1683 real_rx = ndev->real_num_rx_queues; 1684 #endif 1685 real_tx = ndev->real_num_tx_queues; 1686 1687 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1688 if (error) 1689 return error; 1690 1691 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1692 if (error) 1693 return error; 1694 1695 return 0; 1696 } 1697 1698 static void remove_queue_kobjects(struct net_device *dev) 1699 { 1700 int real_rx = 0, real_tx = 0; 1701 1702 #ifdef CONFIG_SYSFS 1703 real_rx = dev->real_num_rx_queues; 1704 #endif 1705 real_tx = dev->real_num_tx_queues; 1706 1707 net_rx_queue_update_kobjects(dev, real_rx, 0); 1708 netdev_queue_update_kobjects(dev, real_tx, 0); 1709 #ifdef CONFIG_SYSFS 1710 kset_unregister(dev->queues_kset); 1711 #endif 1712 } 1713 1714 static bool net_current_may_mount(void) 1715 { 1716 struct net *net = current->nsproxy->net_ns; 1717 1718 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1719 } 1720 1721 static void *net_grab_current_ns(void) 1722 { 1723 struct net *ns = current->nsproxy->net_ns; 1724 #ifdef CONFIG_NET_NS 1725 if (ns) 1726 refcount_inc(&ns->passive); 1727 #endif 1728 return ns; 1729 } 1730 1731 static const void *net_initial_ns(void) 1732 { 1733 return &init_net; 1734 } 1735 1736 static const void *net_netlink_ns(struct sock *sk) 1737 { 1738 return sock_net(sk); 1739 } 1740 1741 const struct kobj_ns_type_operations net_ns_type_operations = { 1742 .type = KOBJ_NS_TYPE_NET, 1743 .current_may_mount = net_current_may_mount, 1744 .grab_current_ns = net_grab_current_ns, 1745 .netlink_ns = net_netlink_ns, 1746 .initial_ns = net_initial_ns, 1747 .drop_ns = net_drop_ns, 1748 }; 1749 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1750 1751 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 1752 { 1753 struct net_device *dev = to_net_dev(d); 1754 int retval; 1755 1756 /* pass interface to uevent. */ 1757 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1758 if (retval) 1759 goto exit; 1760 1761 /* pass ifindex to uevent. 1762 * ifindex is useful as it won't change (interface name may change) 1763 * and is what RtNetlink uses natively. 1764 */ 1765 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1766 1767 exit: 1768 return retval; 1769 } 1770 1771 /* 1772 * netdev_release -- destroy and free a dead device. 1773 * Called when last reference to device kobject is gone. 1774 */ 1775 static void netdev_release(struct device *d) 1776 { 1777 struct net_device *dev = to_net_dev(d); 1778 1779 BUG_ON(dev->reg_state != NETREG_RELEASED); 1780 1781 /* no need to wait for rcu grace period: 1782 * device is dead and about to be freed. 1783 */ 1784 kfree(rcu_access_pointer(dev->ifalias)); 1785 netdev_freemem(dev); 1786 } 1787 1788 static const void *net_namespace(struct device *d) 1789 { 1790 struct net_device *dev = to_net_dev(d); 1791 1792 return dev_net(dev); 1793 } 1794 1795 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) 1796 { 1797 struct net_device *dev = to_net_dev(d); 1798 const struct net *net = dev_net(dev); 1799 1800 net_ns_get_ownership(net, uid, gid); 1801 } 1802 1803 static struct class net_class __ro_after_init = { 1804 .name = "net", 1805 .dev_release = netdev_release, 1806 .dev_groups = net_class_groups, 1807 .dev_uevent = netdev_uevent, 1808 .ns_type = &net_ns_type_operations, 1809 .namespace = net_namespace, 1810 .get_ownership = net_get_ownership, 1811 }; 1812 1813 #ifdef CONFIG_OF_NET 1814 static int of_dev_node_match(struct device *dev, const void *data) 1815 { 1816 for (; dev; dev = dev->parent) { 1817 if (dev->of_node == data) 1818 return 1; 1819 } 1820 1821 return 0; 1822 } 1823 1824 /* 1825 * of_find_net_device_by_node - lookup the net device for the device node 1826 * @np: OF device node 1827 * 1828 * Looks up the net_device structure corresponding with the device node. 1829 * If successful, returns a pointer to the net_device with the embedded 1830 * struct device refcount incremented by one, or NULL on failure. The 1831 * refcount must be dropped when done with the net_device. 1832 */ 1833 struct net_device *of_find_net_device_by_node(struct device_node *np) 1834 { 1835 struct device *dev; 1836 1837 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1838 if (!dev) 1839 return NULL; 1840 1841 return to_net_dev(dev); 1842 } 1843 EXPORT_SYMBOL(of_find_net_device_by_node); 1844 #endif 1845 1846 /* Delete sysfs entries but hold kobject reference until after all 1847 * netdev references are gone. 1848 */ 1849 void netdev_unregister_kobject(struct net_device *ndev) 1850 { 1851 struct device *dev = &ndev->dev; 1852 1853 if (!refcount_read(&dev_net(ndev)->count)) 1854 dev_set_uevent_suppress(dev, 1); 1855 1856 kobject_get(&dev->kobj); 1857 1858 remove_queue_kobjects(ndev); 1859 1860 pm_runtime_set_memalloc_noio(dev, false); 1861 1862 device_del(dev); 1863 } 1864 1865 /* Create sysfs entries for network device. */ 1866 int netdev_register_kobject(struct net_device *ndev) 1867 { 1868 struct device *dev = &ndev->dev; 1869 const struct attribute_group **groups = ndev->sysfs_groups; 1870 int error = 0; 1871 1872 device_initialize(dev); 1873 dev->class = &net_class; 1874 dev->platform_data = ndev; 1875 dev->groups = groups; 1876 1877 dev_set_name(dev, "%s", ndev->name); 1878 1879 #ifdef CONFIG_SYSFS 1880 /* Allow for a device specific group */ 1881 if (*groups) 1882 groups++; 1883 1884 *groups++ = &netstat_group; 1885 1886 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 1887 if (ndev->ieee80211_ptr) 1888 *groups++ = &wireless_group; 1889 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 1890 else if (ndev->wireless_handlers) 1891 *groups++ = &wireless_group; 1892 #endif 1893 #endif 1894 #endif /* CONFIG_SYSFS */ 1895 1896 error = device_add(dev); 1897 if (error) 1898 return error; 1899 1900 error = register_queue_kobjects(ndev); 1901 if (error) { 1902 device_del(dev); 1903 return error; 1904 } 1905 1906 pm_runtime_set_memalloc_noio(dev, true); 1907 1908 return error; 1909 } 1910 1911 /* Change owner for sysfs entries when moving network devices across network 1912 * namespaces owned by different user namespaces. 1913 */ 1914 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 1915 const struct net *net_new) 1916 { 1917 struct device *dev = &ndev->dev; 1918 kuid_t old_uid, new_uid; 1919 kgid_t old_gid, new_gid; 1920 int error; 1921 1922 net_ns_get_ownership(net_old, &old_uid, &old_gid); 1923 net_ns_get_ownership(net_new, &new_uid, &new_gid); 1924 1925 /* The network namespace was changed but the owning user namespace is 1926 * identical so there's no need to change the owner of sysfs entries. 1927 */ 1928 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 1929 return 0; 1930 1931 error = device_change_owner(dev, new_uid, new_gid); 1932 if (error) 1933 return error; 1934 1935 error = queue_change_owner(ndev, new_uid, new_gid); 1936 if (error) 1937 return error; 1938 1939 return 0; 1940 } 1941 1942 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 1943 const void *ns) 1944 { 1945 return class_create_file_ns(&net_class, class_attr, ns); 1946 } 1947 EXPORT_SYMBOL(netdev_class_create_file_ns); 1948 1949 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 1950 const void *ns) 1951 { 1952 class_remove_file_ns(&net_class, class_attr, ns); 1953 } 1954 EXPORT_SYMBOL(netdev_class_remove_file_ns); 1955 1956 int __init netdev_kobject_init(void) 1957 { 1958 kobj_ns_type_register(&net_ns_type_operations); 1959 return class_register(&net_class); 1960 } 1961