1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 27 #include "dev.h" 28 #include "net-sysfs.h" 29 30 #ifdef CONFIG_SYSFS 31 static const char fmt_hex[] = "%#x\n"; 32 static const char fmt_dec[] = "%d\n"; 33 static const char fmt_ulong[] = "%lu\n"; 34 static const char fmt_u64[] = "%llu\n"; 35 36 /* Caller holds RTNL or dev_base_lock */ 37 static inline int dev_isalive(const struct net_device *dev) 38 { 39 return dev->reg_state <= NETREG_REGISTERED; 40 } 41 42 /* use same locking rules as GIF* ioctl's */ 43 static ssize_t netdev_show(const struct device *dev, 44 struct device_attribute *attr, char *buf, 45 ssize_t (*format)(const struct net_device *, char *)) 46 { 47 struct net_device *ndev = to_net_dev(dev); 48 ssize_t ret = -EINVAL; 49 50 read_lock(&dev_base_lock); 51 if (dev_isalive(ndev)) 52 ret = (*format)(ndev, buf); 53 read_unlock(&dev_base_lock); 54 55 return ret; 56 } 57 58 /* generate a show function for simple field */ 59 #define NETDEVICE_SHOW(field, format_string) \ 60 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 61 { \ 62 return sysfs_emit(buf, format_string, dev->field); \ 63 } \ 64 static ssize_t field##_show(struct device *dev, \ 65 struct device_attribute *attr, char *buf) \ 66 { \ 67 return netdev_show(dev, attr, buf, format_##field); \ 68 } \ 69 70 #define NETDEVICE_SHOW_RO(field, format_string) \ 71 NETDEVICE_SHOW(field, format_string); \ 72 static DEVICE_ATTR_RO(field) 73 74 #define NETDEVICE_SHOW_RW(field, format_string) \ 75 NETDEVICE_SHOW(field, format_string); \ 76 static DEVICE_ATTR_RW(field) 77 78 /* use same locking and permission rules as SIF* ioctl's */ 79 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 80 const char *buf, size_t len, 81 int (*set)(struct net_device *, unsigned long)) 82 { 83 struct net_device *netdev = to_net_dev(dev); 84 struct net *net = dev_net(netdev); 85 unsigned long new; 86 int ret; 87 88 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 89 return -EPERM; 90 91 ret = kstrtoul(buf, 0, &new); 92 if (ret) 93 goto err; 94 95 if (!rtnl_trylock()) 96 return restart_syscall(); 97 98 if (dev_isalive(netdev)) { 99 ret = (*set)(netdev, new); 100 if (ret == 0) 101 ret = len; 102 } 103 rtnl_unlock(); 104 err: 105 return ret; 106 } 107 108 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 109 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 110 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 111 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 112 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 113 NETDEVICE_SHOW_RO(type, fmt_dec); 114 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 115 116 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 117 char *buf) 118 { 119 struct net_device *ndev = to_net_dev(dev); 120 121 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev)); 122 } 123 static DEVICE_ATTR_RO(iflink); 124 125 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 126 { 127 return sysfs_emit(buf, fmt_dec, dev->name_assign_type); 128 } 129 130 static ssize_t name_assign_type_show(struct device *dev, 131 struct device_attribute *attr, 132 char *buf) 133 { 134 struct net_device *ndev = to_net_dev(dev); 135 ssize_t ret = -EINVAL; 136 137 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 138 ret = netdev_show(dev, attr, buf, format_name_assign_type); 139 140 return ret; 141 } 142 static DEVICE_ATTR_RO(name_assign_type); 143 144 /* use same locking rules as GIFHWADDR ioctl's */ 145 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 146 char *buf) 147 { 148 struct net_device *ndev = to_net_dev(dev); 149 ssize_t ret = -EINVAL; 150 151 read_lock(&dev_base_lock); 152 if (dev_isalive(ndev)) 153 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 154 read_unlock(&dev_base_lock); 155 return ret; 156 } 157 static DEVICE_ATTR_RO(address); 158 159 static ssize_t broadcast_show(struct device *dev, 160 struct device_attribute *attr, char *buf) 161 { 162 struct net_device *ndev = to_net_dev(dev); 163 164 if (dev_isalive(ndev)) 165 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 166 return -EINVAL; 167 } 168 static DEVICE_ATTR_RO(broadcast); 169 170 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 171 { 172 if (!netif_running(dev)) 173 return -EINVAL; 174 return dev_change_carrier(dev, (bool)new_carrier); 175 } 176 177 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 178 const char *buf, size_t len) 179 { 180 struct net_device *netdev = to_net_dev(dev); 181 182 /* The check is also done in change_carrier; this helps returning early 183 * without hitting the trylock/restart in netdev_store. 184 */ 185 if (!netdev->netdev_ops->ndo_change_carrier) 186 return -EOPNOTSUPP; 187 188 return netdev_store(dev, attr, buf, len, change_carrier); 189 } 190 191 static ssize_t carrier_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct net_device *netdev = to_net_dev(dev); 195 196 if (netif_running(netdev)) 197 return sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev)); 198 199 return -EINVAL; 200 } 201 static DEVICE_ATTR_RW(carrier); 202 203 static ssize_t speed_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct net_device *netdev = to_net_dev(dev); 207 int ret = -EINVAL; 208 209 /* The check is also done in __ethtool_get_link_ksettings; this helps 210 * returning early without hitting the trylock/restart below. 211 */ 212 if (!netdev->ethtool_ops->get_link_ksettings) 213 return ret; 214 215 if (!rtnl_trylock()) 216 return restart_syscall(); 217 218 if (netif_running(netdev) && netif_device_present(netdev)) { 219 struct ethtool_link_ksettings cmd; 220 221 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 222 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed); 223 } 224 rtnl_unlock(); 225 return ret; 226 } 227 static DEVICE_ATTR_RO(speed); 228 229 static ssize_t duplex_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231 { 232 struct net_device *netdev = to_net_dev(dev); 233 int ret = -EINVAL; 234 235 /* The check is also done in __ethtool_get_link_ksettings; this helps 236 * returning early without hitting the trylock/restart below. 237 */ 238 if (!netdev->ethtool_ops->get_link_ksettings) 239 return ret; 240 241 if (!rtnl_trylock()) 242 return restart_syscall(); 243 244 if (netif_running(netdev)) { 245 struct ethtool_link_ksettings cmd; 246 247 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 248 const char *duplex; 249 250 switch (cmd.base.duplex) { 251 case DUPLEX_HALF: 252 duplex = "half"; 253 break; 254 case DUPLEX_FULL: 255 duplex = "full"; 256 break; 257 default: 258 duplex = "unknown"; 259 break; 260 } 261 ret = sysfs_emit(buf, "%s\n", duplex); 262 } 263 } 264 rtnl_unlock(); 265 return ret; 266 } 267 static DEVICE_ATTR_RO(duplex); 268 269 static ssize_t testing_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271 { 272 struct net_device *netdev = to_net_dev(dev); 273 274 if (netif_running(netdev)) 275 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev)); 276 277 return -EINVAL; 278 } 279 static DEVICE_ATTR_RO(testing); 280 281 static ssize_t dormant_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct net_device *netdev = to_net_dev(dev); 285 286 if (netif_running(netdev)) 287 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev)); 288 289 return -EINVAL; 290 } 291 static DEVICE_ATTR_RO(dormant); 292 293 static const char *const operstates[] = { 294 "unknown", 295 "notpresent", /* currently unused */ 296 "down", 297 "lowerlayerdown", 298 "testing", 299 "dormant", 300 "up" 301 }; 302 303 static ssize_t operstate_show(struct device *dev, 304 struct device_attribute *attr, char *buf) 305 { 306 const struct net_device *netdev = to_net_dev(dev); 307 unsigned char operstate; 308 309 read_lock(&dev_base_lock); 310 operstate = netdev->operstate; 311 if (!netif_running(netdev)) 312 operstate = IF_OPER_DOWN; 313 read_unlock(&dev_base_lock); 314 315 if (operstate >= ARRAY_SIZE(operstates)) 316 return -EINVAL; /* should not happen */ 317 318 return sysfs_emit(buf, "%s\n", operstates[operstate]); 319 } 320 static DEVICE_ATTR_RO(operstate); 321 322 static ssize_t carrier_changes_show(struct device *dev, 323 struct device_attribute *attr, 324 char *buf) 325 { 326 struct net_device *netdev = to_net_dev(dev); 327 328 return sysfs_emit(buf, fmt_dec, 329 atomic_read(&netdev->carrier_up_count) + 330 atomic_read(&netdev->carrier_down_count)); 331 } 332 static DEVICE_ATTR_RO(carrier_changes); 333 334 static ssize_t carrier_up_count_show(struct device *dev, 335 struct device_attribute *attr, 336 char *buf) 337 { 338 struct net_device *netdev = to_net_dev(dev); 339 340 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 341 } 342 static DEVICE_ATTR_RO(carrier_up_count); 343 344 static ssize_t carrier_down_count_show(struct device *dev, 345 struct device_attribute *attr, 346 char *buf) 347 { 348 struct net_device *netdev = to_net_dev(dev); 349 350 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 351 } 352 static DEVICE_ATTR_RO(carrier_down_count); 353 354 /* read-write attributes */ 355 356 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 357 { 358 return dev_set_mtu(dev, (int)new_mtu); 359 } 360 361 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 362 const char *buf, size_t len) 363 { 364 return netdev_store(dev, attr, buf, len, change_mtu); 365 } 366 NETDEVICE_SHOW_RW(mtu, fmt_dec); 367 368 static int change_flags(struct net_device *dev, unsigned long new_flags) 369 { 370 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 371 } 372 373 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 374 const char *buf, size_t len) 375 { 376 return netdev_store(dev, attr, buf, len, change_flags); 377 } 378 NETDEVICE_SHOW_RW(flags, fmt_hex); 379 380 static ssize_t tx_queue_len_store(struct device *dev, 381 struct device_attribute *attr, 382 const char *buf, size_t len) 383 { 384 if (!capable(CAP_NET_ADMIN)) 385 return -EPERM; 386 387 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 388 } 389 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 390 391 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 392 { 393 WRITE_ONCE(dev->gro_flush_timeout, val); 394 return 0; 395 } 396 397 static ssize_t gro_flush_timeout_store(struct device *dev, 398 struct device_attribute *attr, 399 const char *buf, size_t len) 400 { 401 if (!capable(CAP_NET_ADMIN)) 402 return -EPERM; 403 404 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 405 } 406 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 407 408 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 409 { 410 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 411 return 0; 412 } 413 414 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 415 struct device_attribute *attr, 416 const char *buf, size_t len) 417 { 418 if (!capable(CAP_NET_ADMIN)) 419 return -EPERM; 420 421 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 422 } 423 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 424 425 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 426 const char *buf, size_t len) 427 { 428 struct net_device *netdev = to_net_dev(dev); 429 struct net *net = dev_net(netdev); 430 size_t count = len; 431 ssize_t ret = 0; 432 433 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 434 return -EPERM; 435 436 /* ignore trailing newline */ 437 if (len > 0 && buf[len - 1] == '\n') 438 --count; 439 440 if (!rtnl_trylock()) 441 return restart_syscall(); 442 443 if (dev_isalive(netdev)) { 444 ret = dev_set_alias(netdev, buf, count); 445 if (ret < 0) 446 goto err; 447 ret = len; 448 netdev_state_change(netdev); 449 } 450 err: 451 rtnl_unlock(); 452 453 return ret; 454 } 455 456 static ssize_t ifalias_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 const struct net_device *netdev = to_net_dev(dev); 460 char tmp[IFALIASZ]; 461 ssize_t ret = 0; 462 463 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 464 if (ret > 0) 465 ret = sysfs_emit(buf, "%s\n", tmp); 466 return ret; 467 } 468 static DEVICE_ATTR_RW(ifalias); 469 470 static int change_group(struct net_device *dev, unsigned long new_group) 471 { 472 dev_set_group(dev, (int)new_group); 473 return 0; 474 } 475 476 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 477 const char *buf, size_t len) 478 { 479 return netdev_store(dev, attr, buf, len, change_group); 480 } 481 NETDEVICE_SHOW(group, fmt_dec); 482 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 483 484 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 485 { 486 return dev_change_proto_down(dev, (bool)proto_down); 487 } 488 489 static ssize_t proto_down_store(struct device *dev, 490 struct device_attribute *attr, 491 const char *buf, size_t len) 492 { 493 return netdev_store(dev, attr, buf, len, change_proto_down); 494 } 495 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 496 497 static ssize_t phys_port_id_show(struct device *dev, 498 struct device_attribute *attr, char *buf) 499 { 500 struct net_device *netdev = to_net_dev(dev); 501 ssize_t ret = -EINVAL; 502 503 /* The check is also done in dev_get_phys_port_id; this helps returning 504 * early without hitting the trylock/restart below. 505 */ 506 if (!netdev->netdev_ops->ndo_get_phys_port_id) 507 return -EOPNOTSUPP; 508 509 if (!rtnl_trylock()) 510 return restart_syscall(); 511 512 if (dev_isalive(netdev)) { 513 struct netdev_phys_item_id ppid; 514 515 ret = dev_get_phys_port_id(netdev, &ppid); 516 if (!ret) 517 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 518 } 519 rtnl_unlock(); 520 521 return ret; 522 } 523 static DEVICE_ATTR_RO(phys_port_id); 524 525 static ssize_t phys_port_name_show(struct device *dev, 526 struct device_attribute *attr, char *buf) 527 { 528 struct net_device *netdev = to_net_dev(dev); 529 ssize_t ret = -EINVAL; 530 531 /* The checks are also done in dev_get_phys_port_name; this helps 532 * returning early without hitting the trylock/restart below. 533 */ 534 if (!netdev->netdev_ops->ndo_get_phys_port_name && 535 !netdev->devlink_port) 536 return -EOPNOTSUPP; 537 538 if (!rtnl_trylock()) 539 return restart_syscall(); 540 541 if (dev_isalive(netdev)) { 542 char name[IFNAMSIZ]; 543 544 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 545 if (!ret) 546 ret = sysfs_emit(buf, "%s\n", name); 547 } 548 rtnl_unlock(); 549 550 return ret; 551 } 552 static DEVICE_ATTR_RO(phys_port_name); 553 554 static ssize_t phys_switch_id_show(struct device *dev, 555 struct device_attribute *attr, char *buf) 556 { 557 struct net_device *netdev = to_net_dev(dev); 558 ssize_t ret = -EINVAL; 559 560 /* The checks are also done in dev_get_phys_port_name; this helps 561 * returning early without hitting the trylock/restart below. This works 562 * because recurse is false when calling dev_get_port_parent_id. 563 */ 564 if (!netdev->netdev_ops->ndo_get_port_parent_id && 565 !netdev->devlink_port) 566 return -EOPNOTSUPP; 567 568 if (!rtnl_trylock()) 569 return restart_syscall(); 570 571 if (dev_isalive(netdev)) { 572 struct netdev_phys_item_id ppid = { }; 573 574 ret = dev_get_port_parent_id(netdev, &ppid, false); 575 if (!ret) 576 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 577 } 578 rtnl_unlock(); 579 580 return ret; 581 } 582 static DEVICE_ATTR_RO(phys_switch_id); 583 584 static ssize_t threaded_show(struct device *dev, 585 struct device_attribute *attr, char *buf) 586 { 587 struct net_device *netdev = to_net_dev(dev); 588 ssize_t ret = -EINVAL; 589 590 if (!rtnl_trylock()) 591 return restart_syscall(); 592 593 if (dev_isalive(netdev)) 594 ret = sysfs_emit(buf, fmt_dec, netdev->threaded); 595 596 rtnl_unlock(); 597 return ret; 598 } 599 600 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 601 { 602 int ret; 603 604 if (list_empty(&dev->napi_list)) 605 return -EOPNOTSUPP; 606 607 if (val != 0 && val != 1) 608 return -EOPNOTSUPP; 609 610 ret = dev_set_threaded(dev, val); 611 612 return ret; 613 } 614 615 static ssize_t threaded_store(struct device *dev, 616 struct device_attribute *attr, 617 const char *buf, size_t len) 618 { 619 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 620 } 621 static DEVICE_ATTR_RW(threaded); 622 623 static struct attribute *net_class_attrs[] __ro_after_init = { 624 &dev_attr_netdev_group.attr, 625 &dev_attr_type.attr, 626 &dev_attr_dev_id.attr, 627 &dev_attr_dev_port.attr, 628 &dev_attr_iflink.attr, 629 &dev_attr_ifindex.attr, 630 &dev_attr_name_assign_type.attr, 631 &dev_attr_addr_assign_type.attr, 632 &dev_attr_addr_len.attr, 633 &dev_attr_link_mode.attr, 634 &dev_attr_address.attr, 635 &dev_attr_broadcast.attr, 636 &dev_attr_speed.attr, 637 &dev_attr_duplex.attr, 638 &dev_attr_dormant.attr, 639 &dev_attr_testing.attr, 640 &dev_attr_operstate.attr, 641 &dev_attr_carrier_changes.attr, 642 &dev_attr_ifalias.attr, 643 &dev_attr_carrier.attr, 644 &dev_attr_mtu.attr, 645 &dev_attr_flags.attr, 646 &dev_attr_tx_queue_len.attr, 647 &dev_attr_gro_flush_timeout.attr, 648 &dev_attr_napi_defer_hard_irqs.attr, 649 &dev_attr_phys_port_id.attr, 650 &dev_attr_phys_port_name.attr, 651 &dev_attr_phys_switch_id.attr, 652 &dev_attr_proto_down.attr, 653 &dev_attr_carrier_up_count.attr, 654 &dev_attr_carrier_down_count.attr, 655 &dev_attr_threaded.attr, 656 NULL, 657 }; 658 ATTRIBUTE_GROUPS(net_class); 659 660 /* Show a given an attribute in the statistics group */ 661 static ssize_t netstat_show(const struct device *d, 662 struct device_attribute *attr, char *buf, 663 unsigned long offset) 664 { 665 struct net_device *dev = to_net_dev(d); 666 ssize_t ret = -EINVAL; 667 668 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 669 offset % sizeof(u64) != 0); 670 671 read_lock(&dev_base_lock); 672 if (dev_isalive(dev)) { 673 struct rtnl_link_stats64 temp; 674 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 675 676 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 677 } 678 read_unlock(&dev_base_lock); 679 return ret; 680 } 681 682 /* generate a read-only statistics attribute */ 683 #define NETSTAT_ENTRY(name) \ 684 static ssize_t name##_show(struct device *d, \ 685 struct device_attribute *attr, char *buf) \ 686 { \ 687 return netstat_show(d, attr, buf, \ 688 offsetof(struct rtnl_link_stats64, name)); \ 689 } \ 690 static DEVICE_ATTR_RO(name) 691 692 NETSTAT_ENTRY(rx_packets); 693 NETSTAT_ENTRY(tx_packets); 694 NETSTAT_ENTRY(rx_bytes); 695 NETSTAT_ENTRY(tx_bytes); 696 NETSTAT_ENTRY(rx_errors); 697 NETSTAT_ENTRY(tx_errors); 698 NETSTAT_ENTRY(rx_dropped); 699 NETSTAT_ENTRY(tx_dropped); 700 NETSTAT_ENTRY(multicast); 701 NETSTAT_ENTRY(collisions); 702 NETSTAT_ENTRY(rx_length_errors); 703 NETSTAT_ENTRY(rx_over_errors); 704 NETSTAT_ENTRY(rx_crc_errors); 705 NETSTAT_ENTRY(rx_frame_errors); 706 NETSTAT_ENTRY(rx_fifo_errors); 707 NETSTAT_ENTRY(rx_missed_errors); 708 NETSTAT_ENTRY(tx_aborted_errors); 709 NETSTAT_ENTRY(tx_carrier_errors); 710 NETSTAT_ENTRY(tx_fifo_errors); 711 NETSTAT_ENTRY(tx_heartbeat_errors); 712 NETSTAT_ENTRY(tx_window_errors); 713 NETSTAT_ENTRY(rx_compressed); 714 NETSTAT_ENTRY(tx_compressed); 715 NETSTAT_ENTRY(rx_nohandler); 716 717 static struct attribute *netstat_attrs[] __ro_after_init = { 718 &dev_attr_rx_packets.attr, 719 &dev_attr_tx_packets.attr, 720 &dev_attr_rx_bytes.attr, 721 &dev_attr_tx_bytes.attr, 722 &dev_attr_rx_errors.attr, 723 &dev_attr_tx_errors.attr, 724 &dev_attr_rx_dropped.attr, 725 &dev_attr_tx_dropped.attr, 726 &dev_attr_multicast.attr, 727 &dev_attr_collisions.attr, 728 &dev_attr_rx_length_errors.attr, 729 &dev_attr_rx_over_errors.attr, 730 &dev_attr_rx_crc_errors.attr, 731 &dev_attr_rx_frame_errors.attr, 732 &dev_attr_rx_fifo_errors.attr, 733 &dev_attr_rx_missed_errors.attr, 734 &dev_attr_tx_aborted_errors.attr, 735 &dev_attr_tx_carrier_errors.attr, 736 &dev_attr_tx_fifo_errors.attr, 737 &dev_attr_tx_heartbeat_errors.attr, 738 &dev_attr_tx_window_errors.attr, 739 &dev_attr_rx_compressed.attr, 740 &dev_attr_tx_compressed.attr, 741 &dev_attr_rx_nohandler.attr, 742 NULL 743 }; 744 745 static const struct attribute_group netstat_group = { 746 .name = "statistics", 747 .attrs = netstat_attrs, 748 }; 749 750 static struct attribute *wireless_attrs[] = { 751 NULL 752 }; 753 754 static const struct attribute_group wireless_group = { 755 .name = "wireless", 756 .attrs = wireless_attrs, 757 }; 758 759 static bool wireless_group_needed(struct net_device *ndev) 760 { 761 #if IS_ENABLED(CONFIG_CFG80211) 762 if (ndev->ieee80211_ptr) 763 return true; 764 #endif 765 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 766 if (ndev->wireless_handlers) 767 return true; 768 #endif 769 return false; 770 } 771 772 #else /* CONFIG_SYSFS */ 773 #define net_class_groups NULL 774 #endif /* CONFIG_SYSFS */ 775 776 #ifdef CONFIG_SYSFS 777 #define to_rx_queue_attr(_attr) \ 778 container_of(_attr, struct rx_queue_attribute, attr) 779 780 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 781 782 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 783 char *buf) 784 { 785 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 786 struct netdev_rx_queue *queue = to_rx_queue(kobj); 787 788 if (!attribute->show) 789 return -EIO; 790 791 return attribute->show(queue, buf); 792 } 793 794 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 795 const char *buf, size_t count) 796 { 797 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 798 struct netdev_rx_queue *queue = to_rx_queue(kobj); 799 800 if (!attribute->store) 801 return -EIO; 802 803 return attribute->store(queue, buf, count); 804 } 805 806 static const struct sysfs_ops rx_queue_sysfs_ops = { 807 .show = rx_queue_attr_show, 808 .store = rx_queue_attr_store, 809 }; 810 811 #ifdef CONFIG_RPS 812 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 813 { 814 struct rps_map *map; 815 cpumask_var_t mask; 816 int i, len; 817 818 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 819 return -ENOMEM; 820 821 rcu_read_lock(); 822 map = rcu_dereference(queue->rps_map); 823 if (map) 824 for (i = 0; i < map->len; i++) 825 cpumask_set_cpu(map->cpus[i], mask); 826 827 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask)); 828 rcu_read_unlock(); 829 free_cpumask_var(mask); 830 831 return len < PAGE_SIZE ? len : -EINVAL; 832 } 833 834 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue, 835 cpumask_var_t mask) 836 { 837 static DEFINE_MUTEX(rps_map_mutex); 838 struct rps_map *old_map, *map; 839 int cpu, i; 840 841 map = kzalloc(max_t(unsigned int, 842 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 843 GFP_KERNEL); 844 if (!map) 845 return -ENOMEM; 846 847 i = 0; 848 for_each_cpu_and(cpu, mask, cpu_online_mask) 849 map->cpus[i++] = cpu; 850 851 if (i) { 852 map->len = i; 853 } else { 854 kfree(map); 855 map = NULL; 856 } 857 858 mutex_lock(&rps_map_mutex); 859 old_map = rcu_dereference_protected(queue->rps_map, 860 mutex_is_locked(&rps_map_mutex)); 861 rcu_assign_pointer(queue->rps_map, map); 862 863 if (map) 864 static_branch_inc(&rps_needed); 865 if (old_map) 866 static_branch_dec(&rps_needed); 867 868 mutex_unlock(&rps_map_mutex); 869 870 if (old_map) 871 kfree_rcu(old_map, rcu); 872 return 0; 873 } 874 875 int rps_cpumask_housekeeping(struct cpumask *mask) 876 { 877 if (!cpumask_empty(mask)) { 878 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 879 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); 880 if (cpumask_empty(mask)) 881 return -EINVAL; 882 } 883 return 0; 884 } 885 886 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 887 const char *buf, size_t len) 888 { 889 cpumask_var_t mask; 890 int err; 891 892 if (!capable(CAP_NET_ADMIN)) 893 return -EPERM; 894 895 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 896 return -ENOMEM; 897 898 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 899 if (err) 900 goto out; 901 902 err = rps_cpumask_housekeeping(mask); 903 if (err) 904 goto out; 905 906 err = netdev_rx_queue_set_rps_mask(queue, mask); 907 908 out: 909 free_cpumask_var(mask); 910 return err ? : len; 911 } 912 913 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 914 char *buf) 915 { 916 struct rps_dev_flow_table *flow_table; 917 unsigned long val = 0; 918 919 rcu_read_lock(); 920 flow_table = rcu_dereference(queue->rps_flow_table); 921 if (flow_table) 922 val = (unsigned long)flow_table->mask + 1; 923 rcu_read_unlock(); 924 925 return sysfs_emit(buf, "%lu\n", val); 926 } 927 928 static void rps_dev_flow_table_release(struct rcu_head *rcu) 929 { 930 struct rps_dev_flow_table *table = container_of(rcu, 931 struct rps_dev_flow_table, rcu); 932 vfree(table); 933 } 934 935 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 936 const char *buf, size_t len) 937 { 938 unsigned long mask, count; 939 struct rps_dev_flow_table *table, *old_table; 940 static DEFINE_SPINLOCK(rps_dev_flow_lock); 941 int rc; 942 943 if (!capable(CAP_NET_ADMIN)) 944 return -EPERM; 945 946 rc = kstrtoul(buf, 0, &count); 947 if (rc < 0) 948 return rc; 949 950 if (count) { 951 mask = count - 1; 952 /* mask = roundup_pow_of_two(count) - 1; 953 * without overflows... 954 */ 955 while ((mask | (mask >> 1)) != mask) 956 mask |= (mask >> 1); 957 /* On 64 bit arches, must check mask fits in table->mask (u32), 958 * and on 32bit arches, must check 959 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 960 */ 961 #if BITS_PER_LONG > 32 962 if (mask > (unsigned long)(u32)mask) 963 return -EINVAL; 964 #else 965 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 966 / sizeof(struct rps_dev_flow)) { 967 /* Enforce a limit to prevent overflow */ 968 return -EINVAL; 969 } 970 #endif 971 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 972 if (!table) 973 return -ENOMEM; 974 975 table->mask = mask; 976 for (count = 0; count <= mask; count++) 977 table->flows[count].cpu = RPS_NO_CPU; 978 } else { 979 table = NULL; 980 } 981 982 spin_lock(&rps_dev_flow_lock); 983 old_table = rcu_dereference_protected(queue->rps_flow_table, 984 lockdep_is_held(&rps_dev_flow_lock)); 985 rcu_assign_pointer(queue->rps_flow_table, table); 986 spin_unlock(&rps_dev_flow_lock); 987 988 if (old_table) 989 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 990 991 return len; 992 } 993 994 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 995 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 996 997 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 998 = __ATTR(rps_flow_cnt, 0644, 999 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 1000 #endif /* CONFIG_RPS */ 1001 1002 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 1003 #ifdef CONFIG_RPS 1004 &rps_cpus_attribute.attr, 1005 &rps_dev_flow_table_cnt_attribute.attr, 1006 #endif 1007 NULL 1008 }; 1009 ATTRIBUTE_GROUPS(rx_queue_default); 1010 1011 static void rx_queue_release(struct kobject *kobj) 1012 { 1013 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1014 #ifdef CONFIG_RPS 1015 struct rps_map *map; 1016 struct rps_dev_flow_table *flow_table; 1017 1018 map = rcu_dereference_protected(queue->rps_map, 1); 1019 if (map) { 1020 RCU_INIT_POINTER(queue->rps_map, NULL); 1021 kfree_rcu(map, rcu); 1022 } 1023 1024 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1025 if (flow_table) { 1026 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1027 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1028 } 1029 #endif 1030 1031 memset(kobj, 0, sizeof(*kobj)); 1032 netdev_put(queue->dev, &queue->dev_tracker); 1033 } 1034 1035 static const void *rx_queue_namespace(const struct kobject *kobj) 1036 { 1037 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1038 struct device *dev = &queue->dev->dev; 1039 const void *ns = NULL; 1040 1041 if (dev->class && dev->class->ns_type) 1042 ns = dev->class->namespace(dev); 1043 1044 return ns; 1045 } 1046 1047 static void rx_queue_get_ownership(const struct kobject *kobj, 1048 kuid_t *uid, kgid_t *gid) 1049 { 1050 const struct net *net = rx_queue_namespace(kobj); 1051 1052 net_ns_get_ownership(net, uid, gid); 1053 } 1054 1055 static const struct kobj_type rx_queue_ktype = { 1056 .sysfs_ops = &rx_queue_sysfs_ops, 1057 .release = rx_queue_release, 1058 .default_groups = rx_queue_default_groups, 1059 .namespace = rx_queue_namespace, 1060 .get_ownership = rx_queue_get_ownership, 1061 }; 1062 1063 static int rx_queue_default_mask(struct net_device *dev, 1064 struct netdev_rx_queue *queue) 1065 { 1066 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL) 1067 struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask); 1068 1069 if (rps_default_mask && !cpumask_empty(rps_default_mask)) 1070 return netdev_rx_queue_set_rps_mask(queue, rps_default_mask); 1071 #endif 1072 return 0; 1073 } 1074 1075 static int rx_queue_add_kobject(struct net_device *dev, int index) 1076 { 1077 struct netdev_rx_queue *queue = dev->_rx + index; 1078 struct kobject *kobj = &queue->kobj; 1079 int error = 0; 1080 1081 /* Kobject_put later will trigger rx_queue_release call which 1082 * decreases dev refcount: Take that reference here 1083 */ 1084 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1085 1086 kobj->kset = dev->queues_kset; 1087 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1088 "rx-%u", index); 1089 if (error) 1090 goto err; 1091 1092 if (dev->sysfs_rx_queue_group) { 1093 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1094 if (error) 1095 goto err; 1096 } 1097 1098 error = rx_queue_default_mask(dev, queue); 1099 if (error) 1100 goto err; 1101 1102 kobject_uevent(kobj, KOBJ_ADD); 1103 1104 return error; 1105 1106 err: 1107 kobject_put(kobj); 1108 return error; 1109 } 1110 1111 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1112 kgid_t kgid) 1113 { 1114 struct netdev_rx_queue *queue = dev->_rx + index; 1115 struct kobject *kobj = &queue->kobj; 1116 int error; 1117 1118 error = sysfs_change_owner(kobj, kuid, kgid); 1119 if (error) 1120 return error; 1121 1122 if (dev->sysfs_rx_queue_group) 1123 error = sysfs_group_change_owner( 1124 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1125 1126 return error; 1127 } 1128 #endif /* CONFIG_SYSFS */ 1129 1130 int 1131 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1132 { 1133 #ifdef CONFIG_SYSFS 1134 int i; 1135 int error = 0; 1136 1137 #ifndef CONFIG_RPS 1138 if (!dev->sysfs_rx_queue_group) 1139 return 0; 1140 #endif 1141 for (i = old_num; i < new_num; i++) { 1142 error = rx_queue_add_kobject(dev, i); 1143 if (error) { 1144 new_num = old_num; 1145 break; 1146 } 1147 } 1148 1149 while (--i >= new_num) { 1150 struct kobject *kobj = &dev->_rx[i].kobj; 1151 1152 if (!refcount_read(&dev_net(dev)->ns.count)) 1153 kobj->uevent_suppress = 1; 1154 if (dev->sysfs_rx_queue_group) 1155 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1156 kobject_put(kobj); 1157 } 1158 1159 return error; 1160 #else 1161 return 0; 1162 #endif 1163 } 1164 1165 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1166 kuid_t kuid, kgid_t kgid) 1167 { 1168 #ifdef CONFIG_SYSFS 1169 int error = 0; 1170 int i; 1171 1172 #ifndef CONFIG_RPS 1173 if (!dev->sysfs_rx_queue_group) 1174 return 0; 1175 #endif 1176 for (i = 0; i < num; i++) { 1177 error = rx_queue_change_owner(dev, i, kuid, kgid); 1178 if (error) 1179 break; 1180 } 1181 1182 return error; 1183 #else 1184 return 0; 1185 #endif 1186 } 1187 1188 #ifdef CONFIG_SYSFS 1189 /* 1190 * netdev_queue sysfs structures and functions. 1191 */ 1192 struct netdev_queue_attribute { 1193 struct attribute attr; 1194 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1195 ssize_t (*store)(struct netdev_queue *queue, 1196 const char *buf, size_t len); 1197 }; 1198 #define to_netdev_queue_attr(_attr) \ 1199 container_of(_attr, struct netdev_queue_attribute, attr) 1200 1201 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1202 1203 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1204 struct attribute *attr, char *buf) 1205 { 1206 const struct netdev_queue_attribute *attribute 1207 = to_netdev_queue_attr(attr); 1208 struct netdev_queue *queue = to_netdev_queue(kobj); 1209 1210 if (!attribute->show) 1211 return -EIO; 1212 1213 return attribute->show(queue, buf); 1214 } 1215 1216 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1217 struct attribute *attr, 1218 const char *buf, size_t count) 1219 { 1220 const struct netdev_queue_attribute *attribute 1221 = to_netdev_queue_attr(attr); 1222 struct netdev_queue *queue = to_netdev_queue(kobj); 1223 1224 if (!attribute->store) 1225 return -EIO; 1226 1227 return attribute->store(queue, buf, count); 1228 } 1229 1230 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1231 .show = netdev_queue_attr_show, 1232 .store = netdev_queue_attr_store, 1233 }; 1234 1235 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1236 { 1237 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1238 1239 return sysfs_emit(buf, fmt_ulong, trans_timeout); 1240 } 1241 1242 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1243 { 1244 struct net_device *dev = queue->dev; 1245 unsigned int i; 1246 1247 i = queue - dev->_tx; 1248 BUG_ON(i >= dev->num_tx_queues); 1249 1250 return i; 1251 } 1252 1253 static ssize_t traffic_class_show(struct netdev_queue *queue, 1254 char *buf) 1255 { 1256 struct net_device *dev = queue->dev; 1257 int num_tc, tc; 1258 int index; 1259 1260 if (!netif_is_multiqueue(dev)) 1261 return -ENOENT; 1262 1263 if (!rtnl_trylock()) 1264 return restart_syscall(); 1265 1266 index = get_netdev_queue_index(queue); 1267 1268 /* If queue belongs to subordinate dev use its TC mapping */ 1269 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1270 1271 num_tc = dev->num_tc; 1272 tc = netdev_txq_to_tc(dev, index); 1273 1274 rtnl_unlock(); 1275 1276 if (tc < 0) 1277 return -EINVAL; 1278 1279 /* We can report the traffic class one of two ways: 1280 * Subordinate device traffic classes are reported with the traffic 1281 * class first, and then the subordinate class so for example TC0 on 1282 * subordinate device 2 will be reported as "0-2". If the queue 1283 * belongs to the root device it will be reported with just the 1284 * traffic class, so just "0" for TC 0 for example. 1285 */ 1286 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) : 1287 sysfs_emit(buf, "%d\n", tc); 1288 } 1289 1290 #ifdef CONFIG_XPS 1291 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1292 char *buf) 1293 { 1294 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate); 1295 } 1296 1297 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1298 const char *buf, size_t len) 1299 { 1300 struct net_device *dev = queue->dev; 1301 int err, index = get_netdev_queue_index(queue); 1302 u32 rate = 0; 1303 1304 if (!capable(CAP_NET_ADMIN)) 1305 return -EPERM; 1306 1307 /* The check is also done later; this helps returning early without 1308 * hitting the trylock/restart below. 1309 */ 1310 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1311 return -EOPNOTSUPP; 1312 1313 err = kstrtou32(buf, 10, &rate); 1314 if (err < 0) 1315 return err; 1316 1317 if (!rtnl_trylock()) 1318 return restart_syscall(); 1319 1320 err = -EOPNOTSUPP; 1321 if (dev->netdev_ops->ndo_set_tx_maxrate) 1322 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1323 1324 rtnl_unlock(); 1325 if (!err) { 1326 queue->tx_maxrate = rate; 1327 return len; 1328 } 1329 return err; 1330 } 1331 1332 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1333 = __ATTR_RW(tx_maxrate); 1334 #endif 1335 1336 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1337 = __ATTR_RO(tx_timeout); 1338 1339 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1340 = __ATTR_RO(traffic_class); 1341 1342 #ifdef CONFIG_BQL 1343 /* 1344 * Byte queue limits sysfs structures and functions. 1345 */ 1346 static ssize_t bql_show(char *buf, unsigned int value) 1347 { 1348 return sysfs_emit(buf, "%u\n", value); 1349 } 1350 1351 static ssize_t bql_set(const char *buf, const size_t count, 1352 unsigned int *pvalue) 1353 { 1354 unsigned int value; 1355 int err; 1356 1357 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1358 value = DQL_MAX_LIMIT; 1359 } else { 1360 err = kstrtouint(buf, 10, &value); 1361 if (err < 0) 1362 return err; 1363 if (value > DQL_MAX_LIMIT) 1364 return -EINVAL; 1365 } 1366 1367 *pvalue = value; 1368 1369 return count; 1370 } 1371 1372 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1373 char *buf) 1374 { 1375 struct dql *dql = &queue->dql; 1376 1377 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1378 } 1379 1380 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1381 const char *buf, size_t len) 1382 { 1383 struct dql *dql = &queue->dql; 1384 unsigned int value; 1385 int err; 1386 1387 err = kstrtouint(buf, 10, &value); 1388 if (err < 0) 1389 return err; 1390 1391 dql->slack_hold_time = msecs_to_jiffies(value); 1392 1393 return len; 1394 } 1395 1396 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1397 = __ATTR(hold_time, 0644, 1398 bql_show_hold_time, bql_set_hold_time); 1399 1400 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1401 char *buf) 1402 { 1403 struct dql *dql = &queue->dql; 1404 1405 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed); 1406 } 1407 1408 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1409 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1410 1411 #define BQL_ATTR(NAME, FIELD) \ 1412 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1413 char *buf) \ 1414 { \ 1415 return bql_show(buf, queue->dql.FIELD); \ 1416 } \ 1417 \ 1418 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1419 const char *buf, size_t len) \ 1420 { \ 1421 return bql_set(buf, len, &queue->dql.FIELD); \ 1422 } \ 1423 \ 1424 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1425 = __ATTR(NAME, 0644, \ 1426 bql_show_ ## NAME, bql_set_ ## NAME) 1427 1428 BQL_ATTR(limit, limit); 1429 BQL_ATTR(limit_max, max_limit); 1430 BQL_ATTR(limit_min, min_limit); 1431 1432 static struct attribute *dql_attrs[] __ro_after_init = { 1433 &bql_limit_attribute.attr, 1434 &bql_limit_max_attribute.attr, 1435 &bql_limit_min_attribute.attr, 1436 &bql_hold_time_attribute.attr, 1437 &bql_inflight_attribute.attr, 1438 NULL 1439 }; 1440 1441 static const struct attribute_group dql_group = { 1442 .name = "byte_queue_limits", 1443 .attrs = dql_attrs, 1444 }; 1445 #endif /* CONFIG_BQL */ 1446 1447 #ifdef CONFIG_XPS 1448 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1449 int tc, char *buf, enum xps_map_type type) 1450 { 1451 struct xps_dev_maps *dev_maps; 1452 unsigned long *mask; 1453 unsigned int nr_ids; 1454 int j, len; 1455 1456 rcu_read_lock(); 1457 dev_maps = rcu_dereference(dev->xps_maps[type]); 1458 1459 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1460 * when dev_maps hasn't been allocated yet, to be backward compatible. 1461 */ 1462 nr_ids = dev_maps ? dev_maps->nr_ids : 1463 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1464 1465 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1466 if (!mask) { 1467 rcu_read_unlock(); 1468 return -ENOMEM; 1469 } 1470 1471 if (!dev_maps || tc >= dev_maps->num_tc) 1472 goto out_no_maps; 1473 1474 for (j = 0; j < nr_ids; j++) { 1475 int i, tci = j * dev_maps->num_tc + tc; 1476 struct xps_map *map; 1477 1478 map = rcu_dereference(dev_maps->attr_map[tci]); 1479 if (!map) 1480 continue; 1481 1482 for (i = map->len; i--;) { 1483 if (map->queues[i] == index) { 1484 __set_bit(j, mask); 1485 break; 1486 } 1487 } 1488 } 1489 out_no_maps: 1490 rcu_read_unlock(); 1491 1492 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1493 bitmap_free(mask); 1494 1495 return len < PAGE_SIZE ? len : -EINVAL; 1496 } 1497 1498 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1499 { 1500 struct net_device *dev = queue->dev; 1501 unsigned int index; 1502 int len, tc; 1503 1504 if (!netif_is_multiqueue(dev)) 1505 return -ENOENT; 1506 1507 index = get_netdev_queue_index(queue); 1508 1509 if (!rtnl_trylock()) 1510 return restart_syscall(); 1511 1512 /* If queue belongs to subordinate dev use its map */ 1513 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1514 1515 tc = netdev_txq_to_tc(dev, index); 1516 if (tc < 0) { 1517 rtnl_unlock(); 1518 return -EINVAL; 1519 } 1520 1521 /* Make sure the subordinate device can't be freed */ 1522 get_device(&dev->dev); 1523 rtnl_unlock(); 1524 1525 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1526 1527 put_device(&dev->dev); 1528 return len; 1529 } 1530 1531 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1532 const char *buf, size_t len) 1533 { 1534 struct net_device *dev = queue->dev; 1535 unsigned int index; 1536 cpumask_var_t mask; 1537 int err; 1538 1539 if (!netif_is_multiqueue(dev)) 1540 return -ENOENT; 1541 1542 if (!capable(CAP_NET_ADMIN)) 1543 return -EPERM; 1544 1545 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1546 return -ENOMEM; 1547 1548 index = get_netdev_queue_index(queue); 1549 1550 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1551 if (err) { 1552 free_cpumask_var(mask); 1553 return err; 1554 } 1555 1556 if (!rtnl_trylock()) { 1557 free_cpumask_var(mask); 1558 return restart_syscall(); 1559 } 1560 1561 err = netif_set_xps_queue(dev, mask, index); 1562 rtnl_unlock(); 1563 1564 free_cpumask_var(mask); 1565 1566 return err ? : len; 1567 } 1568 1569 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1570 = __ATTR_RW(xps_cpus); 1571 1572 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1573 { 1574 struct net_device *dev = queue->dev; 1575 unsigned int index; 1576 int tc; 1577 1578 index = get_netdev_queue_index(queue); 1579 1580 if (!rtnl_trylock()) 1581 return restart_syscall(); 1582 1583 tc = netdev_txq_to_tc(dev, index); 1584 rtnl_unlock(); 1585 if (tc < 0) 1586 return -EINVAL; 1587 1588 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1589 } 1590 1591 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1592 size_t len) 1593 { 1594 struct net_device *dev = queue->dev; 1595 struct net *net = dev_net(dev); 1596 unsigned long *mask; 1597 unsigned int index; 1598 int err; 1599 1600 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1601 return -EPERM; 1602 1603 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1604 if (!mask) 1605 return -ENOMEM; 1606 1607 index = get_netdev_queue_index(queue); 1608 1609 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1610 if (err) { 1611 bitmap_free(mask); 1612 return err; 1613 } 1614 1615 if (!rtnl_trylock()) { 1616 bitmap_free(mask); 1617 return restart_syscall(); 1618 } 1619 1620 cpus_read_lock(); 1621 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1622 cpus_read_unlock(); 1623 1624 rtnl_unlock(); 1625 1626 bitmap_free(mask); 1627 return err ? : len; 1628 } 1629 1630 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1631 = __ATTR_RW(xps_rxqs); 1632 #endif /* CONFIG_XPS */ 1633 1634 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1635 &queue_trans_timeout.attr, 1636 &queue_traffic_class.attr, 1637 #ifdef CONFIG_XPS 1638 &xps_cpus_attribute.attr, 1639 &xps_rxqs_attribute.attr, 1640 &queue_tx_maxrate.attr, 1641 #endif 1642 NULL 1643 }; 1644 ATTRIBUTE_GROUPS(netdev_queue_default); 1645 1646 static void netdev_queue_release(struct kobject *kobj) 1647 { 1648 struct netdev_queue *queue = to_netdev_queue(kobj); 1649 1650 memset(kobj, 0, sizeof(*kobj)); 1651 netdev_put(queue->dev, &queue->dev_tracker); 1652 } 1653 1654 static const void *netdev_queue_namespace(const struct kobject *kobj) 1655 { 1656 struct netdev_queue *queue = to_netdev_queue(kobj); 1657 struct device *dev = &queue->dev->dev; 1658 const void *ns = NULL; 1659 1660 if (dev->class && dev->class->ns_type) 1661 ns = dev->class->namespace(dev); 1662 1663 return ns; 1664 } 1665 1666 static void netdev_queue_get_ownership(const struct kobject *kobj, 1667 kuid_t *uid, kgid_t *gid) 1668 { 1669 const struct net *net = netdev_queue_namespace(kobj); 1670 1671 net_ns_get_ownership(net, uid, gid); 1672 } 1673 1674 static const struct kobj_type netdev_queue_ktype = { 1675 .sysfs_ops = &netdev_queue_sysfs_ops, 1676 .release = netdev_queue_release, 1677 .default_groups = netdev_queue_default_groups, 1678 .namespace = netdev_queue_namespace, 1679 .get_ownership = netdev_queue_get_ownership, 1680 }; 1681 1682 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1683 { 1684 struct netdev_queue *queue = dev->_tx + index; 1685 struct kobject *kobj = &queue->kobj; 1686 int error = 0; 1687 1688 /* Kobject_put later will trigger netdev_queue_release call 1689 * which decreases dev refcount: Take that reference here 1690 */ 1691 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1692 1693 kobj->kset = dev->queues_kset; 1694 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1695 "tx-%u", index); 1696 if (error) 1697 goto err; 1698 1699 #ifdef CONFIG_BQL 1700 error = sysfs_create_group(kobj, &dql_group); 1701 if (error) 1702 goto err; 1703 #endif 1704 1705 kobject_uevent(kobj, KOBJ_ADD); 1706 return 0; 1707 1708 err: 1709 kobject_put(kobj); 1710 return error; 1711 } 1712 1713 static int tx_queue_change_owner(struct net_device *ndev, int index, 1714 kuid_t kuid, kgid_t kgid) 1715 { 1716 struct netdev_queue *queue = ndev->_tx + index; 1717 struct kobject *kobj = &queue->kobj; 1718 int error; 1719 1720 error = sysfs_change_owner(kobj, kuid, kgid); 1721 if (error) 1722 return error; 1723 1724 #ifdef CONFIG_BQL 1725 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1726 #endif 1727 return error; 1728 } 1729 #endif /* CONFIG_SYSFS */ 1730 1731 int 1732 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1733 { 1734 #ifdef CONFIG_SYSFS 1735 int i; 1736 int error = 0; 1737 1738 /* Tx queue kobjects are allowed to be updated when a device is being 1739 * unregistered, but solely to remove queues from qdiscs. Any path 1740 * adding queues should be fixed. 1741 */ 1742 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 1743 "New queues can't be registered after device unregistration."); 1744 1745 for (i = old_num; i < new_num; i++) { 1746 error = netdev_queue_add_kobject(dev, i); 1747 if (error) { 1748 new_num = old_num; 1749 break; 1750 } 1751 } 1752 1753 while (--i >= new_num) { 1754 struct netdev_queue *queue = dev->_tx + i; 1755 1756 if (!refcount_read(&dev_net(dev)->ns.count)) 1757 queue->kobj.uevent_suppress = 1; 1758 #ifdef CONFIG_BQL 1759 sysfs_remove_group(&queue->kobj, &dql_group); 1760 #endif 1761 kobject_put(&queue->kobj); 1762 } 1763 1764 return error; 1765 #else 1766 return 0; 1767 #endif /* CONFIG_SYSFS */ 1768 } 1769 1770 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1771 kuid_t kuid, kgid_t kgid) 1772 { 1773 #ifdef CONFIG_SYSFS 1774 int error = 0; 1775 int i; 1776 1777 for (i = 0; i < num; i++) { 1778 error = tx_queue_change_owner(dev, i, kuid, kgid); 1779 if (error) 1780 break; 1781 } 1782 1783 return error; 1784 #else 1785 return 0; 1786 #endif /* CONFIG_SYSFS */ 1787 } 1788 1789 static int register_queue_kobjects(struct net_device *dev) 1790 { 1791 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1792 1793 #ifdef CONFIG_SYSFS 1794 dev->queues_kset = kset_create_and_add("queues", 1795 NULL, &dev->dev.kobj); 1796 if (!dev->queues_kset) 1797 return -ENOMEM; 1798 real_rx = dev->real_num_rx_queues; 1799 #endif 1800 real_tx = dev->real_num_tx_queues; 1801 1802 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1803 if (error) 1804 goto error; 1805 rxq = real_rx; 1806 1807 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1808 if (error) 1809 goto error; 1810 txq = real_tx; 1811 1812 return 0; 1813 1814 error: 1815 netdev_queue_update_kobjects(dev, txq, 0); 1816 net_rx_queue_update_kobjects(dev, rxq, 0); 1817 #ifdef CONFIG_SYSFS 1818 kset_unregister(dev->queues_kset); 1819 #endif 1820 return error; 1821 } 1822 1823 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1824 { 1825 int error = 0, real_rx = 0, real_tx = 0; 1826 1827 #ifdef CONFIG_SYSFS 1828 if (ndev->queues_kset) { 1829 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1830 if (error) 1831 return error; 1832 } 1833 real_rx = ndev->real_num_rx_queues; 1834 #endif 1835 real_tx = ndev->real_num_tx_queues; 1836 1837 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1838 if (error) 1839 return error; 1840 1841 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1842 if (error) 1843 return error; 1844 1845 return 0; 1846 } 1847 1848 static void remove_queue_kobjects(struct net_device *dev) 1849 { 1850 int real_rx = 0, real_tx = 0; 1851 1852 #ifdef CONFIG_SYSFS 1853 real_rx = dev->real_num_rx_queues; 1854 #endif 1855 real_tx = dev->real_num_tx_queues; 1856 1857 net_rx_queue_update_kobjects(dev, real_rx, 0); 1858 netdev_queue_update_kobjects(dev, real_tx, 0); 1859 1860 dev->real_num_rx_queues = 0; 1861 dev->real_num_tx_queues = 0; 1862 #ifdef CONFIG_SYSFS 1863 kset_unregister(dev->queues_kset); 1864 #endif 1865 } 1866 1867 static bool net_current_may_mount(void) 1868 { 1869 struct net *net = current->nsproxy->net_ns; 1870 1871 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1872 } 1873 1874 static void *net_grab_current_ns(void) 1875 { 1876 struct net *ns = current->nsproxy->net_ns; 1877 #ifdef CONFIG_NET_NS 1878 if (ns) 1879 refcount_inc(&ns->passive); 1880 #endif 1881 return ns; 1882 } 1883 1884 static const void *net_initial_ns(void) 1885 { 1886 return &init_net; 1887 } 1888 1889 static const void *net_netlink_ns(struct sock *sk) 1890 { 1891 return sock_net(sk); 1892 } 1893 1894 const struct kobj_ns_type_operations net_ns_type_operations = { 1895 .type = KOBJ_NS_TYPE_NET, 1896 .current_may_mount = net_current_may_mount, 1897 .grab_current_ns = net_grab_current_ns, 1898 .netlink_ns = net_netlink_ns, 1899 .initial_ns = net_initial_ns, 1900 .drop_ns = net_drop_ns, 1901 }; 1902 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1903 1904 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env) 1905 { 1906 const struct net_device *dev = to_net_dev(d); 1907 int retval; 1908 1909 /* pass interface to uevent. */ 1910 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1911 if (retval) 1912 goto exit; 1913 1914 /* pass ifindex to uevent. 1915 * ifindex is useful as it won't change (interface name may change) 1916 * and is what RtNetlink uses natively. 1917 */ 1918 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1919 1920 exit: 1921 return retval; 1922 } 1923 1924 /* 1925 * netdev_release -- destroy and free a dead device. 1926 * Called when last reference to device kobject is gone. 1927 */ 1928 static void netdev_release(struct device *d) 1929 { 1930 struct net_device *dev = to_net_dev(d); 1931 1932 BUG_ON(dev->reg_state != NETREG_RELEASED); 1933 1934 /* no need to wait for rcu grace period: 1935 * device is dead and about to be freed. 1936 */ 1937 kfree(rcu_access_pointer(dev->ifalias)); 1938 netdev_freemem(dev); 1939 } 1940 1941 static const void *net_namespace(const struct device *d) 1942 { 1943 const struct net_device *dev = to_net_dev(d); 1944 1945 return dev_net(dev); 1946 } 1947 1948 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid) 1949 { 1950 const struct net_device *dev = to_net_dev(d); 1951 const struct net *net = dev_net(dev); 1952 1953 net_ns_get_ownership(net, uid, gid); 1954 } 1955 1956 static struct class net_class __ro_after_init = { 1957 .name = "net", 1958 .dev_release = netdev_release, 1959 .dev_groups = net_class_groups, 1960 .dev_uevent = netdev_uevent, 1961 .ns_type = &net_ns_type_operations, 1962 .namespace = net_namespace, 1963 .get_ownership = net_get_ownership, 1964 }; 1965 1966 #ifdef CONFIG_OF 1967 static int of_dev_node_match(struct device *dev, const void *data) 1968 { 1969 for (; dev; dev = dev->parent) { 1970 if (dev->of_node == data) 1971 return 1; 1972 } 1973 1974 return 0; 1975 } 1976 1977 /* 1978 * of_find_net_device_by_node - lookup the net device for the device node 1979 * @np: OF device node 1980 * 1981 * Looks up the net_device structure corresponding with the device node. 1982 * If successful, returns a pointer to the net_device with the embedded 1983 * struct device refcount incremented by one, or NULL on failure. The 1984 * refcount must be dropped when done with the net_device. 1985 */ 1986 struct net_device *of_find_net_device_by_node(struct device_node *np) 1987 { 1988 struct device *dev; 1989 1990 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1991 if (!dev) 1992 return NULL; 1993 1994 return to_net_dev(dev); 1995 } 1996 EXPORT_SYMBOL(of_find_net_device_by_node); 1997 #endif 1998 1999 /* Delete sysfs entries but hold kobject reference until after all 2000 * netdev references are gone. 2001 */ 2002 void netdev_unregister_kobject(struct net_device *ndev) 2003 { 2004 struct device *dev = &ndev->dev; 2005 2006 if (!refcount_read(&dev_net(ndev)->ns.count)) 2007 dev_set_uevent_suppress(dev, 1); 2008 2009 kobject_get(&dev->kobj); 2010 2011 remove_queue_kobjects(ndev); 2012 2013 pm_runtime_set_memalloc_noio(dev, false); 2014 2015 device_del(dev); 2016 } 2017 2018 /* Create sysfs entries for network device. */ 2019 int netdev_register_kobject(struct net_device *ndev) 2020 { 2021 struct device *dev = &ndev->dev; 2022 const struct attribute_group **groups = ndev->sysfs_groups; 2023 int error = 0; 2024 2025 device_initialize(dev); 2026 dev->class = &net_class; 2027 dev->platform_data = ndev; 2028 dev->groups = groups; 2029 2030 dev_set_name(dev, "%s", ndev->name); 2031 2032 #ifdef CONFIG_SYSFS 2033 /* Allow for a device specific group */ 2034 if (*groups) 2035 groups++; 2036 2037 *groups++ = &netstat_group; 2038 2039 if (wireless_group_needed(ndev)) 2040 *groups++ = &wireless_group; 2041 #endif /* CONFIG_SYSFS */ 2042 2043 error = device_add(dev); 2044 if (error) 2045 return error; 2046 2047 error = register_queue_kobjects(ndev); 2048 if (error) { 2049 device_del(dev); 2050 return error; 2051 } 2052 2053 pm_runtime_set_memalloc_noio(dev, true); 2054 2055 return error; 2056 } 2057 2058 /* Change owner for sysfs entries when moving network devices across network 2059 * namespaces owned by different user namespaces. 2060 */ 2061 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2062 const struct net *net_new) 2063 { 2064 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2065 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2066 struct device *dev = &ndev->dev; 2067 int error; 2068 2069 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2070 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2071 2072 /* The network namespace was changed but the owning user namespace is 2073 * identical so there's no need to change the owner of sysfs entries. 2074 */ 2075 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2076 return 0; 2077 2078 error = device_change_owner(dev, new_uid, new_gid); 2079 if (error) 2080 return error; 2081 2082 error = queue_change_owner(ndev, new_uid, new_gid); 2083 if (error) 2084 return error; 2085 2086 return 0; 2087 } 2088 2089 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2090 const void *ns) 2091 { 2092 return class_create_file_ns(&net_class, class_attr, ns); 2093 } 2094 EXPORT_SYMBOL(netdev_class_create_file_ns); 2095 2096 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2097 const void *ns) 2098 { 2099 class_remove_file_ns(&net_class, class_attr, ns); 2100 } 2101 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2102 2103 int __init netdev_kobject_init(void) 2104 { 2105 kobj_ns_type_register(&net_ns_type_operations); 2106 return class_register(&net_class); 2107 } 2108